Fault-Tolerant and Radiation Hardened SPARC Processors

Jiri Gaisler

Gaisler Research

jiri@gaisler.com

Outline

- Historical Background
- ◆ LEON2FT & AT697
- LEON3 and GRLIB
- LEON3FT Projects
- Software tools overview
- Conclusion

Why SPARC architecture?

- In 1991, a 32-bit replacement for 1750 was needed by projects like HERMES and COLUMBUS
- ESA performed two architectural studies, evaluating processors such as MIPS, THOR, MC68020, I386, NS32
- ESA also invited industry for round-table discussions
- Finally, SPARC was selected due to:
 - Open architecture without patents or license fees
 - Well designed and documented
 - Easy to implement
 - Established software standard
 - Available design (CY601)

ERC32 Development

- 32-bit SPARC V7 architecture based on Cypress 601
- 0.8 um CMOS/EPI, 50 Krad, SEU LET: 15 MeV
- 3-chip solution (IU, FPU, MEC)
- ◆ 14 MHz, 10 MIPS, 2 MFLOPS
- Error-detection through parity on all registers and buses
- Proof-of-concept 1991 (SS2 parts + GALs)
- First prototypes in 1996
- First flight parts in 1998

3-chip ERC32 flight projects

- The 3-chip ERC32 has been used in four space projects
 - Control computer for Space Station (DMS-R)
 - Control computer for Automatic Transfer Vehicle (ATV)
 - PROBA-1 Control Computer
 - Standard Payload Computer (SPLC)
- 3-chip ERC32 was discontinued in 2002

Space Station Control Computer

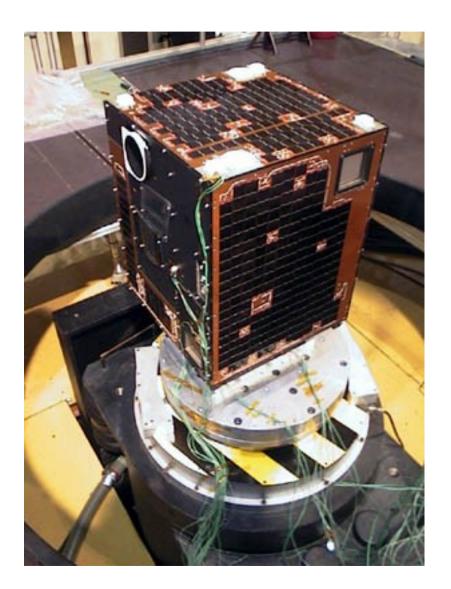
Space Station Control Computer

- Installed in Russian Module 'Zvezda'
- 2 x FT Voting computers + 2 control post computers
- Guidance, Navigation and Control of entire Space Station
- Operating system: VxWorks + Voting FT layer
- Application software developed by RCS Energia (Russia)
- Launched July 2001
- Working nominally since launch

Automated Transfer Vehicle

- ATV re-fuels and boosts Space Station
- ERC32 FT Computers Based on DMS-R
- ◆ Launch 2008

Standard Payload Computer


- VME-based system for payload control in Space Station
- ◆ 14 Mhz ERC32, 6 Mbyte RAM, 80 Mbyte mass-memory
- Ethernet, 1553, Analog + Digitial I/O, Video

GAISLER RESEARCH

PROBA-1

- Project for On-Board Autonomy
- ◆ 10 MHz ERC32
- VxWorks O/S
- ◆ 50,000 lines of C-code
- Launched October 2001
- Still operational

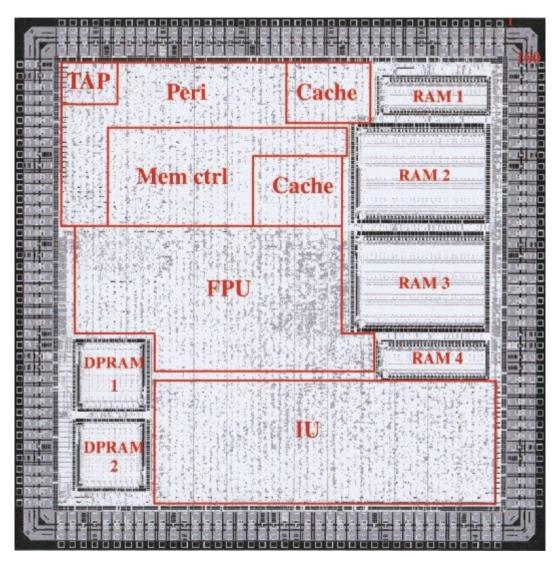
GAISLER RESEARCH

ERC32 Single-chip TSC695

- Developed to reduce cost and improve performance
- 0.5 um rad-hard CMOS, 300 Krad, SEU LET: 50 MeV
- 20 MHz, 14 MIPS, 4 MFLOPS, 0.5 W
- First samples in 1999
- Parity error-detection of on-chip registers and buses
- Current baseline processor for all ESA missions
- Used also outside Europe: US, Israel, India, China
- Used in many projects: Cryosat, GOCE, Herchel/Plancke, SMART-1, SPACEBUS-4000, Ariane-5, Galileosat, Aelous, Deep-Impact, various military

Experienced problems with ERC32

- Proprietary design, difficult to port
- Limited to 20 MHz due to external memory timing
- Non-standard complex I/O interface
- Low-performance DMA
- Not possible to use for SOC design
- No high-level simulation model
- No support
- Bugs ...


LEON project

- To create a European-designed SPARC processor
- ◆ 100 MIPS, 20 MFLOPS performance
- Rad-hard and SEU free
- Standard interfaces
- Modular
- Portable
- Written in VHDL
- Project budget until first prototype: \$250K

First LEON design: LEON1FT

- SPARC V7 5-stage pipeline
- Separate, direct mapped instruction/data caches
- Meiko FPU (ERC32)
- Custom on-chip bus
- 32-bit PROM/SRAM memory controller with EDAC
- Portable VHDL model
- Synthesizable for ASIC and FPGA
- Extensive fault-tolerance to cope with SEU on soft process
- Released in open-source to improve test coverage

LEON1FT layout

LEON1FT Details

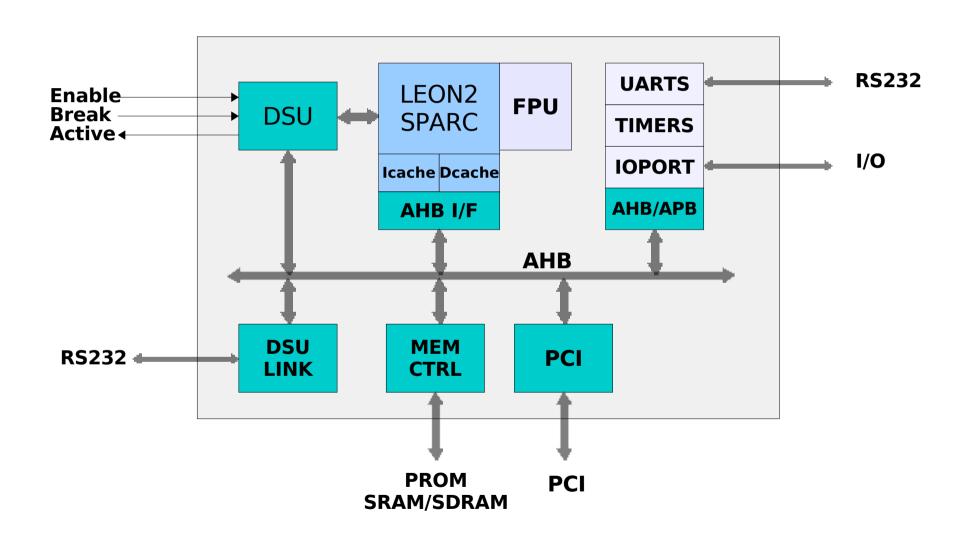
- LEON1FT implemented on Atmel 0.35 um CMOS process
- Pupose: to demostrate fault-tolerance SEU protection
- 2 x 4 Kbyte cache
- Full TMR on all registers
- ◆ (39,7) BCH EDAC on register file
- (34,2) parity on cache memories
- Master/checker capability
- ◆ 30 mm2, 100 Kgates
- ◆ 50 MHz, 10 MFLOPS, 0.5 W, 3.3 V
- Prototypes available 2001, fully functional
- SEU tested using heavy-ion injection (Cyclotron Louvain)

GAISLER RESEARCH

LEON1FT SEU test board

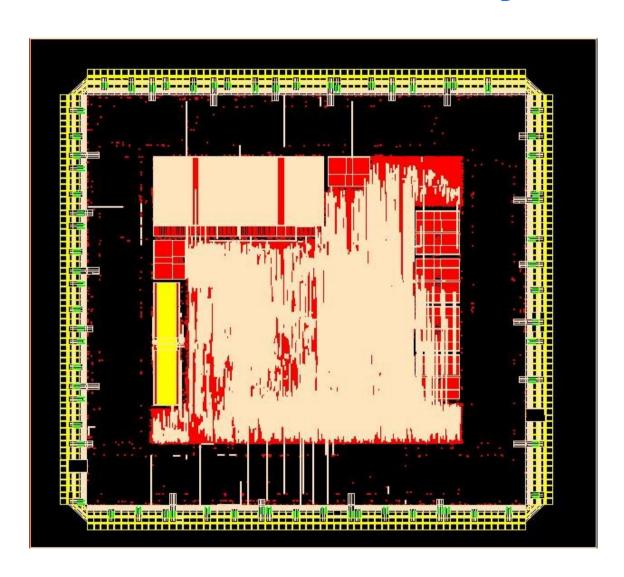
LEON1FT SEU results

- ◆ ~10,000 errors were injected in two test campaigns
- Full detection and correction of all errors
- No software impact
- No master/checker errors
- FT concept considered successfull


LEON1FT Cyclotron setup

Improved performance: LEON2FT

- SPARC V8 5-stage pipeline with hardware MUL/DIV
- Multi-set caches with LRU
- On-chip AMBA bus for modularity
- 32-bit PC133 SDRAM controller with EDAC
- 32-bit full PCI interface with DMA
- On-chip debug support unit (DSU)
- Maintained LEON1 FT logic
- Targeted for 100 MHz on 0.18 um processes
- 120% performance improvement over LEON1


LEON2 Block Diagram

LEON2FT UMC Demonstrator

- Purpose: evaluate FT concept on 0.18 um process
- Synthesized for UMC 0.18 um CMOS, commercial lib.
- Full FT with EDAC, parity and TMR with skewed clocks
- ◆ 2 x 2 x 8 Kbyte caches (32 Kbyte total), InSilicon PCI bridge
- New SDRAM controller with EDAC + HW MUL/DIV + DSU
- ◆ 100 MHz, 250 mW, 5 mm2
- Manufactured end-2002, device fully functional
- SEU tested through heavy-ion injection (Cf-252)
- FT logic successful, removed all 1,000 errors
- SEL due to commercial libraries not useful for space

LEON2FT UMC layout


LEON2FT prototype board

AT697E/F: LEON2FT Flight parts

- LEON2FT on Atmel Rad-Hard 0.18 um process
- Full FT with EDAC, parity and TMR with skewed clocks
- 48 Kbyte cache, InSilicon PCI bridge
- SDRAM controller with EDAC + HW MUL/DIV + DSU
- 100 MHz, 3.3V I/O, 349-pin CGA package
- Samples Q2 2005, flight parts Q4 2008 (TBC)
- Export license required
- Exclusive rights licensed to Atmel (F)
- Designed by Gaisler Research under ESA contract

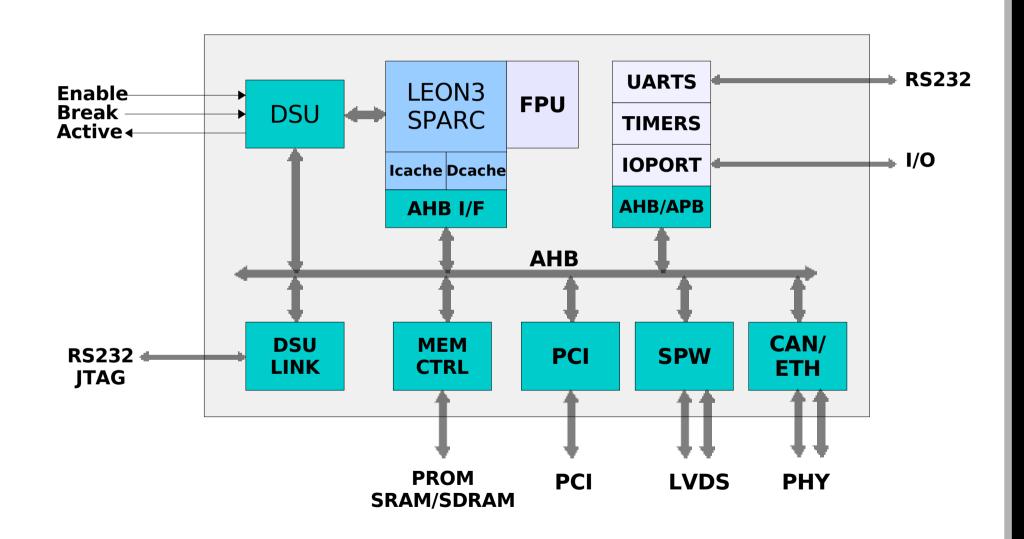
AT697 Validation board

LEON2FT/GRLIB SOC projects

- Astrium AGGA-3 GPS/Galileo receiver (GRFPU)
- Saab COLE Controller (GRFPU, MMU-FT)
- LABEN Spacecraft controller (GRFPU)
- Saab/Gaisler RTC Instrument controller (ESA)
- Alcatel Alenia PMRM Spacecraft controller
- All devices produced by Atmel due to exclusive license of the LEON2FT design

The next step: GRLIB and LEON3

- Increased use in SOC designs requires a more efficient design methodology and IP library
- Identified requirements:
 - Common interfaces
 - Unified synthesis and simulation scripts
 - Built-in portability
 - CAD tool independent coding style
 - Unrestricted licensing
 - SEU tolerance for space applications


GRLIB IP Cores

- 32-bit LEON3 SPARC processor
- High-performance IEEE-754 floating-point unit
- 32-bit PCI bridge with FIFO and DMA
- ◆ 10/100/1000 Mbit Ethernet MAC
- PROM/SRAM/SDRAM controller with BCH or Reed-Sol.
- AHB round-robin arbiter, APB bridge
- Utility cores: UART, timer, interrupt control, GPIO, ...
- Memory and pad wrappers for FPGAs and ASIC
- CAN-2.0, MIL-STD-1553, Spacewire
- ◆ USB-2.0, DDR1, DDR2, SPI, I2C

LEON3 SPARC V8 Processor

- 7-stage pipeline, multi-processor support
- Separate multi-set caches with LRU/LRR/RND
- On-chip debug support unit with trace buffer
- ◆ 250/400 MHz on 0.18/0.13 um, 250/400 MIPS, 25 Kgates
- 125 MHz on Virtex2pro FPGA, 3500 LUT
- 25 MHz on RTAX2000, 8000 cells (25%)
- SEU tolerance by design for space applications
 - Pipelined FT to avoid timing impact
 - Corrects up to 4 errors in each register/cache word
 - Auto-flush of faulty cache lines avoids error build-up

LEON3-FT Template Design

LEON3 Projects

- LEON3FT Actel RTAX2000 : MicroSat, TubiTac, DLR (2x), Assurtech, Uni.Bergen, Syderal, SSC, General Dynamics, Ball Aerospace, Acer, NSPO
 - Flight parts (RTAX2000S-1) delivered to MicroSat, launch on TacSat-3 October 2007
 - ◆ Flight in 2008: ARGO, PRISMA
- ◆ **LEON3FT ASIC designs**: SCOC (Astrium), Aeroflex UT699, LEON3FT-DARE (ESA), Ramon GR702/712, LEON3FT-IHP, LEON3FT-GINA (ESA)
- Commerical LEON3 systems: AiSeek, ACARD, ARC, Alpha, BridgeCo, Comsis, Eonic, Fresco, Gigle, Javad, Orbita, Orbital Research, Radionor, Satrec, Siemens, Silverbrook (2x)

RTAX LEON3/GRLIB configurations

- Pre-programmed fixed LEON3FT systems on RTAX2000
- Delivered as programmed components from Actel
- Four baseline configurations :

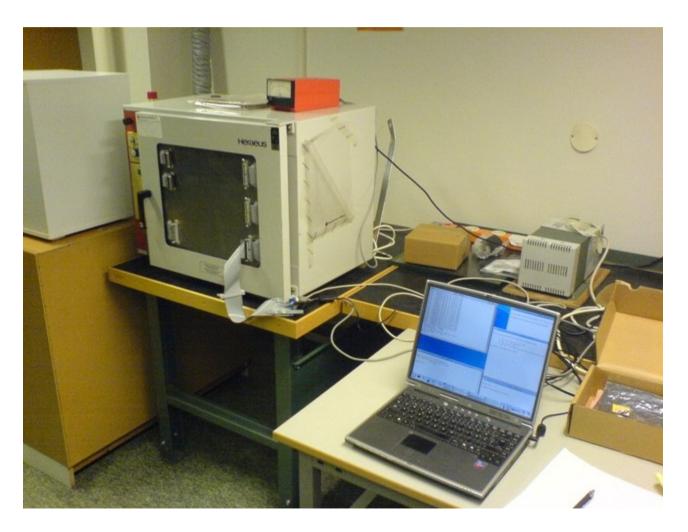
Core	Instrument	U.S. Config	EUR config	Mixed config	
LEONISET	1	4	4	1	
LEON3FT GRFPU-Lite	1	1	1	'	
1553RT	1	ı			
1553BRM	•	A/B			
Spacewire	1		2	2	
CAN-2.0	1	1		1	
Memctrl + EDAC	1	1	1	1	
Std peripherals	1	1	1	1	

Other configuration possible on custom order SOC Design Kit also available

LEON3FT (RT)AX development board

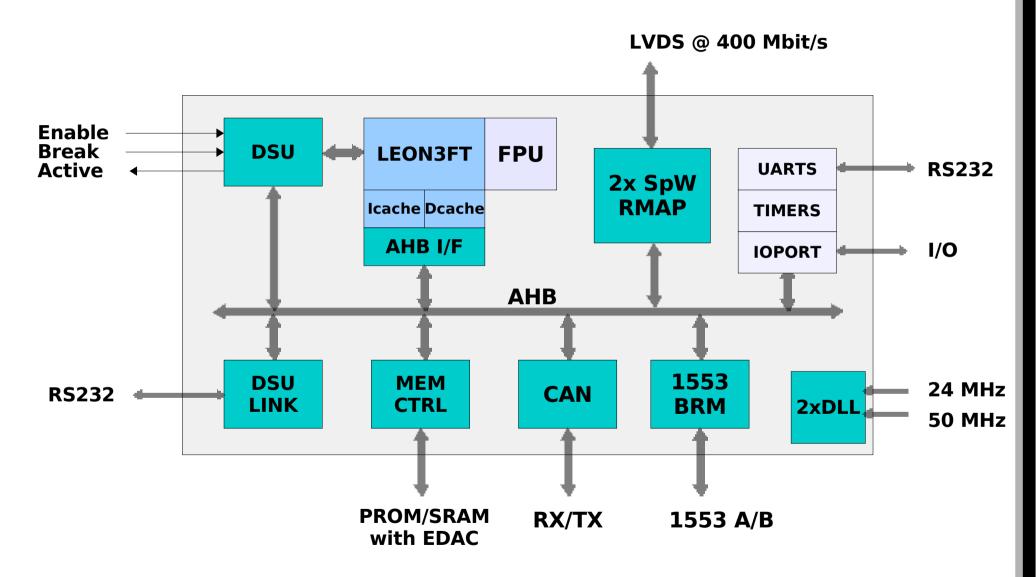
- (RT)AX2000 device in CGA624 or FBGA896 socket
- ◆ 4 Mbyte SRAM + 256 Mbyte SDRAM with ECC
- 10/100 Mbit/s Ethernet, Spacewire, 1553, 33 MHz PCI
- CPCI Form factor

LEON3-FT-RTAX SEU Test Setup


- ◆ 168 hour SEU test injection (Cf-252) completed
- FT fully successfull, report available on-line

ER RESEARCH

LEON3-FT-RTAX SEU Test Setup


Vacuum chamber with Cf-252 source

LEON3-FT RAMON Project

- Objective: to implement a LEON3FT system using Ramon Chips 0.18 um rad-hard library (Tower)
- GR702 prototype produce end-2006
 - Extensive characterisation and radiation testing
 - Device fully functional and radiation hard
- GR712 high-performance version
 - 2-CPU MP system, 32 Kbyte cache, GRFPU
 - 6x Spacewire, 2x CAN, 2x Ethernet
 - → ~ 150 MHz operation, < 1W
 - Sold as component, support by Gaisler

GR702RC SOC system

GR712RC SOC system

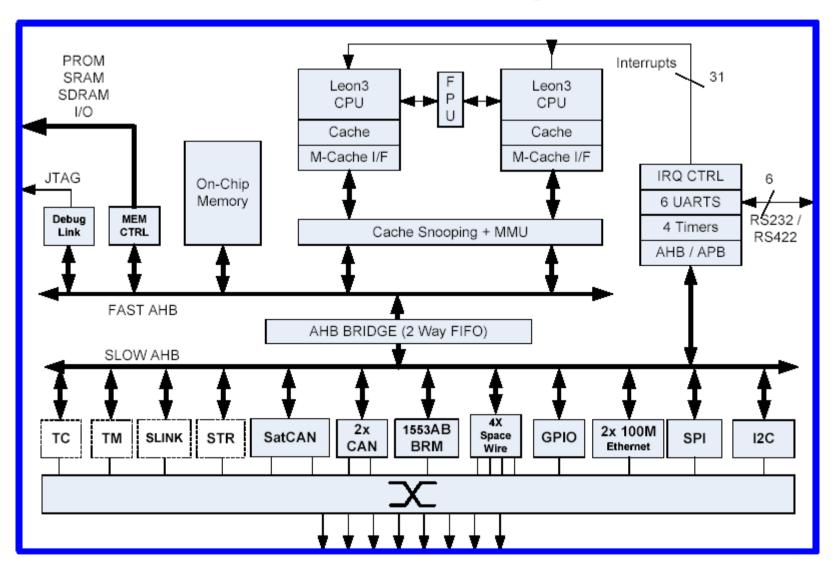
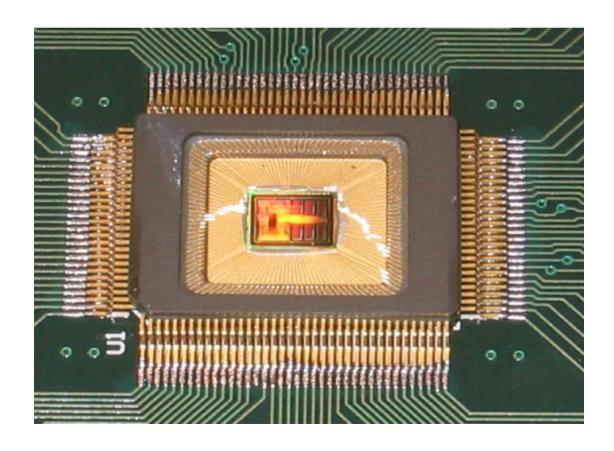
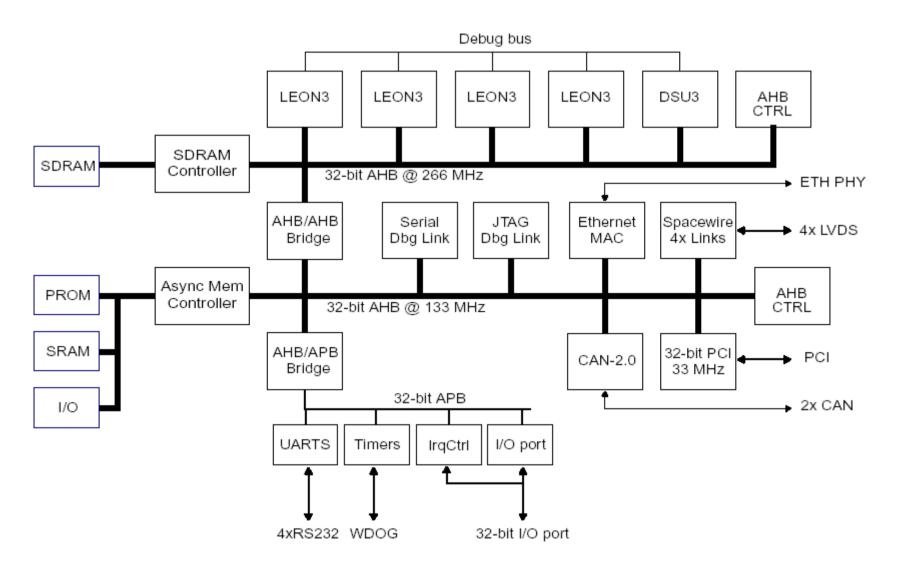
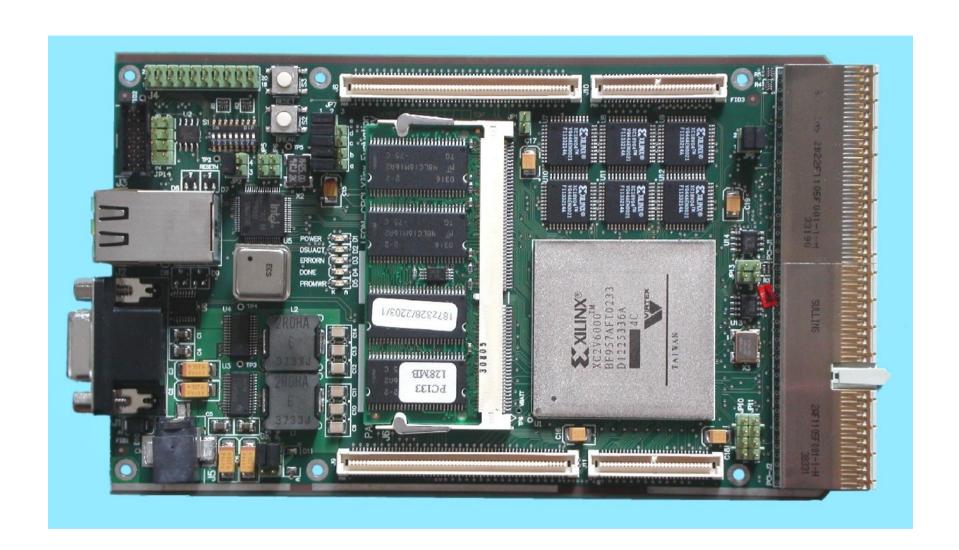



Figure 1: Block diagram of GR712RC

LEON3FT 0.25 um ASIC demonstrator


- ◆ IHP 0.25 um CMOS process, 100 MHz, 3.3 V
- First samples manufactured in August 2005
- Manufactured on Rad-Hard library Q4-2007 (Dolphine)


LEON3FT MP Project (GINA)

- ESA research project, started September 2005
- 4-processor SMP system for high-end space application
- Goal: 1 GIPS / 1GFLOPS @ 266 MHz (GAIA requirements)
- 4 x Spw, PCI, 2 x CAN, Ethernet, 4 x serial
- Prototyped on XC2V6000 / XC4LX200 boards
- Ecos, RTEMS MP software adaptation
- VxWorks bsp
- ASIC prototype 2008

LEON3FT MP Architecture (GINA)

LEON3FT MP Prototype board XC2V6000 & XC4VLX200

LEON2/3FT Device Overview

Device	Peripherals	Radiation	MIPS	Availability	Process
TSC695E	-	100 Krad	20	Now	Atmel 0.5
AT697E	PCI	50 Krad	100	Now	Atmel 0.18
LEON3 RTAX	PCI, Eth., CAN, SpW,1553	100 Krad	25	Now	UMC 0.15
AT697F	PCi	100 Krad	100	2008	Atmel 0.18
GR702	CAN, SpW, 1553	+300 Krad	100	Now	Tower 0.18
GR712	Eth, CAN, SpW, 1553, SPI	+300 Krad	2x150	2008	Tower 0.18
LEON2/RTC	CAN, SpW, FIFO	100 Krad	40	2008	Atmel 0.18
UT699	Eth, CAN, SpW	100 Krad	65	2008	UMC 0.25

COLE, SCOC and PMRM are proprietary designs GINA, IHP and DARE are only research prototypes

LEON3 Software Tool-chains

- ECOS open-source kernel
 - Supports SMP synchronisation of up to 8 CPUs
- RTEMS
- uClinux & Linux-2.6 (SMP & MMU)
- VxWorks 5.4 and 6.3, MMU support
- Aonix Ada
- ThreadX
- Bare-C & Pthreads
- Mentor Nucleous end-2007

LEON3 Software Support tools

- GRMON plug&play debug monitor
 - Debug 'drivers' for each specific IP core
 - Modules allow IP vendors to provide own drivers
- TSIM high-performance LEON3 simulator
- GRSIM modular simulator
 - Modular, re-entrant simulator based on TSIM
 - Can simulate any number of buses, cores or cpu's
 - Vendor independent models
- GDB/DDD
- Eclipse C/C++ IDE

Summary

- LEON2 and LEON3 are well received by the international space community, and will be the baseline processor cores for both US and European devices and systems
- The portability of the LEON3 model allows fast and simple implementation on new technologies (or FPGAs)
- A rich software environment is available, based on both commercial and open-source software tools
- The dual-use and open-source approach of the LEON3 model guarantees long term availability and support