# Future facilities in high energy frontier and flavour physics

Open Symposium - European Strategy Preparatory Group

Krakow. 10<sup>th</sup> September 2012

Terry Wyatt.

University of Manchester.

#### <u>Overview</u>

- Introduction
- High energy frontier physics
  - Summary of main proposed future facilities
  - Physics reach
    - Pick on a few key specific physics questions and measurements
      - in which areas are possible future facilities competitive/complementary?
  - Concluding remarks on high energy frontier physics
- Heavy flavour physics
  - Summary of main proposed future facilities
  - Physics reach
  - Concluding remarks on heavy flavour physics

- N.B. Future prospects for EDM, charged LFV, K decay, etc, have been covered in talks by Frederic Teubert and Gino Isidori
- N.B. Many issues relevant to "future facilities" will be covered in the Tuesday afternoon sessions "Accelerator Science and Technology" and "Instrumentation, Computing and General Infrastructure"

#### Proton-proton colliders

| Facility    | Years     | Ecm<br>[TeV] | Luminosity<br>[10 <sup>34</sup> cm <sup>-2</sup> s <sup>-2</sup> ] | int Luminosity<br>[fb <sup>-1</sup> ] | Comments                 |
|-------------|-----------|--------------|--------------------------------------------------------------------|---------------------------------------|--------------------------|
| nominal LHC | 2014-2021 | 14           | 1-2                                                                | 300                                   |                          |
| HL-LHC      | 2023-2030 | 14           | 5                                                                  | 3000                                  | luminosity<br>levelling  |
| HE-LHC      | >2035     | 26-33        | >2                                                                 | 100-300 / yr                          | dipole fields<br>16-20 T |
| V-LHC       |           | 42-100       |                                                                    |                                       | new 80 km<br>tunnel      |

c.f. previous steps in  $\sqrt{s}$  at hadron colliders

SppS 
$$\rightarrow$$
 Tevatron  $\rightarrow$  LHC 0.63  $\rightarrow$  2  $\rightarrow$  14 TeV

N.B. Very significant challenges to operate trigger/detector and do physics at very high luminosity/high pile-up at HL-LHC and beyond

#### Possible future high energy proton-proton collider

- Gain a factor of >100 in luminosity for parton-parton collisions of mass
  - at 4-5 TeV for 33 TeV relative to 14 TeV
  - at 10-15 TeV for 80 TeV relative to 33 TeV
    - Plot: thanks to James Stirling (private communication)



- First geological feasibility studies for 80 km ring at CERN carried out
- High field dual beam dipoles are very large
  - Ideal tunnel diameter needs to be larger than for LHC
  - Reinvestigate proton-antiproton!?
    - Single beam pipe
    - but could enough antiprotons ever be produced?



### <u>ILC</u>

#### Two single-beam linacs with superconducting RF accelerating cavities ~40 MV/m



#### Schematic layout of the ILC complex

- For Vs = 500 GeV total length of facility ~30 km
- Established technology
  - Industrial production of high field superconducting cavities now well established

#### **CLIC**

#### Two double-beam linacs

 Low energy, high current drive beam powers ~100 MV/m RF cavities in main linac

#### Overview of the CLIC layout at $\sqrt{s} = 3 \text{ TeV}$



- Two scenarios considered for staged construction of machine
- Scenario A employs higher aperture cavities for 500 GeV running:
  - allows higher beam current and factor 2 increase in luminosity above 99% of vs
  - but these cavities must be replaced for 3 TeV running
- Scenario B employs nominal aperture cavities throughout the programme to minimize overall cost

#### Projected integrated luminosity for CLIC "scenario B"



#### Circular e<sup>+</sup>e<sup>-</sup> colliders



#### E.g., LEP3:

- $\sqrt{s} = 240 \text{ GeV}$  in the LHC tunnel to produce  $e^+e^- \rightarrow ZH$  events
- Short beam lifetime (~16 mins) requires two ring scheme
  - Top up injection from 240 GeV "accelerator ring"
  - "Collider ring" supplying 2-4 interaction points L = 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> per IP
    - Re-use ATLAS and CMS and/or install two dedicated LC-type detectors
- Current design uses arc optics from LHeC ring
  - Dipole fill factor 0.75 (smaller than for LEP)
  - increased synchrotron energy loss (7 GeV per turn)
  - redesign possible?
- e<sup>±</sup> polarization probably not possible at vs = 240 GeV
- In principle space is available to install compact e<sup>+</sup>e<sup>-</sup> facility on top of LHC ring
  - Is this really feasible?
  - Alternatively wait until completion of LHC physics programme and removal of LHC ring?
- SuperTRISTAN is a proposal for a similar machine in Japan

#### E.g., TLEP:

•  $\sqrt{s} = 350 \text{ GeV}$  in 80 km LHC tunnel to reach thresholds for top pair and  $e^+e^- \rightarrow VVWW \rightarrow VVH$ 

### e<sup>+</sup>e<sup>-</sup> collider summary

|                                                                    | ILC  | ILC | ILC  | CLIC  | CLIC  | CLIC  | LEP3     |
|--------------------------------------------------------------------|------|-----|------|-------|-------|-------|----------|
| √s [GeV]                                                           | 250  | 500 | 1000 | 500   | 1500  | 3000  | 240      |
| Luminosity<br>[10 <sup>34</sup> cm <sup>-1</sup> s <sup>-1</sup> ] | 0.75 | 1.8 | 4.9  | 1.3   | 3.7   | 5.9   | 1 per IP |
| >0.99 √s fraction                                                  | 87%  | 58% | 45%  | 54%   | 38%   | 34%   | 100%     |
| polarization e                                                     | 80%  | 80% | 80%  | 80%   | 80%   | 80%   | -        |
| polarization e <sup>+</sup>                                        | 30%  | 30% | 20%  | >50%? | >50%? | >50%? | -        |
| beam size $\sigma_x$ [nm]                                          | 729  | 474 | 335  | 100   | 60    | 40    | 71000    |
| beam size $\sigma_y$ [nm]                                          | 7.7  | 5.9 | 2.7  | 2.6   | 1.5   | 1     | 320      |
| Power [MW]                                                         | 128  | 162 | 300  | 235   | 364   | 589   | 200      |
|                                                                    |      |     |      |       |       |       |          |

- Both ILC and circular e<sup>+</sup>e<sup>-</sup> machines offer the option of "GigaZ"
  - Collect  $10^9$  (ILC) to  $10^{11}$  (LEP3, with 80%  $e^{\pm}$  polarization) Z events in one year at  $E_{cm}$  = 91 GeV
  - Improve by an order of magnitude or more on the precision of the LEP/SLC measurements of Z couplings
- Also running at WW threshold to improve m<sub>W</sub>

#### Muon collider



- Potential advantages wrt. e<sup>+</sup>e<sup>-</sup>
- Smaller facility size
  - Synchrotron radiation losses ~ E<sup>4</sup>/m<sup>4</sup>r
- Smaller energy spread
  - Beamsstrahlung ~ E<sup>4</sup>/m<sup>4</sup>
- s-channel Higgs production ~m<sup>2</sup>

- Target L =  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup> per IP
- Many technical challenges to be faced
  - Intense proton source
  - Muon cooling
  - Can detectors survive muon decay rate and still do the physics?
- Could be a follow-on from (or precursor to) a v-factory

### electron-proton collider (LHeC)



- Double ("race-track") linear accelerator option now preferred
- 10 x 2 x 3=60 GeV e<sup>±</sup> beam
- Unused beam returned from IP to recover energy

- Q<sup>2</sup><sub>max</sub> ~ 1 TeV
- Luminosity 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> (e<sup>-</sup>p), 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup> (e<sup>+</sup>p)
- Integrated luminosity aim ~100 fb<sup>-1</sup>
- e⁻ polarization ~ 90%
  - Q<sup>2</sup><sub>max</sub> and luminosity are factors of around 30 and 100, respectively, higher than at HERA
- N.B. precise QCD (PDFs,  $\alpha_s$ , MC, etc) is very important for HEF programme at LHC!
  - In addition, some particular HEF reach
  - e-N collisions also possible

### Photon-photon colliders



 $\gamma$   $\gamma$  luminosity as function of  $\forall$ s for different polarization of laser photons ( $\lambda$ ) and electrons ( $P_e$ )



- Photon-photon collisions at  $\sqrt{s} = 125$  GeV for  $\gamma \rightarrow H$  (s-channel)
- E.g., SAPPHiRE:
- Pair of recirculating linacs similar in design to those proposed for the LHeC
  - $E_{heam} = 80 \text{ GeV}$
- Laser back-scatter system peak power 6 x 10<sup>21</sup> Wm<sup>-2</sup>
  - Needs R&D!
- $\gamma \gamma$  Luminosity ~0.3 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> for  $\sqrt{s} \approx 125$  GeV
- Some advantages over e<sup>+</sup>e<sup>-</sup> for Higgs
  - Lower beam energy
  - Do not need positron source

#### Physics reach of future high energy frontier facilities

Define "benchmark" set of energy frontier physics questions/measurements:

- Measurement of Higgs-like particle properties
  - mass, spin, couplings
- Measurement of gauge boson pair scattering at high energies
- Other precise EW measurements
  - W mass, sin<sup>2</sup>theta<sub>w</sub>, etc.
    - Give access to new physics through quantum effects
- Measurement of top quark properties
  - mass, couplings, spin correlations, W helicity, tt resonance search, etc.
- Generic cases of sensitivity of searches for massive particles/new interactions

#### Caveat emptor

- Different studies are currently at very different levels of sophistication/ realism
  - Full Geant-level MC with pile-up vs. parameterized MC (of varying levels of sophistication) vs. extrapolations from current performance vs. "back of envelope" estimates
  - Currently running detectors vs. experience from similar past machines vs. "guesswork"
  - Difficult to predict improvements in theory uncertainties
    - In most projections theory uncertainties ignored or quoted separately
    - A huge effort will be needed to ensure that the theoretical interpretation will match the precision of the improved experimental measurements
  - I'll try to point out some specific caveats in the following
- For almost any past facility in particle physics, compare actual physics achieved with that predicted before turn on!
  - E.g., EW precision at LEP
  - E.g., The recent "Higgs" discovery came at half the LHC design energy, much more severe pileup, and one-third of the integrated luminosity than expected
  - Actual start date compared to that advertised when it was being "sold"?
- Nevertheless, we have to try to estimate physics reach as a guide in making rational decisions about future directions
  - which R&D to pursue, ultimately which facility to build?

### **Higgs**

- Many extensions to SM have a "light", "SM-like", "Higgs-like" particle
- Important to measure couplings as precisely as possible
- m<sub>H</sub>= 125 GeV is "ideal" since it provides nonnegligible Br to many final states

### Higgs at the LHC

- In pp many possible H decays are for practical purposes "invisible"
- Can measure only ratios of couplings

 $\sigma_i \cdot BR_j$  is assumed to be proportional to  $\Gamma_i \cdot \Gamma_j / \Gamma_H$  with i = g, W, Z, t and  $j = W, Z, \gamma, \mu, \tau$ 



Figure 1: Expected invariant mass distribution for (a)  $t\bar{t}H, H \to \gamma\gamma$  in the 1-lepton selection and (b) the inclusive  $H \to \mu\mu$  channel, for an assumed integrated luminosity of 3000 fb<sup>-1</sup>

#### ATLAS and CMS Higgs couplings

- ATLAS has studied expected degradation in detector performance using full Geant MC with pile up (up to  $\mu^{-70}$ 
  - Extrapolate to  $\mu$ ~140 and input to parameterized MC
  - Projections for 300 fb<sup>-1</sup> and 3000 fb<sup>-1</sup>
- CMS extrapolates to 300 fb<sup>-1</sup> assuming current detector performance can be maintained
  - No projections currently for 3000 fb<sup>-1</sup>
- Differences in projected performance at 300 fb<sup>-1</sup> understood at some level as coming from different methodologies
  - E.g.  $\gamma \gamma$  signal strength precision 10±5% for 300 fb<sup>-1</sup> (ATLAS estimate 15%, CMS estimate 5%)
- Much to be done to refine these projections
  - But the experiments have understandably had other priorities in this area recently ;-)
- Significant gain in precision expected between 300 and 3000 fb<sup>-1</sup>
  - Uncertainties <5% look likely for H→YY, H→ZZ

ATLAS Preliminary (Simulation)

ATLAS Preliminary (Simulation)  $\sqrt{s}$  = 14 TeV:  $[Ldt=300 \text{ fb}^{-1}; [Ldt=3000 \text{ fb}^{-1}]]$ 

 $\Gamma_{\mathbf{v}}/\Gamma_{\mathbf{v}}$ 





### Higgs in e<sup>+</sup>e<sup>-</sup>



Many studies performed using full Geant-based MC

Integrated luminosity and numbers of events expected for initial 5 years running at each value of  $\rm E_{cm}$ 



|                                                     | 250 GeV                 | 350 GeV               | 500 GeV                 | 1 TeV               | 1.5 TeV             | 3 TeV               |
|-----------------------------------------------------|-------------------------|-----------------------|-------------------------|---------------------|---------------------|---------------------|
| $\sigma(e^+e^- \to ZH)$                             | 240 fb                  | 129 fb                | 57 fb                   | 13 fb               | 6 fb                | 1 fb                |
| $\sigma(e^+e^- \rightarrow H\nu_e\overline{\nu}_e)$ | 8 fb                    | 30 fb                 | 75 fb                   | 210 fb              | 309 fb              | 484 fb              |
| Int. $\mathcal{L}$                                  | $250  \mathrm{fb^{-1}}$ | $350  \text{fb}^{-1}$ | $500  \mathrm{fb^{-1}}$ | $1000{\rm fb^{-1}}$ | $1500{\rm fb^{-1}}$ | $2000{\rm fb^{-1}}$ |
| #ZH events                                          | 60,000                  | 45,500                | 28,500                  | 13,000              | 7,500               | 2,000               |
| # $H\nu_e\overline{\nu}_e$ events                   | 2,000                   | 10,500                | 37,500                  | 210,000             | 460,000             | 970,000             |

#### $\sqrt{s}$ ~ 250 GeV ZH

- Recoil mass in I+I-X events
  - very powerful
  - $\sigma_{ZH}$  independent of decay mode
    - including invisible decays

| $\sqrt{s}$                      | 250 GeV            | 350 GeV               |
|---------------------------------|--------------------|-----------------------|
| Int. $\mathcal{L}$              | $250{\rm fb}^{-1}$ | $350  \text{fb}^{-1}$ |
| $\Delta(\sigma)/\sigma$         | 3 %                | 4 %                   |
| $\Delta(g_{ m HZZ})/g_{ m HZZ}$ | 1.5 %              | 2 %                   |





#### √s > 500 GeV WW and ZZ fusion



e<sup>+</sup>e<sup>-</sup> precision on Higgs couplings assuming one operating point ~250 GeV and one ~500 GeV





I.e., typical e<sup>+</sup>e<sup>-</sup> precisions on couplings ~few percent

|                                    | 250/350 GeV | $500\text{GeV}^\dagger$ | 3 TeV |                     | 250/350 GeV | $500\text{GeV}^\dagger$ | 3 TeV  |
|------------------------------------|-------------|-------------------------|-------|---------------------|-------------|-------------------------|--------|
| $\sigma \times Br(H \to bb)$       | 1.0/1.0 %   | 0.6 %                   | 0.2 % | $g_{ m Hbb}$        | 1.6/1.4 %   | ?                       | 2 %    |
| $\sigma \times Br(H \to cc)$       | 7/6%        | 4 %                     | 3 %   | $g_{ m Hcc}$        | 4/3 %       | 2 %                     | 2 %    |
| $\sigma \times Br(H \to \tau\tau)$ | 6*/6%       | 5 %                     | ?     | $g_{ m H	au	au}$    | 3*/3 %      | 2.5 %                   | ?      |
| $\sigma \times Br(H \to WW)$       | 8/6 %       | 3 %                     | ?     | $g_{ m HWW}$        | 4/3 %       | 1.4 %                   | < 2 %  |
| $\sigma \times Br(H \to \mu\mu)$   | -/-         | ?                       | 15 %  | gΗμμ                | -/-         | _                       | 7.5 %  |
| $\sigma \times Br(H \to gg)$       | 9/7 %       | 5 %                     | ?     | <u>ghww</u><br>ghzz | ?/?         | ?                       | < 1 %* |
|                                    |             |                         |       | $g_{ m Htt}$        | -/-         | 15 %                    | ?      |

- N.B. Higgs production in WW and ZZ fusion can be studied also at LHeC
  - e.g.,  $\sigma$ .Br (H->bb) precision ~4%

### Higgs mass and width

- Δm<sub>H</sub> ~ 50 MeV
  - From recoil mass at  $\sqrt{s} = 250$  GeV or direct reconstruction
- For m<sub>H</sub> = 125 GeV, the total Higgs decay width in the SM is less than 5 MeV
  - Cannot be measured directly
  - Can be determined to ~5% using

$$\Gamma_H = \Gamma(H \to WW^*)/Br(H \to WW^*)$$

 Threshold behaviour of cross section gives information on CP

### Higgs self-coupling

- Observing HH events: very difficult at the LHC
  - Destructive interference between diagrams involving
     HHH and gg→HH
    - $\sigma_{HH} = 71$ , 34, 16 fb for  $\lambda_{HHH}/\lambda_{HHH}^{SM} = 0.1.2$
  - Most promising channels bbγγ, bbττ
  - Maybe  $\sim 3\sigma$  significance per expt in a few channels?
  - Maybe 30% measurement of  $\lambda_{HHH}$ ?
  - At the moment estimates are very vague and based on a large degree of optimism
- This is not easy at LC either!
  - $\sqrt{s} = 500 \text{ GeV ZHH}$
  - $\sqrt{s} = 1000 \text{ GeV } \text{ vvHH}$
  - Maybe 20% measurement of  $\lambda_{HHH}$ ?

#### Vector boson scattering at high energy

- Essential component in test of EWSB
- At LHC VBF signature tagged by two forward jets separated by "rapidity gap"

e.g., WW+jj →eνμν+jj (fully leptonic WW decay)



95% CL limits on parameter a<sub>4</sub> that multiplies example non-SM operator

| model | $300{\rm fb^{-1}}$ | $1000{\rm fb}^{-1}$ | $3000  \text{fb}^{-1}$ |
|-------|--------------------|---------------------|------------------------|
| $a_4$ | 0.066              | 0.025               | 0.016                  |

e.g., WW+jj → lvjj+jj (semi-leptonic WW decay)



#### Sensitivity to SM WW and various resonance hypotheses

| model                                     | baseline          | 500 GeV scalar    | 800 GeV vector    | 1150 GeVvector    |
|-------------------------------------------|-------------------|-------------------|-------------------|-------------------|
| $(a_4, a_5)$                              | (0,0)             | (0.01, 0.009)     | (0.009, -0.007)   | (0.004, -0.004)   |
| S/B                                       | $(3.3 \pm 0.3)\%$ | $(0.7 \pm 0.1)\%$ | $(4.9 \pm 0.3)\%$ | $(5.8 \pm 0.3)\%$ |
| $S/\sqrt{B} \ (L = 300 \text{fb}^{-1})$   | $2.3 \pm 0.3$     | $0.6 \pm 0.1$     | $3.3 \pm 0.4$     | $3.9 \pm 0.4$     |
| $S/\sqrt{B} \ (L = 3000  \text{fb}^{-1})$ | $7.2 \pm 0.1$     | $1.6 \pm 0.1$     | $10.4 \pm 0.7$    | $12.4 \pm 0.7$    |

#### Vector boson scattering at LC

$$e^+e^- \to \nu \overline{\nu} W^+W^-$$
  
 $e^+e^- \to \nu \overline{\nu} ZZ,$ 

- Separating WW and ZZ in the 4-jet final state
  - Requires excellent jet energy resolution
  - Has driven development of highly segmented calorimeters for energy flow
- Sensitivity to anomalous triple and quartic gauge couplings
- High beam polarization and high integrated luminosity would allow very precise tests to be made
  - ~1% precision on each individual contribution to Lagrangian

#### Other precise EW measurements

- W mass,  $\sin^2\theta_W$ , etc.
  - Measurements possible at LHC
    - Competitive with the LEP/Tevatron precision
      - but unlikely to make huge gains relative to LEP/Tevatron
- New  $e^+e^-$  machines running at  $\sqrt{s} = M_Z$  and  $\sqrt{s} = 2M_W$ 
  - could give order of magnitude or more improvements
    - e.g.,  $\Delta m_W \sim 0.5 1.0 \text{ MeV}$ ?
    - e.g.,  $\sin^2\theta_W$  from polarization and forward-backward asymmetries

- $\sin^2\theta_W$  starts to look like the poor relation in this plot!
  - Significant theoretical progress would be required in the interpretation of more precise experimental measurements in this area!



### Top physics

- Huge numbers of events with 300 fb<sup>-1</sup> at LHC
  - ~50M lepton+jet, 10M di-leptons, 15M single top
- Allows many interesting and precise measurements of top quark properties
  - mass, couplings, spin correlations, W helicity, A<sub>FR</sub>, tt resonance search, etc.
- Δm<sub>+</sub> ~ 1 GeV from Tevatron
- Hard to imagine a huge improvement at LHC, unless radically new ideas can be exploited?
- Theoretical progress needed in interpretation of experimental result
- Less precise (few GeV) measurement from cross section

### Top physics at LC

- Threshold scan allows:
  - $-\Delta m_{t} \sim 20 \text{ MeV (expt)}$ 
    - with additional ~100 MeV ascribed to theoretical interpretation
  - $-\Delta\Gamma_{\rm t} \sim 30~{\rm MeV}$
- Use of polarized beams very powerful in making precise measurements of angular observables



#### Resonance search in ttbar at LHC

#### "Benchmark" example of complex final states

- (multiple) leptons, MET, jets (including b-tag), highly boosted systems
- Compare
  - l+jets: higher Br, higher backgrounds, mass reconstruction possible
  - di-lepton: lower Br, lower backgrounds, no direct mass reconstruction

#### m<sub>tt</sub> in lepton+ jets

#### projected limit on $\sigma$ .Br gKK $\rightarrow$ tt (3000 fb<sup>-1</sup>)





Limits [TeV] from searches in l+jets (di-lepton) stat. uncertainties only

| model                   | $300  \mathrm{fb^{-1}}$ | $1000{\rm fb^{-1}}$ | $3000  \mathrm{fb^{-1}}$                   |   |
|-------------------------|-------------------------|---------------------|--------------------------------------------|---|
| $g_{KK}$                | 4.3 (4.0)               | 5.6 (4.9)           | 6.7 (5.6) strong coupling: broad resonance |   |
| $Z'_{\text{Topcolour}}$ | 3.3 (1.8)               | 4.5 (2.6)           | 5.5 (3.2) weak coupling: narrow resonance  | e |

#### Resonance search in I<sup>+</sup>I<sup>-</sup> at LHC

- Challenge to maintain electron energy/muon momentum resolution in multi-TeV region
- Background dominated by SM Drell-Yan

| model                     | $300{\rm fb^{-1}}$ | $1000{\rm fb^{-1}}$ | $3000{\rm fb^{-1}}$ |
|---------------------------|--------------------|---------------------|---------------------|
| $Z'_{SSM} \rightarrow ee$ | 6.5                | 7.2                 | 7.8                 |
| $Z'_{SSM} \to \mu\mu$     | 6.4                | 7.1                 | 7.6                 |

(stat. uncertainties only)

 Example CMS projection for I<sup>+</sup>I<sup>-</sup> search at 33 TeV



### Summary on direct searches at $\sqrt{s} = 14 \text{ TeV}$

| model                         | $300{\rm fb^{-1}}$ | $1000{\rm fb^{-1}}$ | $3000{\rm fb^{-1}}$ |
|-------------------------------|--------------------|---------------------|---------------------|
| $g_{KK}$                      | 4.3 (4.0)          | 5.6 (4.9)           | 6.7 (5.6)           |
| $Z'_{\text{Topcolour}}$       | 3.3 (1.8)          | 4.5 (2.6)           | 5.5 (3.2)           |
| $Z'_{SSM} \rightarrow ee$     | 6.5                | 7.2                 | 7.8                 |
| $Z'_{SSM} \rightarrow \mu\mu$ | 6.4                | 7.1                 | 7.6                 |

- Search sensitivity up to ~8 TeV
- Specific mass values very model dependent + need systematics
- Clear improvement with increasing integrated luminosity
- N.B. clear windows of opportunity for direct and indirect searches at LC and LHeC
  - e.g., interference effects in (polarized) forward-backward asymmetries give sensitivity to scales 10s TeV

#### Concluding remarks on high energy frontier

Can we think of any scenario in which it would make sense to stop running the LHC in ~2022 (once 300 fb<sup>-1</sup> has been collected)?

- If we have found new particles
  - Presumably we shall want to study them and search for more at higher mass and/or lower  $\sigma.Br$  ?
- If we have found nothing new (other than SM higgs)
  - Would it make sense to switch off the LHC, when it might still represent the best chance of finding NP at higher mass/lower  $\sigma$ .Br ?
- In addition, there is an important programme of "bread and butter" physics at the LHC that will benefit from increasing the integrated luminosity beyond 300 fb<sup>-1</sup>
  - Higgs couplings, top properties, vector boson pair scattering at high energies
- Large costs in consolidation of accelerators/detectors are required to enable the LHC to continue to run beyond 300 fb<sup>-1</sup>
  - even without any upgrade to deliver HL-LHC
- Costs specific to HL-LHC upgrade represent small fraction (~10%?) of total running+consolidation cost of LHC programme for 2022-2030
- Expect HL-LHC upgrade to bring factor ~3 in integrated luminosity
  - 3000 fb⁻¹ rather than 1000 fb⁻¹ if continue to run until 2030 at ~100 fb⁻¹/year
    - Maybe hard to imagine sustaining a programme at constant luminosity over such a long period

#### Concluding remarks on high energy frontier

- LHC built to deliver 100s fb<sup>-1</sup> at 14 TeV
- Currently we have ~20 fb<sup>-1</sup> at 7-8 TeV
- It is too early to say what discoveries will be made at the LHC
  - In particular, at what mass the first BSM particles will be found
- We should welcome the wealth of possible future options as a strength of our field
  - Possible to imagine scenarios in which just about any of the abovementioned large facilities might be the best next step
- Too early to decide what the next big machine will be?
- Whilst waiting for the discoveries (or absence thereof) that will shape the future of the field, can we agree on
  - the further studies that need to be made
    - accelerator and detector designs, physics cases
  - the R&D that needs to be made
- so that when we are in a position to take decisions about the next big HEF facility
  - (maybe by the next round of the European strategy process ;-)
- we can make rational, well-informed decisions?

#### Concluding remarks on high energy frontier

- Discovery of Higgs-like particle with m<sub>H</sub> = 125
   GeV changes many things
  - A major step forward for the field
  - Measuring its properties a high priority
  - We should be refining/reevaluating all the possible options in this area!
- Let's hope that each major region
  - Will continue to host a vibrant accelerator-based particle physics programme
  - Will attract outside contributions to the facilities it hosts
  - Will be able to contribute to world-class facilities in other regions
    - Maybe too early to say which major future projects will be hosted by which region

#### Future facilities in heavy flavour physics

- LHCb upgrade
  - In 2012 luminosity levelled at 4 x 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
    - Mean number of collisions per crossing  $\mu \sim 1.6$  (design 0.4)
  - By 2017 can expect to collect total of ~7 fb⁻¹
  - 2018 upgrade
    - Readout entire detector at 40 MHz + software trigger
    - Replace precision tracking detectors
  - 2019 onwards
    - Luminosity levelled at 1-2 x  $10^{33}$  cm<sup>-2</sup>s<sup>-1</sup> ( $\mu \sim 2$ -4)
    - Collect ~5 fb<sup>-1</sup>/year to achieve total of ~50 fb<sup>-1</sup>
- Next generation B factory
  - SuperKEKB and Super-B (Frascati)
  - Luminosity ~10<sup>36</sup> cm<sup>-2</sup>s<sup>-1</sup>
    - approaching two orders of magnitude increase wrt. first generation B factories
  - Collect  $\sim$ 50 ab<sup>-1</sup> or more on  $\Upsilon$ (4s) and several ab<sup>-1</sup> on  $\Upsilon$ (5s)
  - Substantially improved detectors wrt. first generation
- Many HF observables sensitive to contributions from potential BSM physics
  - − e.g.,  $B_s^0 \rightarrow \mu\mu$ ,  $b \rightarrow s\gamma$ ,  $B^+ \rightarrow \tau^+ \nu$  complement SUSY constraints from direct searches at ATLAS/CMS

### The LHCb upgrade

- LHCb detector and offline event reconstruction work well even in high pile up environment
  - primary vertices separated by few cm, whereas PV resolution ~60 μm,
- Most important limitation of current LHCb at high luminosity is requirement to limit full detector readout to 1 MHz
  - Currently achieved by L0 trigger (calorimeter + muons)



- Upgrade
  - Enable full detector information to be read out at 40 MHz
  - High Level Trigger (HLT) reduce rate to 10-20 kHz to tape
  - Capable of maintaining high efficiency for hadronic B decays

#### LHCb projections assume

- Detector and reconstruction performance essentially the same as presently achieved
- At  $\sqrt{s}$  = 14 TeV (2014-2017) hadronic triggers will suffer efficiency loss of further factor of 2
- Factor 4 increase in hadronic trigger efficiency at
   Vs = 14 TeV after upgrade
  - i.e., factor 2 increase relative to current efficiency
- Observables have central value of current measurements
  - or SM value if there is no measurement yet available

### Results of LHCb projections

| Туре             | Observable                                                                      | Current                   | LHCb                  | Upgrade               | Theory                |
|------------------|---------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------|
|                  |                                                                                 | precision                 | 2018                  | $(50{\rm fb}^{-1})$   | uncertainty           |
| $B_s^0$ mixing   | $2\beta_s \ (B_s^0 \to J/\psi \ \phi)$                                          | 0.10 [30]                 | 0.025                 | 0.008                 | $\sim 0.003$          |
|                  | $2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$                                      | 0.17 [32]                 | 0.045                 | 0.014                 | $\sim 0.01$           |
|                  | $a_{ m sl}^s$                                                                   | $6.4 \times 10^{-3}$ [63] | $0.6 \times 10^{-3}$  | $0.2 \times 10^{-3}$  | $0.03 \times 10^{-3}$ |
| Gluonic          | $2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$                                     | _                         | 0.17                  | 0.03                  | 0.02                  |
| penguins         | $2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$                           |                           | 0.13                  | 0.02                  | < 0.02                |
|                  | $2\beta^{\mathrm{eff}}(B^0 \to \phi K_S^0)$                                     | 0.17 [63]                 | 0.30                  | 0.05                  | 0.02                  |
| Right-handed     | $2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$                                  |                           | 0.09                  | 0.02                  | < 0.01                |
| currents         | $	au^{	ext{eff}}(B^0_s	o\phi\gamma)/	au_{B^0_s}$                                | _                         | 5%                    | 1%                    | 0.2%                  |
| Electroweak      | $S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$                 | 0.08 [64]                 | 0.025                 | 0.008                 | 0.02                  |
| penguins         | $s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$                                    | 25% [64]                  | 6%                    | 2%                    | 7%                    |
|                  | $A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{\rm GeV^2/}c^4)$                            | 0.25 9                    | 0.08                  | 0.025                 | $\sim 0.02$           |
|                  | $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ | 25% [29]                  | 8 %                   | 2.5%                  | $\sim 10\%$           |
| Higgs            | $\mathcal{B}(B_s^0 	o \mu^+\mu^-)$                                              | $1.5 \times 10^{-9}$ [4]  | $0.5 \times 10^{-9}$  | $0.15 \times 10^{-9}$ | $0.3 \times 10^{-9}$  |
| penguins         | $\mathcal{B}(B^0 	o \mu^+\mu^-)/\mathcal{B}(B_s^0 	o \mu^+\mu^-)$               |                           | $\sim 100\%$          | $\sim 35\%$           | $\sim 5\%$            |
| Unitarity        | $\gamma (B \to D^{(*)}K^{(*)})$                                                 | ~ 10–12° [40, 41]         | 4°                    | 0.9°                  | negligible            |
| $_{ m triangle}$ | $\gamma \ (B_s^0 \to D_s K)$                                                    |                           | 11°                   | $2.0^{\circ}$         | negligible            |
| angles           | $eta \; (B^0 	o J/\psi  K_S^0)$                                                 | 0.8° [63]                 | $0.6^{\circ}$         | $0.2^{\circ}$         | negligible            |
| Charm            | $A_{\Gamma}$                                                                    | $2.3 \times 10^{-3}$ [63] | $0.40 \times 10^{-3}$ | $0.07 \times 10^{-3}$ | _                     |
| CP violation     | $\Delta A_{C\!P}$                                                               | $2.1 \times 10^{-3}$ [8]  | $0.65 \times 10^{-3}$ | $0.12\times10^{-3}$   |                       |

- All measurements show steady improvement with increasing integrated luminosity
- Uncertainties are statistical only
- Systematics most likely to be significant for  $a_{sl}^s$ ,  $A_{\Gamma}$  and  $\Delta A_{CP}$
- Theory uncertainties will also become significant for a number of observables

### Results of LHCb projections

| Type           | Observable                                          | Current                   | LHCb                 | Upgrade              | Theory                |
|----------------|-----------------------------------------------------|---------------------------|----------------------|----------------------|-----------------------|
|                |                                                     | precision                 | 2018                 | $(50{\rm fb}^{-1})$  | uncertainty           |
| $B_s^0$ mixing | $2\beta_s \ (B_s^0 \to J/\psi \ \phi)$              | 0.10 [30]                 | 0.025                | 0.008                | $\sim 0.003$          |
|                | $2\beta_s \ (B_s^0 \to J/\psi \ f_0(980))$          | 0.17 [32]                 | 0.045                | 0.014                | $\sim 0.01$           |
|                | $a_{ m sl}^s$                                       | $6.4 \times 10^{-3}$ [63] | $0.6 \times 10^{-3}$ | $0.2 \times 10^{-3}$ | $0.03 \times 10^{-3}$ |
| Gluonic        | $2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$         | _                         | 0.17                 | 0.03                 | 0.02                  |
| penguins       | $2\beta_s^{ m eff}(B_s^0 	o K^{*0} ar{K}^{*0})$     | _                         | 0.13                 | 0.02                 | < 0.02                |
|                | $2\beta^{\mathrm{eff}}(B^0 \to \phi K_S^0)$         | 0.17 [63]                 | 0.30                 | 0.05                 | 0.02                  |
| Right-handed   | $2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$      | _                         | 0.09                 | 0.02                 | < 0.01                |
| currents       | $	au^{	ext{eff}}(B_s^0 	o \phi \gamma)/	au_{B_s^0}$ | _                         | 5%                   | 1 %                  | 0.2%                  |

- $2\beta_s = -\phi_s$  observed in  $b \rightarrow ccs$  transitions
- $2\beta_s$  eff observed in  $b \rightarrow qqs$  transitions (q = u,d,s)
- a<sup>s</sup><sub>sl</sub> is CP violation in semileptonic B<sub>s</sub> decays
  - Sum of a<sup>d</sup><sub>sl</sub> and a<sup>s</sup><sub>sl</sub> observed by DØ deviates from zero with 3.9σ significance

### Results of LHCb projections

| Type             | Observable                                                        | Current                   | LHCb                  | Upgrade               | Theory               |
|------------------|-------------------------------------------------------------------|---------------------------|-----------------------|-----------------------|----------------------|
|                  |                                                                   | precision                 | 2018                  | $(50{\rm fb}^{-1})$   | uncertainty          |
| Higgs            | $\mathcal{B}(B_s^0 \to \mu^+\mu^-)$                               | $1.5 \times 10^{-9}$ [4]  | $0.5 \times 10^{-9}$  | $0.15 \times 10^{-9}$ | $0.3 \times 10^{-9}$ |
| penguins         | $\mathcal{B}(B^0 	o \mu^+\mu^-)/\mathcal{B}(B_s^0 	o \mu^+\mu^-)$ |                           | $\sim 100\%$          | $\sim 35\%$           | $\sim 5\%$           |
| Unitarity        | $\gamma \ (B \to D^{(*)}K^{(*)})$                                 | ~ 10–12° [40, 41]         | 4°                    | 0.9°                  | negligible           |
| $_{ m triangle}$ | $\gamma \ (B_s^0 \to D_s K)$                                      |                           | 11°                   | $2.0^{\circ}$         | negligible           |
| angles           | $\beta \; (B^0 	o J/\psi  K_S^0)$                                 | 0.8° [63]                 | $0.6^{\circ}$         | $0.2^{\circ}$         | negligible           |
| Charm            | $A_{\Gamma}$                                                      | $2.3 \times 10^{-3}$ [63] | $0.40 \times 10^{-3}$ | $0.07 \times 10^{-3}$ | _                    |
| CP violation     | $\Delta A_{C\!P}$                                                 | $2.1 \times 10^{-3}$ [8]  | $0.65 \times 10^{-3}$ | $0.12\times10^{-3}$   |                      |

- Expect to achieve precision in  $Br(B_s \rightarrow \mu\mu)$  of ~10% of SM-expected value with 50 fb<sup>-1</sup> and search for  $B_d^0 \rightarrow \mu\mu$
- $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) A_{CP}(D^0 \rightarrow \pi^+\pi^-)$
- $A_{\Gamma} = \Gamma(D^0 \longrightarrow K^+K^-) \Gamma(\overline{D}^0 \longrightarrow K^+K^-)$
- Also very interesting to look in other  $D^0$  final states and other charmed hadrons ( $D^+$ ,  $D_s^+$ ,  $\Lambda_c^+$ )

#### Concluding remarks on LHCb upgrade

- LHCb has demonstrated that it is possible to make precise heavy flavour measurements at a high luminosity, high energy hadron collider
  - building on, but in most cases now far exceeding, the pioneering work done at the Tevatron
- LHCb has responded well to challenges/opportunities of much higher luminosity/pile-up than foreseen in the original design
- Sensitive to BSM physics in ways that are complementary to ATLAS and CMS
- Other interesting physics measurements make use of unique geometrical acceptance for LHCb
  - e.g., W and Z at high rapidity,
- Implications for LHC machine of requirement to supply luminosity of 1-2 x 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> to LHCb during HL-LHC needs careful consideration
- Total cost of LHCb upgrade ~60 MCHF seems modest compared to total cost of LHC programme to 2030

#### Physics measurements at next generation B factory

# "Full reconstruction" or "hadronic tagging"

- Fully reconstruct one B decay; the remaining particles must have come from the decay of the other B
- A powerful way to exploit huge numbers of events
  - Decays with invisible particles in the final state
    - e.g., B<sup>+</sup>→ T<sup>+</sup>V, B→ K(\*)νν
  - Decays with neutral particles in the final state
    - e.g.,  $B \rightarrow K_S^0 \pi^0 \gamma$
    - "Don't try these at home"
      - if home happens to be a hadron collider!
  - Inclusive  $b \rightarrow s_{\gamma}$

Energy in EM calorimeter in hadronic tagged events:



Direct and indirect CPV parameters in  $B \rightarrow K^0_s \pi^0 \gamma$ 



Summary by Belle II collaboration demonstrating complementarity of next generation B factory and LHCb

#### Assumed integrated luminosities:

Belle II: 50 ab<sup>-1</sup> LHCb: 10 fb<sup>-1</sup>

Theoretical uncertainties and "gold-plated" tests of SM:

What is the quality of the gold-plating?

| Observable                                                | Expected th. | Expected exp.       | Facility                             |  |
|-----------------------------------------------------------|--------------|---------------------|--------------------------------------|--|
|                                                           | accuracy     | uncertainty         |                                      |  |
| CKM matrix                                                |              |                     |                                      |  |
| $ V_{us}  [K \to \pi \ell \nu]$                           | **           | 0.1%                | K-factory                            |  |
| $ V_{cb}  [B \to X_c \ell \nu]$                           | **           | 1%                  | Belle II                             |  |
| $ V_{ub}  [B_d \to \pi \ell \nu]$                         | *            | 4%                  | Belle II                             |  |
| $\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$                | ***          | $8 \cdot 10^{-3}$   | Belle II/LHCb                        |  |
| $\phi_2$                                                  |              | 1.5°                | Belle II                             |  |
| $\phi_3$                                                  | ***          | 3°                  | LHCb                                 |  |
| CPV                                                       |              |                     |                                      |  |
| $S(B_s \to \psi \phi)$                                    | **           | 0.01                | LHCb                                 |  |
| $S(B_s \to \phi \phi)$                                    | **           | 0.05                | LHCb                                 |  |
| $S(B_d \to \phi K)$                                       | ***          | 0.05                | Belle II/LHCb                        |  |
| $S(B_d \to \eta' K)$                                      | ***          | 0.02                | Belle II                             |  |
| $S(B_d \to K^*(\to K_S^0 \pi^0) \gamma))$                 | ***          | 0.03                | Belle II                             |  |
| $S(B_s \to \phi \gamma)$                                  | ***          | 0.05                | LHCb                                 |  |
| $S(B_d \to \rho \gamma))$                                 |              | 0.15                | Belle II                             |  |
| $A_{SL}^{d}$                                              | ***          | 0.001               | LHCb                                 |  |
| $A_{SL}^{SL}$                                             | ***          | 0.001               | LHCb                                 |  |
| $A_{CP}(B_d \to s\gamma)$                                 | *            | 0.005               | Belle II                             |  |
| rare decays                                               |              |                     |                                      |  |
| $\mathcal{B}(B 	o 	au  u)$                                | **           | 3%                  | Belle II                             |  |
| $\mathcal{B}(B \to D \tau \nu)$                           |              | 3%                  | Belle II                             |  |
| $\mathcal{B}(B_d \to \mu \nu)$                            | **           | 6%                  | Belle II                             |  |
| $\mathcal{B}(B_s 	o \mu \mu)$                             | ***          | 10%                 | LHCb                                 |  |
| zero of $A_{FB}(B \to K^* \mu \mu)$                       | **           | 0.05                | LHCb                                 |  |
| $\mathcal{B}(B \to K^{(*)} \nu \nu)$                      | ***          | 30%                 | Belle II                             |  |
| $\mathcal{B}(B 	o s \gamma)$                              |              | 4%                  | Belle II                             |  |
| $\mathcal{B}(B_s 	o \gamma \gamma)$                       |              | $0.25\cdot 10^{-6}$ | Belle II (with $5 \text{ ab}^{-1}$ ) |  |
| $\mathcal{B}(K 	o \pi \nu \nu)$                           | **           | 10%                 | K-factory                            |  |
| $\mathcal{B}(K \to e\pi\nu)/\mathcal{B}(K \to \mu\pi\nu)$ | ***          | 0.1%                | K-factory                            |  |
| charm and $\tau$                                          |              |                     | V                                    |  |
| $\mathcal{B}(\tau \to \mu \gamma)$                        | ***          | $3 \cdot 10^{-9}$   | Belle II                             |  |
| $ q/p _D$                                                 | ***          | 0.03                | Belle II                             |  |
| $arg(q/p)_D$                                              | ***          | 1.5°                | Belle II                             |  |

11

### Concluding remarks on heavy flavour

- LHCb upgrade and next generation B factory physics programmes are largely complementary
  - LHCb dominates most measurements with B<sub>s</sub>, b-baryons, decays to final states consisting entirely of charged particles
  - Next generation B factory dominates measurements in final states containing invisible or neutral particles
- Both are likely to make important contributions
- Physics programme of next generation B factories consists largely of refining measurements and searches for rare decays
  - No guarantee of BSM effects maybe results will be "only" improved limits?
  - Motivation for two facilities (SuperKEKB and Super-B)?
    - C.f. when the first generation B factories were proposed
    - A major new observation was expected (CPV in B<sup>0</sup>)
      - Natural to have two experiments to confirm discovery and cross check subsequent measurements

## Let the discussion begin!