New and conventional charmonium states

XiaoLong Wang

IHEP(Beijing), CAS

(Belle Collaboration)

Flavor Physics and CP Violation Conference, Hefei, 05/21/2012

FPCP2012,USTC

Charmonium(-like) states

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Introduction

- Quarkonia Both charmonium and bottomonium are successful stories of QCD.
- Charmonia Well studied at Charm and B factories. Many charmonium(-like) states found these years.
- XYZ particles Many exotic properties! What is their nature? (QWG, Eur. Phy. J. C71, 1534(2011))

Eichten et al, Rev. Mod. Phys.80,1161(2008)

FPCP2012,USTC

Charmonium(-like) states

2 / 32

A (1) > 4

A table of XYZ

State	m (MeV)	Γ (MeV)	J^{PC}	Modes	Interpretation
X (3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$\pi^+\pi^-J/\psi$	$D^{*0} \bar{D^0}$ molecule (bound)
				$D^{*0}\overline{D^0}$	$D^{*0}\bar{D^0}$ unbound
				$\gamma J/\psi, \gamma \psi(2S)$	if 1 ⁺⁺ , $\chi_{c2}(2P)$
				$\omega J/\psi$	if 2^{-+} , $\eta_{c2}(1D)$
					charmonium + mesonic-molecule mixture
					QCDSR: $[cq]_3[\tilde{c}\tilde{q}]_3$ (S + A)
					QCDSR: $[c\bar{q}]_1[\bar{c}q]_1 (P + V)$
					QCDSR: $[c\bar{c}]_1(A) + [c\bar{q}]_1[\bar{c}q]_1(P + V)$
X(3915)	3915.6 ± 3.1	28 ± 10	0, 2 ²⁺	$\omega J/\psi$	$D^{*+}D^{*-} + D^{*0}\overline{D}^{*0}$
Z(3930)	3927.2 ± 2.6	24.1 ± 6.1	2++	DD	$\chi_{c2}(2P)$ (i.e., $2^{3}P_{2} c\bar{c}$) $1^{3}F_{2} c\bar{c}$
X (3940)	3942+9	37+27	7?+	$D\bar{D}^*$	
G(3900)	3943 ± 21	52 ± 11	1	DD	Coupled-channel effect
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$\pi^+\pi^- J/\psi$	
$Z_1(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	?	$\pi^{+}\chi_{c1}(1P)$	hadrocharmonium
Y(4140)	4143.0 ± 3.1	$11.7^{+9.1}_{-6.2}$??+	$\phi J/\psi$	QCDSR: $[c\bar{q}]_1[\bar{c}q]_1 (V + V)$
					QCDSR: $[c\bar{s}]_1[\bar{c}s]_1 (V + V)$
	. 20				$D_{s}^{++}D_{s}^{+-}$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$D\bar{D}^*$	
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$\pi^{+}\chi_{c1}(1P)$	hadrocharmonium
Y(4260)	4263 ± 5	108 ± 14	1	$\pi^+\pi^- J/\psi$	charmonium hybrid
				$\pi^0 \pi^0 J/\psi$	$J/\psi f_0(980)$ bound state
					$D_0 \overline{D}^+$ molecular state
					$[cs][c\bar{s}]$ tetraquark state
					hadrocharmonium
					QCDSR: $[c\bar{q}]_1[\bar{c}q]_1 (S + V)$
					QCDSR: $[c\bar{q}]_1[\bar{c}q]_1 (P + A)$
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	71+	$B \rightarrow K(\phi J/\psi)$	(see Y(4140))
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0, 2^{++}$	$\phi J/\psi$	
Y(4360)	4353 ± 11	96 ± 42	1	$\pi^+\pi^-\psi(2S)$	hadrocharmonium
					crypto-exotic hybrid

.

(QWG, Eur. Phy. J. C71, 1534(2011))

FPCP2012,USTC

Charmonium(-like) states

3 / 32

Update on $X(3872) \rightarrow \pi^+\pi^- J/\psi$ at Belle

- Discovered by Belle about 10 years ago in B → J/ψπ⁺π⁻K. It's the beginning of XYZ field. (Belle: PRL91, 262001(2003))
- The update from Belle $(772 \times 10^6 B\overline{B})$: PRD84, 052004(2011).

- $M_{X(3872)} = 3871.84 \pm 0.27 \pm 0.19 \text{ MeV}/c^2$; $\Gamma_{X(3872)} < 1.2 \text{ MeV} @ 90\% \text{ C.L.}$
- Mass difference of X(3872) from B^+ and B^0 : $\Delta M_{X(3872)} = -0.69 \pm 0.97 \pm 0.19 \text{ MeV}/c^2$.

FPCP2012,USTC

Charmonium(-like) states

4 / 32

・ロト ・ 一下・ ・ ヨト

Angular analysis of X(3872) at Belle

- $J^{PC} = 1^{++}$ or 2^{-+} from angular analysis by CDF. (PRL98, 132002(2007)).
- For $X(3872) \rightarrow J/\psi \rho \rightarrow J/\psi \pi^+ \pi^-$ with $J/\psi \rho$ orbital momentum L and S: $J^{PC} = 1^{++}$: L = 0, S = 1 \rightarrow 1 amplitude; $J^{PC} = 2^{-+}$: L = 1, S = 1 or 2 \rightarrow 2 amplitudes B_{11} and B_{12} .

Charmonium(-like) states

5 / 32

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

Angular analysis of X(3872) at Belle

Both $J^{PC} = 1^{++}$ and $J^{PC} = 2^{-+}$ (for certain B_{11}/B_{12}) describe data well.

FPCP2012,USTC

Charmonium(-like) states

6 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Search for charged X

- A charged partner could be possible if X(3872) is exotic.
- Charged partner could be searched for in $X(3872)^+ \rightarrow J/\psi \rho (\rightarrow \pi^+ \pi^0)$.

• First row is $\overline{B}^0 \to K^- \rho^+ J/\psi$, and the second row is $B^+ \to K^0 \rho^+ J/\psi$. • $\mathcal{B}(\overline{B}^0 \to X^+ K^-) \times \mathcal{B}(X^+ \to J/\psi \rho^+) < 4.2 \times 10^{-6}$ • $\mathcal{B}R(B^+ \to X^+ K^0) \times \mathcal{B}(X^+ \to J/\psi \rho^+) < 6.1 \times 10^{-6}$ $\Rightarrow \langle \overline{B} \to \langle \overline{B} \rangle \langle \overline$

Search for C-odd X

- Is there a C-odd partner of X(3872) if it's an exotic state?
- Channel I: $B \rightarrow K + \gamma \chi_{c1}$

 $\psi_2 \rightarrow \gamma \chi_{c1}$ was predicted.

Godfrey-Isgur, PRD21,189(1985); Eichten-Lane-Quigg, PRL89, 162002(2002) and PRD69, 094019(2004)

name	spect.	$J^{\scriptscriptstyle PC}$	M _{exp} M	M _{model} [MeV]	$\frac{\text{dominant}}{\text{decay}}$
η_{c2}	$1^{1}\mathbf{D}_{2}$	2-+		3780-3840	$\eta_c \pi \pi$
ψ"	$1^3 D_1$	1	3772.9(4)	3785-3819	$D\overline{D}$
Ψ_2	1^3D_2	2		3800-3840	$\chi_{c1,2}\gamma$
Ψ3	$1^{3} D_{3}$	3		3810-3850	$D\overline{D}^{(*)}$

 $\Gamma(\psi_2 \rightarrow \gamma \chi_{c1}) = 260$ keV predicted.

• Channel II: $B \to K + \eta J/\psi$.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Study of $\gamma \chi_{c1}$

- $B^+ \to \gamma \chi_{c1} K^+$ with $\chi_{c1} \to \gamma J/\psi$ using $772 \times 10^6 B\overline{B}$.
- Efficiency and resolution improve with increasing $M_{\gamma\chi_{c1}}$

- $M_{\gamma\chi_{c1}}$ in data agree with inclusive MC simulation, except for the peak at 3.82 GeV/ c^2 .
- Missing $\psi_2(1^3D_2)$ charmonium? Mass agrees with prediction.

FPCP2012,USTC

Charmonium(-like) states

$\psi_2 \rightarrow \gamma \chi_{c1}$

- ψ_2 significance 4.2 σ w/syst. First evidence!
- $\Gamma(\psi_2) = 4 \pm 6 \text{ MeV}/c^2$ if fitted.

FPCP2012,USTC

Charmonium(-like) states

10 / 32

Э

$X(3872) \rightarrow \gamma \chi_{c1}$

- No X(3872) signal observed: $N_{sig} = -1 \pm 5$.
- $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X \to \gamma \chi_{c1}) < 2.0 \times 10^{-6} \ 90\% \ \text{C.L.}$

•
$$\frac{\mathcal{B}(X \to \gamma \chi_{c1})}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} < 0.26 \ 90\% \ \text{C.L.},$$

according to PRD84, 052004(2011)(Belle):
 $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X \to \pi^+ \pi^- J/\psi) = (8.6 \pm 0.8 \pm 0.5) \times 10^{-6}$

FPCP2012,USTC

Charmonium(-like) states

11 / 32

- 32

イロト イポト イヨト

Search in $B \rightarrow K + \eta J/\psi$

• BaBar: with 90 × 10⁶ $B\overline{B}$, no X signal. PRL99,041801(2004) $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X \to \eta J/\psi) < 7.7 \times 10^{-6}$ @90% C.L. $\mathcal{B}(B^+ \to \eta J/\psi K^+) = (10.8 \pm 2.3 \pm 2.4) \times 10^{-5}$.

• Belle: only ψ' signal and non-resonant component, no X(3872). $\mathcal{B}(\mathcal{B}^+ \to \psi' \mathcal{K}^+) \times \mathcal{B}(\psi' \to \eta J/\psi) = (5.8 \pm 0.9 \pm 0.4) \times 10^{-4}.$ $\mathcal{B}(\mathcal{B}^+ \to \eta J/\psi \mathcal{K}^+)_{NR} = (1.17 \pm 0.07 \pm 0.11) \times 10^{-4}.$ $\mathcal{B}(\mathcal{B}^+ \to X(3872)\mathcal{K}^+) \times \mathcal{B}(X \to \eta J/\psi) < 3.8 \times 10^{-6}$ @90% C.L.

FPCP2012,USTC

Charmonium(-like) states

12 / 32

(日)

Study of $\gamma \gamma \rightarrow \omega J/\psi$

- $M(X(3915)) = 3914 \pm 3 \pm 2 \text{ MeV}/c^2$.
- $\Gamma(X(3915)) = 23 \pm 10^{+2}_{-8} \text{ MeV}/c^2$.
- Significance is 7.8 σ . $N^{sig} = 55 \pm 14^{+2}_{-14}$.

Belle: Uehara et al., PRL104,092001(2010).

FPCP2012,USTC

Charmonium(-like) states

13 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Study of $\gamma\gamma \rightarrow \omega J/\psi$

BaBar: Confirm Belle's measurement, using 519 ${\rm fb}^{-1}$ data.

FPCP2012,USTC

Charmonium(-like) states

14 / 32

<ロト < 同ト < 回ト < 回ト = 三日

Study of $\gamma\gamma \rightarrow \eta_c \pi^+\pi^-$ at BaBar

Predictions :

$$- \Gamma(\eta_c(2S) \to \eta_c \pi^+ \pi^-) / \Gamma(\psi(2S) \to J/\psi \pi^+ \pi^-) = 2.9$$

That is $\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) = (2.2^{+1.6}_{-0.6})\%$

Mod. Phys. Lett. A 17 (2002) 1533

Then

- If $X(3872) \equiv \eta_{c2}$ (1¹ D_2 , $J^{PC} = 2^{-+}$),
- then $\mathcal{B}(X(3872) \to \eta_c \pi^+ \pi^-) > \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)$ (Int J. Mod. Phys A 20 240 (2005))

$$- \Rightarrow$$
 what about $X \rightarrow \eta_c \pi^+ \pi^-$?

FPCP2012,USTC

Charmonium(-like) states

15 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Study of $\gamma \gamma \rightarrow \eta_c \pi^+ \pi^-$ (BaBar)

- 473.9 fb⁻¹ data used, and $\eta_c \to K_S^0 K^+ \pi^-$.
- No evidence for γγ production of X(3872), X(3915) nor χ_{c2}(2P).

Left- $chi_{c2}(1P)$. Middle- $\eta_c(2S)$. Left- $X(3872)/X(3915)/\chi_{c2}(2P)$

- $\frac{\mathcal{B}(\chi_{c2}(1P) \to \eta_c \pi^+ \pi^-)}{\mathcal{B}(\chi_{c2}(1P) \to K_5^0 K^+ \pi^- + c.c.)} = 14.5^{+10.9}_{-8.9} \pm 7.3 \pm 2.5, \ \mathcal{B}(\chi_{c2} \to \eta_c \pi^+ \pi^-) < 2.2\%$
- $\frac{\eta_c(25) \to \eta_c \pi^+ \pi^-}{\eta_c(25) \to K_S^0 K^+ \pi^- + c.c.} = 4.9^{+3.5}_{-3.3} \pm 1.3 \pm 0.8, \ \mathcal{B}(\eta_c(25) \to \eta_c \pi^+ \pi^-) < 7.4\%$
- $\Gamma_{\gamma\gamma}(X) \cdot \mathcal{B}(X \to \eta_c \pi^+ \pi^-) < 11.1/16/19 \text{ eV for } X(3872)/X(3915)/\chi_{c2}(2P)$

From Bernard's talk at GNP2012.

FPCP2012,USTC

Charmonium(-like) states

16 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

1-- family from ISR ISR: initial state radiation

FPCP2012,USTC

Charmonium(-like) states

17 / 32

FPCP2012,USTC

Charmonium(-like) states

18 / 32

(日)

BaBar update on ISR

Don't confirm Belle's Y(4.01)

$$\Gamma_{e^+e^-} \times \mathcal{B}(J/\psi \pi^+\pi^-) = 9.2 \pm 0.8 \pm 0.7 \text{ eV}$$

arXiv :1204.2158

Both Preliminary

 $\begin{array}{l} Y \rightarrow \psi(2S)\pi^+\pi^- & \text{520 fb}^{-1} \\ \psi(2S) \rightarrow J/\psi \, \pi^+\pi^- \text{ or } \ell^+\ell^- \\ \text{missing } p \text{ and missing } p_T \end{array}$

not yet on arXiv

From Bernard's talk at GNP2012.

FPCP2012,USTC

Charmonium(-like) states

19 / 32

イロト 不得 トイヨト イヨト 二日

Y states don't match $D_{(s)}^{(*)}D_{(s)}^{(*)}$ peaks

Only clear ψ (4040), ψ (4160) and ψ (4415) signals!!!

FPCP2012,USTC

Charmonium(-like) states

20 / 32

$D_{s}^{(*)}D_{s}^{(*)}$

Belle, PRD83, 011101(R)(2011)

No obvious Y states but ψ signals again!

FPCP2012,USTC

Charmonium(-like) states

21 / 32

$\eta J/\psi$ via ISR

FPCP2012,USTC

Charmonium(-like) states

22 / 32

Cross section of $e^+e^- \rightarrow \eta J/\psi$

Belle preliminary

A systematic error of 8.8% to all data points is not shown.

FPCP2012,USTC

Charmonium(-like) states

23 / 32

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

About charged Z

• Belle observed charged charmonium-like states in $c\overline{c}K\pi$ system.

- Z(4430) in $B \to K + \psi' \pi$, PRL100, 142001(2008).
- $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B \to K\chi_{c1}\pi$, PRD78,072004(2008).

• Quark content at least $|c\overline{c}u\overline{d}\rangle$ expected.

FPCP2012,USTC

Charmonium(-like) states

24 / 32

More studies on Z(4430)

• No significant evidence for Z(4430) at BaBar. PRD79,112001(2009)

FPCP2012,USTC

Charmonium(-like) states

25 / 32

э

BaBar's search for Z_1 and Z_2

- $B \to K + \chi_{c1}\pi$, 429 fb⁻¹.
- Resonant structure in Kπ system can describe the χ_{c1}π mass spectrum well. No evidence is found for Z₁(4050)⁺ and Z₂(4250)⁺ resonances, but do not statistically rule out existence of Z₁⁺ and Z₂⁺.

- $\mathcal{B}(\overline{B}^0 \to Z_1^+ K^-) \times \mathcal{B}(Z_1^+ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5}$ @90% C.L. • $\mathcal{B}(\overline{B}^0 \to Z_2^+ K^-) \times \mathcal{B}(Z_2^+ \to \chi_{c1} \pi^+) < 4.0 \times 10^{-5}$ @90% C.L.
- For a signle Z(4150)⁺, $\mathcal{B}(\overline{B}^0 \to Z^+ K^-) \times \mathcal{B}(Z^+ \to \chi_{c1}\pi^+) < 4.7 \times 10^{-5}$ @90% C.L.

FPCP2012,USTC

Charmonium(-like) states

26 / 32

A D N A B N A B

Summary

- 1. About X(3872):
 - Update on $X(3872) \rightarrow \pi^+\pi^- J/\psi$ performed by Belle. More precise results got.
 - Both 1^{++} and 2^{-+} describe Belle data well.
 - No charged partner of X(3872) found in $J/\psi\rho^+$ search. No C-odd partner found in $\gamma\chi_{c1}$ or $\eta J/\psi$.
- 2. The first evidence of ψ_2 is got at $B\to K+\gamma\chi_{c1}$ search. The significance is $4.2\sigma.$
- 3. From $\gamma\gamma$ collision:
 - X(3915) has been established in $\gamma\gamma \rightarrow \omega\psi$.
 - No evidence of X(3872), X(3915) nor $\eta_{c2}(2P)$ found in $\gamma\gamma \rightarrow \eta_c \pi^+\pi^-$.
- 4. From ISR:
 - Measurements updated on $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and $\pi^+\pi^-\psi'$ by BaBar confirm the Y(4660) resonance, but not confirm Y(4008).
 - $e^+e^- \rightarrow \eta J/\psi$ via ISR is measured for the first time. $\psi(4040) \rightarrow \eta J/\psi$ and $\psi(4160)$ are observed in the final states. But no Y state observed.
- 5. About charged Z_c
 - No $Z(4430)^+$ evidence in $B \to K + J/\psi \pi$.
 - Z_1^+ and Z_2^+ are not confirmed by BaBar.

FPCP2012,USTC

Charmonium(-like) states

27 / 32

▲□▶▲□▶▲□▶▲□▶ □ ○○○

Thank you!

FPCP2012,USTC

Charmonium(-like) states

28 / 32

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ― 差 … のへで

Back-up

FPCP2012,USTC

Charmonium(-like) states

29 / 32

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ― 差 … のへで

Search on $\eta J/\psi$ via ISR at Belle (Preliminary)

- Reconstructions: $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^-$, $\eta \rightarrow \gamma\gamma$ or $\pi^+\pi^-\pi^0$.
- Clear ψ' signals.

Left is $\eta \to \pi^+ \pi^- \pi^0$ mode and right is $\eta \to \gamma \gamma$ mode. Measurement on cross section of $\sigma(e^+e^- \to \gamma_{\rm ISR}\psi')$ at Belle:

- $\pi^+\pi^-\pi^0$ mode: $n^{sig} = 186 \pm 17$, $\sigma = 13.9 \pm 1.4$ pb.
- $\gamma\gamma$ mode: $n^{sig} = 470 \pm 25$, $\sigma = 14.0 \pm 0.8$ pb.
- Theory calculation: $\sigma = 14.2$ pb.

• □ > < 同 > < 三 >

$\eta J/\psi$ via ISR at Belle (Preliminary)

The J/ψ signal and η signal at high energy region $(M_{\eta J/\psi} > 3.8 \text{ GeV}/c^2)$:

The $\eta J/\psi$ signals:

The left is $\eta \to \pi^+ \pi^- \pi^0$ mode and the right is $\eta \to \gamma \gamma$ mode. Events accumulate around the positions of $\psi(4040)$ and $\psi(4160)$, and no obvious Y states found at $\pi^+\pi^- J/\psi(\psi')$ transitions! (日) 3.1 FPCP2012,USTC Charmonium(-like) states

31 / 32

New $\eta J/\psi$ results

FPCP2012,USTC

Charmonium(-like) states

32 / 32

э

A ID > A (P) > A