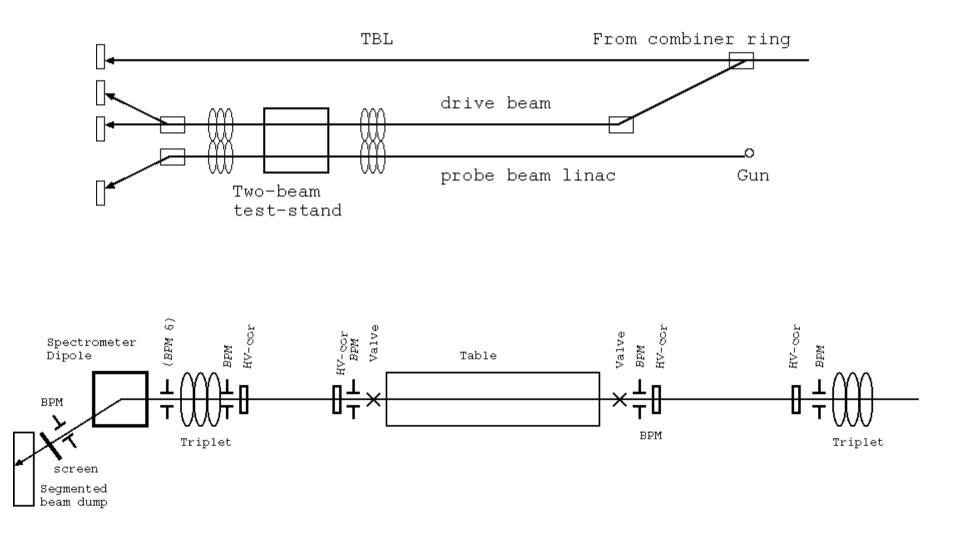

The Two-Beam Test-Stand in CTF3

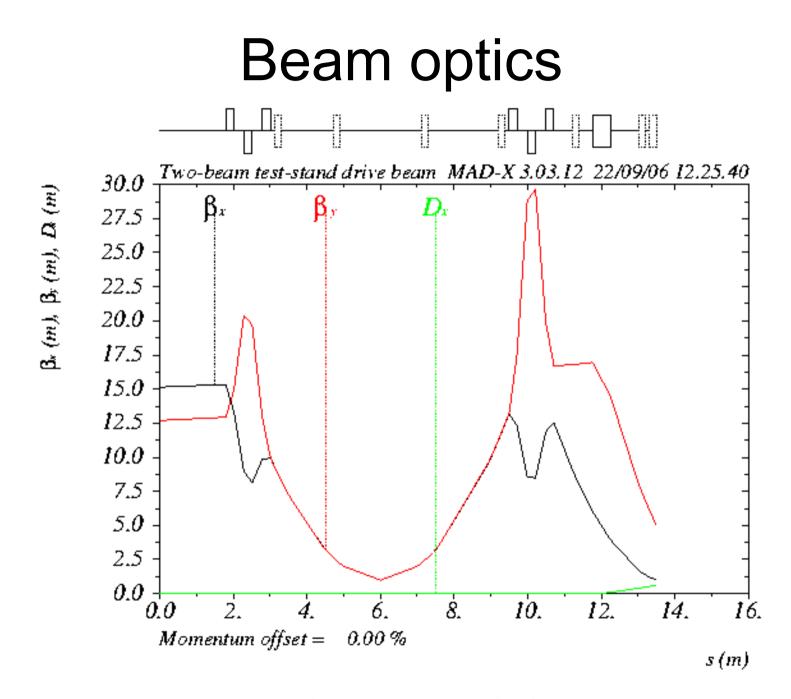
Magnus Johnson, Volker Ziemann Roger Ruber, Tord Ekelöf

Department of Nuclear and Particle Physics Uppsala University

The CLEX building

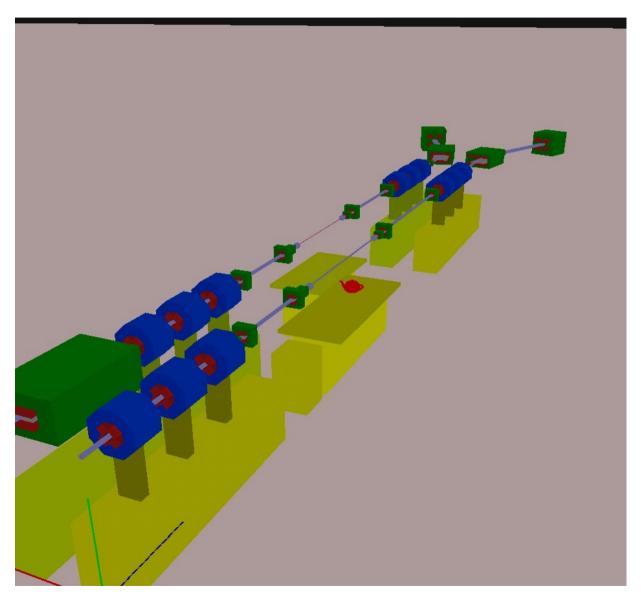


Under construction in connection to the existing CTFbuildings. The building itself will be finished late 2006, and installation of general utilities: electricity, water etc. will begin during 2007.


Purpose of the two-beam test-stand

- Demonstrate operation of full CLIC module
 - The whole two-beam scheme will be tested for the first time: RF power will be extracted from the drive beam with PETS and used to drive accelerating structures in order to accelerate the probe beam.
- Operate PETS up to 300 MW and 60 ns pulse length
 - Will use longer PETS with same geometry to reach same power level despite smaller beam current of 30 A instead of 160 A in CLIC.
- Measure effect of RF-breakdown on drive and probe beam
 - Crucial to determine the acceptable breakdown rate in CLIC.
 - Might bring new insight into the breakdown-phenomena.

Setup



M. Johnson, Two-Beam Test-Stand

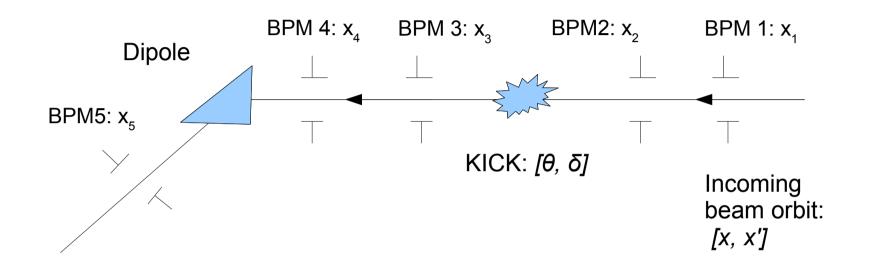
M. Johnson, Two-Beam Test-Stand

3-D visualization of the two-beam test-stand

M. Johnson, Two-Beam Test-Stand

RF-breakdown

- Occurs in the accelerating structure, PETS or any equipment with high electric fields.
- Locally the surface field is enhanced by surface irregularities: field emitters.
- The result is RF-breakdown, or arcing.
- A plasma is produced locally, and electrons are ejected into the cavity. These electrons interact with the strong accelerating field in the cavity, producing high currents, up to kA levels.
- Breakdown will damage the structure, removing material from the affected areas.
- Breakdown will also give the beam a kick. One of the challenges for the two-beam test-stand is to determine the characteristics of this kick.


RF-breakdown diagnostics

- RF-signals will be handled like in the current high-gradient test-stand in CTF; the 30 GHz signals will be extracted with directional couplers, mixed down and sampled on digitizers.
 - Same analysis as in CTF: missing energy, reflected power...
- Other equipment can be added to allow more specialized measurements of various phenomena; acoustic waves in the structures, temperature changes, emitted light...
 - These measurements should be designed to be as general as possible. That is: try and remove the machinedependence in the measurements.

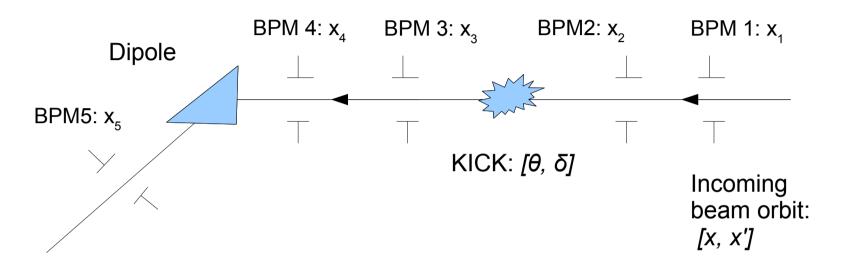
Kick parameters

- TBTS will use BPMs to determine parameters of the kick from a breakdown.
- Incoming beam defined by 2 parameters: transverse beam offset, x, and beam angle x'. (First approximation: 1D only, no coupling x-y).
- RF breakdown causes a kick on the beam, and can change the beam angle, as well as energy of beam \rightarrow two more parameters: θ and δ .
- These parameters determine the read-out of the BPMs. The dipole make the last BPM dependent on the kick energy, δ .
- Transfer matrices, M^{ba} relate the parameters [x, x', θ, δ] with the readout of the BPMs.

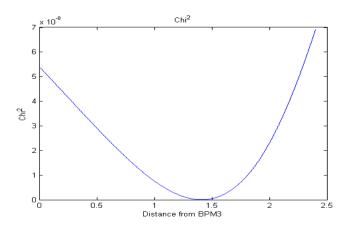
Kick parameters

 $X_{o} = [x, x', 0]$ $K = [0, \theta, \delta]$

$$\begin{aligned} x_{1} &= [X_{0}]^{1} \\ x_{2} &= [M^{21} * X_{0}]^{1} \\ x_{3} &= [M^{31} * X_{0} + M^{3C} * K]^{1} \\ x_{4} &= [M^{41} * X_{0} + M^{4C} * K]^{1} \\ x_{5} &= [M^{51} * X_{0} + M^{5C} * K]^{1} \end{aligned}$$


$$M^{51} &= M^{54} * M^{43} * M^{32} * M^{21} \\ M^{51} &= M^{54} * M^{54} * M^{52} * M^{51} \\ M^{51} &= M^{54} * M^{54} * M^{52} * M^{51} \end{aligned}$$

M. Johnson, Two-Beam Test-Stand


Least square estimation of parameters

- $[X] = [A] * [x, x', \theta, \delta]$
- Where [X] = BPM readout = $(x_1, x_2, \dots, x_5, (x_6))$,
- [A] = Relates the parameters [x, x', θ , δ] with the BPM readout. Depends on the transfer matrices [M^{ba}].
- To find the parameters: solve the over-determined system (5-6 BPM readout and 4 parameters) in the least-square sense, and is equivalent to:
- $([A]^T * [A])^{-1} * [A]^T * [X] \approx [x, x', \theta, \delta]$

Least square estimation of the position of the kick

Divide the position between BPM2 and BPM3 into *n* pieces. Construct a transfer matrix $[M_{3_o}]$ for each *n* and do a least square estimation for all *n*. Choose the *n* that minimize the error to be the location of the breakdown.

Error estimation

- The error due to inaccuracy in BPMs can be estimated by the covariance matrix, [C]:
- $[C] = ([A]^T * [A])^{-1} * \sigma^2$
- Where [A] is defined above, σ is the error in the BPMs (about 10 μ m).
- The error for parameter *n* is then given by
- (Error for parameter n) = $\sqrt{([C]_{nn})}$

Results error estimation

• (Slightly) Smaller errors with 6 BPMS than 5 BPMs. σ is the error of the BPMs \approx 10 µm:

Number of BPMs	5	6
Error in position, <i>x</i>	0.9691 * σ	0.9577 * σ
•	0.0052 * - /	
Error in angle, x'	0.6853 * σ / m	0.5968 * σ / m
Error in kick angle, θ	1.1056 * σ /m	0.8435 * σ /m
Error in relative energy from kick, δ	3.1612 * σ /m	2.7301 * σ /m

A kick with a voltage of 2 kV corresponds to a kick angle \approx 10 µrad.

Conclusions

- The two-beam test-stand will for the first time test a fully operational CLIC module: PETS will generate high power to drive accelerating structures, which will accelerate a beam.
 - The effect of breakdown on both the probebeam and drive-beam will be tested.
- The accuracy with which we can measure the kick parameters are sufficient according to early estimations.

Explanations to Setup

- Two beams: drivebeam from combiner ring and probe beam from probe beam linac (also located in the CLEX building).
- PETS=Power Extracting and Transfer Structure
- TBL = Test Beam Line. Used to test the drivebeam stability in PETS
- Match the beam size to PETS, accelerating structures \rightarrow quadrupoles.
- Steering in structures \rightarrow two dipole correctors before and after table.
- Position measurements → inductive Gasior BPM, also needed for the kickmeasurements. In total 5 or 6 BPMs.
- Energy measurements \rightarrow BPM after spectrometer magnets.
- Energy spread → OTR screens before the dump, possibly later a segmented beam dump.
- Vacuum \rightarrow values to decouple experimental tables.
- 75 cm distance between probe and drive-beam → this is close to the planned distance in CLIC, and also reasonable small in order to avoid losses.