Jets in Medium

— what LHC measurements of RAA and IAA can teach us about parton-medium interaction

Thorsten Renk

Introduction

Jets in Medium

- why and how?

The single hadron suppression factor R_{AA}

- pathlength dependence and medium geometry
- P_T dependence and interaction mechanism

The dihadron suppression factor I_{AA}

- various biases

Conclusions

- and open issues

Introduction

I. Jets in medium

why we're interested

The 'standard' jet quenching picture

pQCD radiative energy loss for hard partons interacting with the medium

- 1) hard process 2) vacuum shower 3) medium-induced radiation 4) medium evolution
- 5) medium correlated with jet by interaction

Status: 1) calculable 2) calculable with MC codes 3) medium dof, interaction 4) calculable in hydrodynamics 5) energy transport in the medium

PHYSICS QUESTIONS

- What is the physics of parton-medium interaction, what are the medium dof?
 - transport coefficients \hat{q}, \hat{e}, \dots
- What can we deduce about the medium geometry?
 - initial profile, fluctuations, freeze-out conditions, scales . . .
- How does the medium react to a perturbation?
 - energy redistribution, shockwaves, speed of sound. . .

How do these two differ? Obvious strategy: Compare reconstructed jets!

Concepts — Jets in Vacuum

Underlying (idealized) concept:

- a jet represents a virtual hard parton and its subsequent evolution
- → do pQCD without worrying about non-perturbative aspects

Experimental reality (a bit catchy):

• 'a contract between experimentalist and theorist'

What this means is:

- hadrons are combined into jets by jet definitions/algorithms (SiSCone, anti- k_T ,...)
- → but jet definitions are chosen cleverly based on pQCD arguments (one would not do sequential reco to search for a hydro phenomenon)

Thus, for *measured* jets:

- jet finding algorithm needs to be quoted
- a bias for hard events to fit the particular definition exists
- → measured jets never capture 'all' of the parton evolution

But: parton level (pQCD) \approx hadron level (particles hitting detector) \approx detector level (calorimeter towers)

Concepts — Jets in Medium

ullet momentum in perturbative and non-perturbative modes — parton \neq detector level

- → a hydro medium can be substantially disturbed by a jet
- ightarrow perturbative shower can be broadened beyond kinematics of initial Q^2
- What is the jet?
 - the perturbative part of the shower $(E_{jet} < E_{parton})$?
 - everything causally correlated with the shower initiator $(E_{jet} > E_{parton})$?
 - the flow of original 4-momentum ($E_{jet} = E_{parton}$)?

Concepts — energy loss vs. in-medium shower

Conceptual model difference: energy loss vs. medium modified fragmentation function Single inclusive hard hadron production:

• dominated by showers in which a single parton carries most of the momentum

ullet unbiased hard jet events — multiple low p_T hadron production

For single inclusive hard hadron production:

- \Rightarrow fragmentation function pprox hadronization of leading parton
- \Rightarrow medium effect \approx reduction of leading parton energy
- ⇒ if hadronization happens outside the medium, the two factorize!

⇒ Medium-induced energy loss good concept to describe *leading* hadron only

The zoo of jet quenching pictures

Which is correct?

THE OBSERVABLES

 \bullet R_{AA} , suppression of single inclusive high P_T hadrons

$$R_{AA}(P_T, y) = \frac{d^2 N^{AA}/dp_T dy}{T_{AA}(0)d^2 \sigma^{NN}/dP_T dy}$$

 \bullet I_{AA} , disappearance of back-to-back correlations, 'monojets'

• true reconstructed jets, dijet asymmetry with some systematics in \sqrt{s} , collision centrality, reaction plane angle and P_T Is this enough to identify the physics and to characterize the medium?

THE STRATEGY

Test systematically for pathlength dependence and correlation properties!

- test combinations of hydro and parton-medium interaction models
- ullet require that the same model describes bulk, R_{AA} and I_{AA}
- study differential observables within the same hydro framework

Various experimental handles on interesting parameters:

centrality dependence \Leftrightarrow in-medium pathlength and medium density reaction plane angle \Leftrightarrow in-medium pathlength dihadron corelations \Leftrightarrow in-medium pathlength and trigger bias, correlation width energy (\sqrt{s}) dependence \Leftrightarrow medium density, kinematics hadron species \Leftrightarrow parton type

Part II

II. Centrality dependence

For non-central collisions, study suppression as a function of reaction plane angle

- strong surface bias (medium very opaque for large pathlength/ high density regions)
- → more emission in-plane because the emitting surface is larger
- weak surface bias (emission also from the medium core)
- \rightarrow more emission in plane because $\langle x \rangle < \langle y \rangle$
- ⇒ probes pathlength dependence of models

THE CONTENDERS

- incoherent processes: $n_{scatt} = \frac{L}{\lambda}$, since $\Delta E \approx n_{scatt} \Delta E_1$, linear $\Delta E \sim L$ (elastic)
- ullet coherence time, dependent on gluon kinematics, implies quadratic $\Delta E \sim L^2$ (ASW)
- ullet however, subject to finite energy constraints, reverts to linear $\Delta E \sim L$ (YaJEM)
- strongly coupled medium: force $\frac{d|p_T|}{dt}=T^2$, thus $Q^2=T^4L$ i.e. cubic $\Delta E\sim L^3$ finite energy corrections unknown (AdS)
- in-medium shower: virtuality evolution from Q_i down to Q_0 , but medium can only affect the medium above $Q_{med}=\sqrt{E/L}$, no analytic form of $\Delta E(L)$ (YaJEM-D)
- ⇒ actual dependence is changed by time evolution of the medium!
- \bullet require that combination of medium/jet model describes R_{AA} in central 200 AGeV collisions
- \rightarrow predict $R_{AA}(\phi)$ for non-central collisions

PINNING DOWN PATHLENGTH

T. R., H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83 (2011) 014910.

PINNING DOWN PATHLENGTH - SUMMARY

model	elastic L	radiative ${\cal L}^2$	$AdS\ L^3$	rad. finite E	min. Q_0
3+1d ideal	fails	works	fails	fails	works
2+1d ideal	fails	fails	marginal	fails	fails
2+1d vCGC	fails	marginal	works	fails	marginal
2+1d vGlb	fails	marginal	works	fails	marginal

- quantum coherence is an important part of the answer
- → incoherent models fail by huge margin (factor 4)!
- finite energy corrections need to be taken seriously!
- ightarrow quite possibly they destroy the success of L^2 and maybe also L^3
- strong constraints on **combinations** of hydro + parton-medium interaction model

Implications for jet-medium interaction:

- → no large incoherent component
- → conclusively rules out light quasiparticles as medium degrees of freedom

Implications for hydrodynamics:

 \rightarrow favours late equilibration, long-lived medium, some viscosity

PART III

III. P_T dependence

For different \sqrt{s} , study suppression as a function of P_T

- results are *independent* of hydro model
- simple idea: partons can be 1) absorbed or 2) shifted in energy
- \Rightarrow take pQCD spectrum and shift down/sideward to roughly reproduce suppression (same effect for all partons not very realistic!), compute R_{AA}

 $\Rightarrow P_T$ dependence measures shift vs. absorption!

P_T dependence of R_{AA}

- ullet more realistically: $\langle P(\Delta E) \rangle$ rather than absorption/shift
- $\rightarrow \Delta E \approx 0$: shift, $\Delta E \approx E$: absorption

- \Rightarrow rise of R_{AA} with P_T measures the strength of $\langle P(\Delta E) \rangle$ close to zero
- → probability to not to interact (radiate), characteristic for models!
- \bullet also: explicit mechanisms for P_T dependence, cf. YaJEM-D
- ullet subleading: relevant pQCD subchannels (gg o gg vs. qg o qg at larger $P_T)$
- \rightarrow not significant in RHIC kinematic range, but ideal for LHC

P_T dependence of R_{AA}

• data comparison with direct extrapolation using 'same' hydro or refit

ullet use parameter R to quantify how much refitting is done (R=1 indicates no refit)

	YaJEM-D	YaJEM	ASW	AdS
R	0.92	0.61	0.47	0.31

 $ightarrow T^4$ dependence of AdS strongly disfavoured; many radiative models overquench

T. R., H. Holopainen, R. Paatelainen, K. J. Eskola, Phys. Rev. C84 (2011) 014906.

Dihadron suppression and I_{AA}

IV. Dihadron suppression

what is in I_{AA} that is not in R_{AA} ?

DIHADRON CORRELATIONS — TERMINOLOGY

- I_{AA} conditional yield ratio AA/pp given a trigger
- z_i momentum fraction of ith hardest shower hadron given parton energy E \rightarrow thus $P_T^i = z_i E$, $\sum_i z_i = 1$ (momentum conservation)

Trigger-induced biases

- \bullet I_{AA} is related to conditional probability
- \rightarrow given trigger in momentum range A, what is the chance to see yield in range B?
- ⇒ the trigger condition biases the shower in a certain way
- → this will turn out to be most useful

Trigger perfers hard fragmentation:

- vacuum:
- → quark jets are more likely than gluons
- $\rightarrow k_T$ imbalance points towards the trigger direction
- medium:
- → energy loss softens fragmentation, thus higher parton momenta
- \rightarrow gluons are filtered out by stronger interaction with $C_F = 9/4$
- → trigger side has short in-medium pathlength

T. R., K. .J. Eskola, 1106.1740 [hep-ph]

I_{AA} results — RHIC

ullet away side at RHIC (near side ~ 1)

- traces energy transport to subleading partons
- → beyond validity of energy loss models
- constrains the relative fraction of elastic energy loss
- ightarrow clearly seen at low z
- \Rightarrow about 10% of the energy transfer is elastic

Analysis Summary

• assuming the best choice of hydro model for each parton-medium interaction model: (all models tuned to describe R_{AA} in central 200 AGeV AuAu collisions)

	R_{AA} @RHIC (centrality)	R_{AA} @LHC (P_T)	I_{AA} @RHIC	I_{AA} @LHC
elastic	fails!	works	fails!	fails
ASW	works	fails	marginal	works
AdS	works	fails!	marginal	works
YaJEM	fails	fails	fails	fails
YaJEM-D	works	works	marginal	marginal
YaJEM-DE	works	works	works	works

- YaJEM-DE looks like the only viable candidate
- → needs systematic study of hydro backgrounds at LHC

Implications

- energy loss is consistent with pQCD shower picture
- no evidence for exotic mechanisms
- medium DOF can take some recoil massive or correlated quasiparticles?

IMPLICATIONS FOR JETS

- How do modified jets look like?
- \rightarrow n-jet fraction: clustering at y_{min} with $y_{ij}=2\text{min}(E_i^2,E_j^2)(1-\cos(\theta_{ij})/E_{\text{cm}}^2)$
- \rightarrow jet shape $\Psi_{int}(r,R) = \frac{\sum_{i} E_{i}\theta(r-R_{i})}{\sum_{i} E_{i}\theta(R-R_{i})}$

- not much modified in perturbative region
- → jets look like unmodified jets at lower energy
- energy dissipated in medium in non-perturbative momentum region
- → not picked up by jet finding algorithms

IMPLICATIONS FOR JETS

- Why do jets not look modified?
- \rightarrow since initial hard scale $Q\gg T$, first splittings happen without knowledge of the medium
- \rightarrow if the dominant physics is a pQCD shower exchanging energy/momentum with medium, the structure of the jet is still determined by (at high energy) almost scale-invariant splitting kernels in z, i.e. parton distributions remain self-similar even if overall scale changes

Prediction from 2009, agrees qualitatively with measured dijet asymmetry properties

- Why does elastic interaction not change that?
- \rightarrow because the angular deflection of partons in elastic interactions with medium partons with momentum O(T) is only significant when $k_T \approx T$, thus only the low z part of the shower gets decorrelated into the medium

OPEN ISSUES

Other observables:

- γ -h correlations
- \rightarrow unclear if there is information beyond what is in hadronic R_{AA} and I_{AA}
- → but nice to specifically tag quark jets
- heavy quarks radiative energy loss suppressed by dead cone effect
- → but *never* hadronize outside medium theoretically unclear physics

Future questions

- What is the precise interplay between elastic and radiative energy loss?
- → needs precision analysis of multiparticle correlation systematics
- What can jets tell about initial state fluctuations?
- \rightarrow needs measured systematics of v_3, \ldots , combined analysis with photons
- Is there shockwave excitation in the medium?
- → (experiment) needs triggered multiparticle correlation systematics
- → (theory) needs precise spacetime picture of energy deposition into medium