Jets in Medium — what LHC measurements of RAA and IAA can teach us about parton-medium interaction #### Thorsten Renk # Introduction Jets in Medium - why and how? The single hadron suppression factor R_{AA} - pathlength dependence and medium geometry - P_T dependence and interaction mechanism The dihadron suppression factor I_{AA} - various biases Conclusions - and open issues # Introduction # I. Jets in medium why we're interested # The 'standard' jet quenching picture pQCD radiative energy loss for hard partons interacting with the medium - 1) hard process 2) vacuum shower 3) medium-induced radiation 4) medium evolution - 5) medium correlated with jet by interaction Status: 1) calculable 2) calculable with MC codes 3) medium dof, interaction 4) calculable in hydrodynamics 5) energy transport in the medium # PHYSICS QUESTIONS - What is the physics of parton-medium interaction, what are the medium dof? - transport coefficients \hat{q}, \hat{e}, \dots - What can we deduce about the medium geometry? - initial profile, fluctuations, freeze-out conditions, scales . . . - How does the medium react to a perturbation? - energy redistribution, shockwaves, speed of sound. . . How do these two differ? Obvious strategy: Compare reconstructed jets! ### Concepts — Jets in Vacuum #### Underlying (idealized) concept: - a jet represents a virtual hard parton and its subsequent evolution - → do pQCD without worrying about non-perturbative aspects #### Experimental reality (a bit catchy): • 'a contract between experimentalist and theorist' #### What this means is: - hadrons are combined into jets by jet definitions/algorithms (SiSCone, anti- k_T ,...) - → but jet definitions are chosen cleverly based on pQCD arguments (one would not do sequential reco to search for a hydro phenomenon) #### Thus, for *measured* jets: - jet finding algorithm needs to be quoted - a bias for hard events to fit the particular definition exists - → measured jets never capture 'all' of the parton evolution But: parton level (pQCD) \approx hadron level (particles hitting detector) \approx detector level (calorimeter towers) ### Concepts — Jets in Medium ullet momentum in perturbative and non-perturbative modes — parton \neq detector level - → a hydro medium can be substantially disturbed by a jet - ightarrow perturbative shower can be broadened beyond kinematics of initial Q^2 - What is the jet? - the perturbative part of the shower $(E_{jet} < E_{parton})$? - everything causally correlated with the shower initiator $(E_{jet} > E_{parton})$? - the flow of original 4-momentum ($E_{jet} = E_{parton}$)? ### Concepts — energy loss vs. in-medium shower Conceptual model difference: energy loss vs. medium modified fragmentation function Single inclusive hard hadron production: • dominated by showers in which a single parton carries most of the momentum ullet unbiased hard jet events — multiple low p_T hadron production For single inclusive hard hadron production: - \Rightarrow fragmentation function pprox hadronization of leading parton - \Rightarrow medium effect \approx reduction of leading parton energy - ⇒ if hadronization happens outside the medium, the two factorize! ⇒ Medium-induced energy loss good concept to describe *leading* hadron only #### The zoo of jet quenching pictures Which is correct? #### THE OBSERVABLES \bullet R_{AA} , suppression of single inclusive high P_T hadrons $$R_{AA}(P_T, y) = \frac{d^2 N^{AA}/dp_T dy}{T_{AA}(0)d^2 \sigma^{NN}/dP_T dy}$$ \bullet I_{AA} , disappearance of back-to-back correlations, 'monojets' • true reconstructed jets, dijet asymmetry with some systematics in \sqrt{s} , collision centrality, reaction plane angle and P_T Is this enough to identify the physics and to characterize the medium? #### THE STRATEGY #### Test systematically for pathlength dependence and correlation properties! - test combinations of hydro and parton-medium interaction models - ullet require that the same model describes bulk, R_{AA} and I_{AA} - study differential observables within the same hydro framework Various experimental handles on interesting parameters: centrality dependence \Leftrightarrow in-medium pathlength and medium density reaction plane angle \Leftrightarrow in-medium pathlength dihadron corelations \Leftrightarrow in-medium pathlength and trigger bias, correlation width energy (\sqrt{s}) dependence \Leftrightarrow medium density, kinematics hadron species \Leftrightarrow parton type # Part II # II. Centrality dependence For non-central collisions, study suppression as a function of reaction plane angle - strong surface bias (medium very opaque for large pathlength/ high density regions) - → more emission in-plane because the emitting surface is larger - weak surface bias (emission also from the medium core) - \rightarrow more emission in plane because $\langle x \rangle < \langle y \rangle$ - ⇒ probes pathlength dependence of models #### THE CONTENDERS - incoherent processes: $n_{scatt} = \frac{L}{\lambda}$, since $\Delta E \approx n_{scatt} \Delta E_1$, linear $\Delta E \sim L$ (elastic) - ullet coherence time, dependent on gluon kinematics, implies quadratic $\Delta E \sim L^2$ (ASW) - ullet however, subject to finite energy constraints, reverts to linear $\Delta E \sim L$ (YaJEM) - strongly coupled medium: force $\frac{d|p_T|}{dt}=T^2$, thus $Q^2=T^4L$ i.e. cubic $\Delta E\sim L^3$ finite energy corrections unknown (AdS) - in-medium shower: virtuality evolution from Q_i down to Q_0 , but medium can only affect the medium above $Q_{med}=\sqrt{E/L}$, no analytic form of $\Delta E(L)$ (YaJEM-D) - ⇒ actual dependence is changed by time evolution of the medium! - \bullet require that combination of medium/jet model describes R_{AA} in central 200 AGeV collisions - \rightarrow predict $R_{AA}(\phi)$ for non-central collisions #### PINNING DOWN PATHLENGTH T. R., H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83 (2011) 014910. #### PINNING DOWN PATHLENGTH - SUMMARY | model | elastic L | radiative ${\cal L}^2$ | $AdS\ L^3$ | rad. finite E | min. Q_0 | |------------|-------------|------------------------|------------|---------------|------------| | 3+1d ideal | fails | works | fails | fails | works | | 2+1d ideal | fails | fails | marginal | fails | fails | | 2+1d vCGC | fails | marginal | works | fails | marginal | | 2+1d vGlb | fails | marginal | works | fails | marginal | - quantum coherence is an important part of the answer - → incoherent models fail by huge margin (factor 4)! - finite energy corrections need to be taken seriously! - ightarrow quite possibly they destroy the success of L^2 and maybe also L^3 - strong constraints on **combinations** of hydro + parton-medium interaction model Implications for jet-medium interaction: - → no large incoherent component - → conclusively rules out light quasiparticles as medium degrees of freedom Implications for hydrodynamics: \rightarrow favours late equilibration, long-lived medium, some viscosity # PART III # III. P_T dependence For different \sqrt{s} , study suppression as a function of P_T - results are *independent* of hydro model - simple idea: partons can be 1) absorbed or 2) shifted in energy - \Rightarrow take pQCD spectrum and shift down/sideward to roughly reproduce suppression (same effect for all partons not very realistic!), compute R_{AA} $\Rightarrow P_T$ dependence measures shift vs. absorption! ### P_T dependence of R_{AA} - ullet more realistically: $\langle P(\Delta E) \rangle$ rather than absorption/shift - $\rightarrow \Delta E \approx 0$: shift, $\Delta E \approx E$: absorption - \Rightarrow rise of R_{AA} with P_T measures the strength of $\langle P(\Delta E) \rangle$ close to zero - → probability to not to interact (radiate), characteristic for models! - \bullet also: explicit mechanisms for P_T dependence, cf. YaJEM-D - ullet subleading: relevant pQCD subchannels (gg o gg vs. qg o qg at larger $P_T)$ - \rightarrow not significant in RHIC kinematic range, but ideal for LHC # P_T dependence of R_{AA} • data comparison with direct extrapolation using 'same' hydro or refit ullet use parameter R to quantify how much refitting is done (R=1 indicates no refit) | | YaJEM-D | YaJEM | ASW | AdS | |---|---------|-------|------|------| | R | 0.92 | 0.61 | 0.47 | 0.31 | $ightarrow T^4$ dependence of AdS strongly disfavoured; many radiative models overquench T. R., H. Holopainen, R. Paatelainen, K. J. Eskola, Phys. Rev. C84 (2011) 014906. # Dihadron suppression and I_{AA} # IV. Dihadron suppression what is in I_{AA} that is not in R_{AA} ? ### DIHADRON CORRELATIONS — TERMINOLOGY - I_{AA} conditional yield ratio AA/pp given a trigger - z_i momentum fraction of ith hardest shower hadron given parton energy E \rightarrow thus $P_T^i = z_i E$, $\sum_i z_i = 1$ (momentum conservation) #### Trigger-induced biases - \bullet I_{AA} is related to conditional probability - \rightarrow given trigger in momentum range A, what is the chance to see yield in range B? - ⇒ the trigger condition biases the shower in a certain way - → this will turn out to be most useful Trigger perfers hard fragmentation: - vacuum: - → quark jets are more likely than gluons - $\rightarrow k_T$ imbalance points towards the trigger direction - medium: - → energy loss softens fragmentation, thus higher parton momenta - \rightarrow gluons are filtered out by stronger interaction with $C_F = 9/4$ - → trigger side has short in-medium pathlength T. R., K. .J. Eskola, 1106.1740 [hep-ph] # I_{AA} results — RHIC ullet away side at RHIC (near side ~ 1) - traces energy transport to subleading partons - → beyond validity of energy loss models - constrains the relative fraction of elastic energy loss - ightarrow clearly seen at low z - \Rightarrow about 10% of the energy transfer is elastic #### Analysis Summary • assuming the best choice of hydro model for each parton-medium interaction model: (all models tuned to describe R_{AA} in central 200 AGeV AuAu collisions) | | R_{AA} @RHIC (centrality) | R_{AA} @LHC (P_T) | I_{AA} @RHIC | I_{AA} @LHC | |----------|-----------------------------|-----------------------|----------------|---------------| | elastic | fails! | works | fails! | fails | | ASW | works | fails | marginal | works | | AdS | works | fails! | marginal | works | | YaJEM | fails | fails | fails | fails | | YaJEM-D | works | works | marginal | marginal | | YaJEM-DE | works | works | works | works | - YaJEM-DE looks like the only viable candidate - → needs systematic study of hydro backgrounds at LHC **Implications** - energy loss is consistent with pQCD shower picture - no evidence for exotic mechanisms - medium DOF can take some recoil massive or correlated quasiparticles? ### IMPLICATIONS FOR JETS - How do modified jets look like? - \rightarrow n-jet fraction: clustering at y_{min} with $y_{ij}=2\text{min}(E_i^2,E_j^2)(1-\cos(\theta_{ij})/E_{\text{cm}}^2)$ - \rightarrow jet shape $\Psi_{int}(r,R) = \frac{\sum_{i} E_{i}\theta(r-R_{i})}{\sum_{i} E_{i}\theta(R-R_{i})}$ - not much modified in perturbative region - → jets look like unmodified jets at lower energy - energy dissipated in medium in non-perturbative momentum region - → not picked up by jet finding algorithms #### IMPLICATIONS FOR JETS - Why do jets not look modified? - \rightarrow since initial hard scale $Q\gg T$, first splittings happen without knowledge of the medium - \rightarrow if the dominant physics is a pQCD shower exchanging energy/momentum with medium, the structure of the jet is still determined by (at high energy) almost scale-invariant splitting kernels in z, i.e. parton distributions remain self-similar even if overall scale changes Prediction from 2009, agrees qualitatively with measured dijet asymmetry properties - Why does elastic interaction not change that? - \rightarrow because the angular deflection of partons in elastic interactions with medium partons with momentum O(T) is only significant when $k_T \approx T$, thus only the low z part of the shower gets decorrelated into the medium # OPEN ISSUES #### Other observables: - γ -h correlations - \rightarrow unclear if there is information beyond what is in hadronic R_{AA} and I_{AA} - → but nice to specifically tag quark jets - heavy quarks radiative energy loss suppressed by dead cone effect - → but *never* hadronize outside medium theoretically unclear physics #### Future questions - What is the precise interplay between elastic and radiative energy loss? - → needs precision analysis of multiparticle correlation systematics - What can jets tell about initial state fluctuations? - \rightarrow needs measured systematics of v_3, \ldots , combined analysis with photons - Is there shockwave excitation in the medium? - → (experiment) needs triggered multiparticle correlation systematics - → (theory) needs precise spacetime picture of energy deposition into medium