

Search for Heavy Stable Charged Particles (HSCPs) at CMS

Phenomenology 2012 Symposium

Venkatesh Veeraraghavan

Florida State University CMS Collaboration

- Introduction
 Heavy Stable Charged Particles (HSCPs) are-
 - heavy
 - long-lived (lifetime large enough to travel detector length scales)
 - have electric charge
- HSCPs can be-
 - lepton-like- have only electromagnetic interaction
 - hadron (coloured) like- in addition, also have nuclear interaction
- Constrained decay between Next-to-lightest-Stable-Particle (NLSP) and Lightest-Stable-Particle (LSP) in several Beyond Standard Model theories yield HSCPs. Example- SUSY, Extra Dimensions etc.
- Useful signatures-
 - Large p_T
 - Large ionisation energy loss
 - Slow moving

Signal Sample

- Hadron HSCPs (R-hadrons)-
 - pair-produced stops (MSSM)
 - pair-produced gluinos (split SUSY)

Two R-hadron interaction scenarios are considered-

- *Cloud Model*- Most R-hadrons are charged after several nuclear interactions (Eur. Phys. J. C50 (2007) 353)

- Complete charge supression- Each nuclear interaction suffered by the R-hadron causes it to become neutral

Initial fraction of gluino-gluon, f, is a free parameter of the theory

- Gluino searches are done with f being 10% and 50%

- Lepton HSCPs-
 - pair-produced stau in mGMSB model (SPS7 line)
 - stau from cascade decay in mGMSB model (SPS7 line)

pair-produced hyper-K- via DY and hyper-p resonance (JHEP 02 (2010) 018)
 5/7/2012 Phenomenology 2012 Symposium Venkatesh Veeraraghavan Florida State University

How do we search for our signal?

dE/dx for positive muons in Copper K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) HSCPs would be produced with a large p_{T}

HSCPs are long-lived

 \rightarrow identify using the muon system

HSCPs are massive \rightarrow slow-moving \rightarrow longer time-of-flight \rightarrow larger dE/dx

Backgrounds consist of muons $\rightarrow \log p_T$ $\rightarrow \text{fast-moving } (\beta \sim 1)$ $\rightarrow \log dE/dx$

Venkatesh Veeraraghavan

Passage of HSCPs through the CMS detector

Venkatesh Veeraraghavan

- p_{T} computed by measuring the curvature in the tracker
- dE/dx of a candidate track is computed using charge ۲ depositions in Silicon strip and pixel detectors in the CMS tracker-

$$\frac{dE}{dx} = \left(\frac{1}{N}\sum_{i=1}^{N}c_{i}^{k}\right)^{\left(\frac{1}{k}\right)}$$

 c_i is the charge/unit path length of the i^{th} measurement, k=2, N is the total number of measurements

 I_{as} (derived from dE/dx) discriminator used for particle id

Candidate β is computed using timing information in the drift tubes (DT) and cathode strip chambers (CSC) in the muon system.

$1/\beta$ resolution in muon system

Data Sample

Triggers

Muon40- identify HSCPs which (continue to) remain charged in the muon system

L1 Resistive Plate Chamber (RPC) trigger- checks in the (25ns) BX and BX+1

MET150- identify HSCPs which become neutral after traversing the tracker and also those that fail the muon threshold

• The analysis uses all 2011 data collected at CMS ($\sim 5 \text{ fb}^{-1}$)

• Two analysis strategies-

Tracker-only

 \rightarrow effective for HSCPs which are charged in the tracker, but become neutral in the calorimeter

 \rightarrow Identified with large p_T and large $dE/dx (I_{as})$

Tracker+TOF

 \rightarrow effective for HSCPs which are charged in the tracker and also in the muon system

→ Identified with large p_T and large dE/dx (I_{as}) and large $1/\beta$

p_{T} , I_{as} and $1/\beta$ shapes for signal and data

Mass computation using measured dE/dx and p

deuterons

Approximation to the Bethe-Bloch formula in range $0.4 < \beta < 0.9$

$$\frac{dE}{dx} = K \frac{M^2}{p^2} + C$$

Constants K and C- derived from data using a sample of low-momentum protons

Use measured dE/dx and measured p to compute the particle's measured mass

Analysis

- Use non-correlation between p_T , I_{as} and $1/\beta$ to make a data-driven prediction for the background in the signal region
- Mass spectrum is built from pseudoexperiments using p, dE/dx and 1/β PDFs from non-signal regions
- Counting experiment is done in a mass window of $[M_{reco} 2\sigma_{Mreco}, 2 \text{ TeV}]$
- Final Selection of p_T , I_{as} and $1/\beta$ is optimised for the best discovery potential for each signal point.

Good matching between prediction and observation for loose selection aghavan Florida State University

Venkatesh Veeraraghavan

5/7/2012

Results

- No significant excess is seen with respect to prediction and 95% CL upper limits on the HSCP production cross sections are set and translated to mass limits
- Mass limits for Hadron HSCPs-

R-hadron		Cloud Model (GeV/c ²)	Charge suppression model (GeV/c ²)			
gluino	<i>f</i> = 10%	1098	928			
	<i>f</i> = 50%	1046	NA			
stop		737	626			

Mass limits for Lepton HSCPs-

		Lepton H	(GeV/c ²)							
			cascade-decay	314						
	S	tau	pair-produced	223						
	hyper-K	hyper-p _M	800	484						
		(GeV/c ²)	1200	602						
			1600	747						
Pł	nenomenology 2	012 Symposium	Venkatesh Veeraraghav	van Florida State University						

Observed cross section limits

Summary

- We searched for HSCPs in data collected with the CMS detector during the 2011 run of the LHC (~5 fb⁻¹). Two scenarios-
 - Tracker-only- HSCPs are searched for using p_T and dE/dx
 - Tracker+TOF- HSCPs are searched for using p_T , dE/dx and 1/ β
- Observed number of data events compatible with prediction.
- We set 95% CL upper limit on the cross section of various HSCP models and lower limits on their mass.
- Documentation-

Public pagehttps://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11022Winter2012

Paper- http://arxiv.org/abs/1205.0272 (submitted to Physics Letters B).

Back-Up

5/7/2012 Phenomenology 2012 Symposium

Venkatesh Veeraraghavan

Florida State University

14

• Estimator of the degree of compatibility of the observed charge measurements with the MIP hypothesis

$$I_{as} = \frac{3}{N} \left(\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i \left(P_i - \frac{(2i-1)}{2N} \right)^2 \right] \right)$$

N is the number of charge measurements in the silicon-strip detectors

 P_i is the probability for a minimum ionising particle to produce a charge smaller or equal to the i^{th} charge measurement for the observed path length in the detector. The sum is over the track measurements ordered in terms of increasing P_i

dE/dx computed using both silicon strip and pixel measurements. I_{as} is computed using only silicon strip measurements.

Common to both Tracker-only and Tracker+TOF-

- tracker track should be good
 - large number of track hits, good track fitting
- vertex offset should be compatible with the beam-spot
- dE/dx > 3 MeV/cm, $I_{as} > 0.0$
- $p_{T} > 45 \text{ GeV}, |\eta| < 1.5$

Tracker-only

- calorimeter isolation < 0.3
- tracker isolation < 50 GeV

Tracker+TOF

- muon track quality should be good
- tracker track and muon track should form a good global muon
- 1/β > 1.0 and uncertainty on 1/β < 0.07
- calorimeter isolation < 0.6
- tracker isolation < 100 GeV

calorimeter isolation = $[(\sum \text{Energy}_{\text{ECAL}} + \sum \text{Energy}_{\text{HCAL}})/p]_{|\Delta R} < 0.3$ tracker isolation = $[\sum p_T]_{|\Delta R} < 0.3$ (\sum does not include the candidate track) 5/7/2012 Phenomenology 2012 Symposium Venkatesh Veeraraghavan Florida State University

Loose Selection

Table 1: Selections used to create the 'loose' samples with large number of events and the expected (Exp.) and observed (Obs.) event yields. The selections are defined in terms of thresholds in $p_{\rm T}$, $I_{\rm as}$, and β^{-1} (measured from TOF).

Selection	$p_{\rm T}^{\rm min}$ (GeV/c)	I_{as}^{min}	$\beta^{-1\min}$	Exp.	Obs.
Tk-Only	50	0.10	-	103450 ± 10350 (syst) \pm 210 (stat)	94910
Tk+TOF	50	0.05	1.05	$88010\pm8800~{ m (syst)}\pm290~{ m (stat)}$	72079

Systematic Uncertainties

Source of systematic uncert.	Relative uncert. (%)
Signal acceptance:	
 Trigger efficiency 	5
- Track momentum scale	< 4
 Ionization energy loss 	2
- Time-of-flight	2
- Track reconstruction eff.	< 2
- Muon reconstruction eff.	< 2
- Pile-up	< 0.5
Total uncert. in signal acc.	7
Expected background	10
Integrated luminosity	2.2

Results (Tracker-only)

Model	Mass	$p_{\rm T}^{\rm min}$	I ^{min} as	$M_{\rm reco}^{\rm min}$	Acc.	Exp.	Obs.	Th. σ	Exp. σ	Obs. σ
$\widetilde{g}(f=0.1)$	300	60	0.400	180	0.158	0.328 ± 0.040	0	6.6E+01	3.8E-03	3.7E-03
$\tilde{g}(f=0.1)$	700	50	0.300	410	0.206	0.089 ± 0.009	1	2.1E-01	3.0E-03	4.0E-03
$\widetilde{\mathbf{g}}(f=0.1)$	1100	120	0.225	570	0.149	0.094 ± 0.010	0	3.9E-03	4.0E-03	3.9E-03
$\widetilde{\mathbf{g}}$ ($f = 0.5$)	300	60	0.400	180	0.086	0.328 ± 0.040	0	6.6E+01	6.9E-03	6.8E-03
$\widetilde{g}(f=0.5)$	700	50	0.300	410	0.116	0.089 ± 0.009	1	2.1E-01	5.3E-03	7.1E-03
$\widetilde{g}(f=0.5)$	1100	120	0.225	570	0.085	0.094 ± 0.010	0	3.9E-03	7.0E-03	6.9E-03
\widetilde{g} ($f = 0.1$, ch. suppr.)	300	60	0.400	180	0.020	0.328 ± 0.040	0	6.6E+01	3.0E-02	3.0E-02
\widetilde{g} ($f = 0.1$, ch. suppr.)	700	50	0.325	370	0.045	0.092 ± 0.010	1	2.1E-01	1.4E-02	1.8E-02
\widetilde{g} ($f = 0.1$, ch. suppr.)	1100	50	0.275	460	0.032	0.085 ± 0.009	1	3.9E-03	1.9E-02	2.6E-02
\tilde{t}_1	200	60	0.400	130	0.142	1.250 ± 0.160	4	1.3E+01	5.8E-03	1.1E-02
\tilde{t}_1	500	50	0.350	310	0.242	0.126 ± 0.014	0	4.8E-02	2.4E-03	2.3E-03
t ₁	800	50	0.275	450	0.290	0.095 ± 0.010	1	1.1E-03	2.1E-03	2.8E-03
\tilde{t}_1 (ch. suppr.)	200	70	0.400	120	0.021	1.520 ± 0.202	4	1.3E+01	4.0E-02	7.2E-02
\tilde{t}_1 (ch. suppr.)	500	50	0.375	280	0.064	0.102 ± 0.012	0	4.8E-02	9.1E-03	9.1E-03
\tilde{t}_1 (ch. suppr.)	800	50	0.325	370	0.077	0.092 ± 0.010	1	1.1E-03	8.1E-03	1.1E-02
GMSB $\tilde{\tau}_1$	100	65	0.400	20	0.122	6.980 ± 0.908	7	1.3E+00	1.2E-02	1.3E-02
GMSB $\tilde{\tau}_1$	494	65	0.350	300	0.639	0.126 ± 0.014	0	6.2E-05	9.3E-04	9.3E-04
pair prod. $ ilde{ au}_1$	100	70	0.400	40	0.105	4.840 ± 0.608	6	3.8E-02	1.2E-02	1.5E-02
pair prod. $\tilde{\tau}_1$	308	70	0.400	190	0.390	0.237 ± 0.030	0	3.5E-04	1.5E-03	1.5E-03
$\widetilde{\mathrm{K}}$ ($\widetilde{ ho}$ (800))	100	70	0.400	10	0.065	4.880 ± 0.613	6	1.4E+00	1.9E-02	2.3E-02
$\widetilde{\mathbf{K}}$ ($\widetilde{ ho}$ (800))	500	50	0.350	320	0.611	0.107 ± 0.012	0	2.8E-04	9.6E-04	9.6E-04
Κ (<i>ρ̃</i> (1200))	600	50	0.325	370	0.221	0.092 ± 0.010	1	2.6E-03	2.8E-03	3.8E-03
Κ (<i>ρ̃</i> (1200))	700	50	0.275	440	0.647	0.106 ± 0.011	1	6.1E-05	9.6E-04	1.3E-03
Κ (<i>ρ̃</i> (1600))	800	140	0.250	480	0.329	0.118 ± 0.012	1	2.6E-04	1.9E-03	2.5E-03
Κ (<i>ρ̃</i> (1600))	900	135	0.225	530	0.617	0.128 ± 0.014	0	1.3E-05	9.3E-04	9.3E-04

Results (Tracker-TOF)

Model	Mass	$p_{\rm T}^{\rm min}$	I_{as}^{min}	$eta^{-1 \min}$	$M_{\rm eco}^{\rm min}$	Acc.	Exp.	Obs.	Th. <i>σ</i>	Exp. σ	Obs. σ
$\widetilde{g}(f = 0.1)$	300	55	0.175	1.175	180	0.170	0.119 ± 0.012	0	6.6E+01	3.4E-03	3.4E-03
$\tilde{g}(f=0.1)$	700	110	0.050	1.125	430	0.194	0.113 ± 0.015	0	2.1E-01	3.0E-03	3.0E-03
$\widetilde{g}(f=0.1)$	1100	110	0.025	1.075	620	0.127	0.111 ± 0.033	0	3.9E-03	4.6E-03	4.6E-03
$\widetilde{g}(f=0.5)$	300	55	0.175	1.175	180	0.094	0.119 ± 0.012	0	6.6E+01	6.3E-03	6.2E-03
$\widetilde{g}(f=0.5)$	700	110	0.050	1.125	430	0.109	0.113 ± 0.015	0	2.1E-01	5.4E-03	5.3E-03
$\widetilde{g}(f=0.5)$	1100	110	0.025	1.075	620	0.072	0.111 ± 0.033	0	3.9E-03	8.2E-03	8.2E-03
\tilde{t}_1	200	50	0.200	1.200	130	0.150	$0.109 {\pm}~0.011$	0	1.3E+01	3.9E-03	3.8E-03
\widetilde{t}_1	500	60	0.075	1.150	330	0.246	0.125 ± 0.013	0	4.8E-02	2.4E-03	2.4E-03
\widetilde{t}_1	800	105	0.025	1.125	490	0.262	0.096 ± 0.019	0	1.1E-03	2.2E-03	2.2E-03
GMSB $\tilde{\tau}_1$	100	50	0.300	1.275	30	0.195	0.093 ± 0.011	0	1.3E+00	2.9E-03	2.9E-03
GMSB $\tilde{\tau}_1$	494	55	0.025	1.175	320	0.779	0.113 ± 0.014	1	6.2E-05	7.8E-04	1.1E-03
pair prod. $\tilde{\tau}_1$	100	50	0.250	1.275	50	0.193	0.109 ± 0.012	0	3.8E-02	3.0E-03	2.9E-03
pair prod. $\tilde{\tau}_1$	308	65	0.125	1.200	190	0.545	0.105 ± 0.011	0	3.5E-04	1.1E-03	1.1E-03
$\widetilde{\mathrm{K}}$ ($\widetilde{ ho}$ (800))	100	50	0.300	1.275	20	0.112	0.095 ± 0.011	0	1.4E+00	5.3E-03	5.2E-03
$\widetilde{\mathrm{K}}$ ($\widetilde{ ho}$ (800))	500	60	0.075	1.150	330	0.680	0.125 ± 0.013	0	2.8E-04	8.6E-04	8.5E-04
$\widetilde{\mathrm{K}}\left(\widetilde{ ho}\left(1200 ight) ight)$	600	70	0.025	1.150	380	0.223	0.107 ± 0.015	0	2.6E-03	2.6E-03	2.6E-03
$\widetilde{\mathrm{K}}$ ($\widetilde{ ho}$ (1200))	700	110	0.050	1.125	450	0.658	0.087 ± 0.013	0	6.1E-05	9.0E-04	9.0E-04
$\widetilde{\mathrm{K}}$ ($\widetilde{ ho}$ (1600))	800	50	0.050	1.100	500	0.325	0.119 ± 0.021	0	2.6E-04	1.8E-03	1.8E-03
$\widetilde{\mathrm{K}}$ ($\widetilde{ ho}$ (1600))	900	85	0.075	1.075	550	0.606	0.123 ± 0.022	0	1.3E-05	9.3E-04	9.1E-04

Ratio of observed and expected cross section limits

CMS \sqrt{s} = 7 TeV 5.0 fb⁻¹

CMS

Signal Models used- mGMSB model

Benchmark points on the SPS7 line are used

• stau = 156 GeV

 $N = 3, \Lambda = 50000 \text{ GeV}, M = 100000 \text{ GeV}, \tan \beta = 10, sign (\mu) = 1, c_{grav} = 10000$

• stau = 247 GeV

 $N = 3, \Lambda = 80000 \text{ GeV}, M = 160000 \text{ GeV}, \tan \beta = 10, sign (\mu) = 1, c_{grav} = 10000$

Signal Models used Vector-like confinement model

- Proposes a QCD-like confinement force between new elementary particles (hyperquarks)
- Hyper-quarks are confined into Standard Model hadron-like hypermesons like hyper-π, hyper-K, hyper-ρ.
- Model assumption used-

Hyper-K is pair-produced via either Drell-Yan process or via production of a resonant, hyper- ρ .