

Developing Applications With The

Web Server Gateway Interface

James Gardner
EuroPython 3rd July 2006

www.3aims.com

Aims
● Show you how to write WSGI applications

– Quick recap of HTTP, then into the nitty gritty
● Show you the benefits of WSGI

– Applications can run on multiple servers
– Middleware can be reused easily so you don't

have to write functionality yourself
● Leave you inspired by the concept to go

away to write adaptors, middleware or
applications or contribute to existing
projects.

Python Enhancement Proposal

● http://www.python.org/dev/peps/pep-0333/
● Drawn up two and half years old, written

back in 2003, last modified April this year
● Submitted by P J Eby, after discussion with

others on the Web-SIG mailing list like Ian
Bicking

The Problem

● Lots of web frameworks Zope, Quixote,
Webware, SkunkWeb and Twisted Web etc

● Applications written for one framework
often weren't compatible with the server
components of the others

● Made the choosing a Python web
framework hard as there were so many
different and incompatible options

● The PEP compares the situation to Java
which had its Servelet API

The abstract of PEP 333 states:

"This document specifies a
proposed standard interface

between web servers and Python
web applications or frameworks, to
promote web application portability

across a variety of web servers."

The Solution

getting
started

Get the right tools

● Mozilla Firefox
http://www.mozilla.com/firefox/

● LiveHTTPHeaders
http://livehttpheaders.mozdev.org/
View->Sidebar->LiveHTTPHeaders

● wsgiref
http://peak.telecommunity.com/wsgiref_docs/

HTTP Basics

● When you request a page the browser
sends an HTTP request

● When the server receives that request it will
perform some action, (typically running an
application) and return an HTTP response

● There are different request methods such as
GET and POST.

An HTTP Request
GET /screenshots.html HTTP/1.1

Host: livehttpheaders.mozdev.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-
US; rv:1.8.0.4) Gecko/20060508 Firefox/1.5.0.4

Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=
0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en,en-us;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP Response Headers
HTTP/1.x 200 OK

Date: Fri, 30 Jun 2006 12:09:34 GMT

Server: Apache/1.3.33 (Unix) mod_gzip/1.3.26.1a PHP/4.3.11

Vary: Host

X-Powered-By: PHP/4.3.11

Connection: close

Content-Type: text/html

Content-Encoding: gzip

Content-Length: 2752

A Simple Complete Response

 HTTP/1.x 200 OK

 Server: SimpleHTTP/0.6 Python/2.4.1

 Content-Type: text/html

 <html><body>Hello World!</body></html>

print "Content-Type: text/html\n\n"
print "<html><body>Hello World!</body></html>"

here it comes...

 def application(environ, start_response):
 start_response('200 OK',[('Content-type','text/html')])
 return ['<html><body>Hello World!</body></html>']

(Also exc_info=None, write(body_data) callable)

print "Content-Type: text/html\n\n"
print "<html><body>Hello World!</body></html>"

Recap: What makes this a WSGI
application

● It is a callable (in this case a simple function)
taking environ and start_response as
positional parameters

● It calls start_response() with a status code
and a list of tuple pairs of headers before it
returns a value. It should only be called
once.

● The response it returns is an iterable (in this
case a list with just one string).

The environ Dictionary
● A dictionary of strings

– CGI strings
– WSGI strings: wsgi.version,

wsgi.url_scheme, wsgi.input, wsgi.errors,
wsgi.multithread, wsgi.multiprocess,
wsgi.run_once

– Server extension strings, which we'll talk
about later

● From the information in environ you can
build any web application

that's it
so lets test it

Testing Our Application

Since we took so much time understanding
and writing our application we should really
test it.

> easy_install wsgiref

from wsgiref import simple_server
from hello_wsgi import application
httpd = simple_server.WSGIServer(

('',8000),
simple_server.WSGIRequestHandler,

)
httpd.set_app(application)
httpd.serve_forever()

wsgiref

Actual HTTP Output

HTTP/1.x 200 OK

Date: Fri, 30 Jun 2006 12:59:51 GMT

Server: WSGIServer/0.1 Python/2.4.2

Content-Type: text/html

Content-Length: 38

You can now run this application
on lots of WSGI compliant servers

Also as a server developer you know that just
implementing WSGI is enough to make your
server compatible with most applications and

frameworks

flup

(also supports ajp or scgi)

> easy_install flup

from flup.server.fcgi import WSGIServer

from hello_wsgi import application

WSGIServer(application).run()

WSGIUtils

> easy_install WSGIUtils

from wsgiutils import wsgiServer
from hello_wsgi import application
server = wsgiServer.WSGIServer (
 ('localhost', 1088),
 {'/': application},
)
server.serve_forever()

CGI

You can even run your WSGI application as a
CGI script.

from wsgiref.handlers import CGIHandler
from hello_wsgi import application
CGIHandler().run(application)

middleware

Middleware
● Component that acts like an application

from the server's point of view
– It is a callable that accepts environ and

start_response
– Calls start_repsonse once with status and

headers etc
– Returns an iterable

● Looks like a server to another piece of
middleware or an application
– Provides start_response and environ dictionaries
– Expects a response

Changing the status or headers

class MyStatusMiddleware:
 def __init__(self, app):
 self.app=app
 def __call__(self, environ, start_response):
 def fake_start_response(status, headers, exc_info=None):
 if status[:3] == '200':
 status = '200 But I could have made it anything'
 return start_response(status, headers, exc_info)
 return self.app(environ, fake_start_response)

application = MyStatusMiddleware(application)

What can you do with it?

● Fundamentally you can do the following
– Provide more functionality by adding a key to

the environ dictionary
– Change the status
– Intercepting an error
– Adding/removing/changing headers
– Change a response

● These in turn allow you to all sorts of other
clever things:
– Provide error documents
– Email error reports
– Interactive debugging
– Request forwarding
– Etc etc.
– Testing a component

An Example
from beaker.session import SessionMiddleware

def application(environ, start_response):
 session = environ['beaker.session']
 if not session.has_key('value'):
 session['value'] = 0
 session['value'] += 1
 session.save()
 start_response('200 OK', [('Content-type', 'text/plain')])
 return ['The current value is: %d' % session['value']]

application = SessionMiddleware(
 application,
 key='mysession',
 secret='randomsecret',
)

Middleware Chains

application = MyApplication(['Example','Chaining'])
application = MyStatusMiddleware(application)
application = MyEnvironMiddleware(application, 'Hi!')

or

MyEnvironMiddleware(
 MyStatusMiddleware(
 MyApplication(['Example','Chaining'])
),
 'Hi!',
)

This is Really Powerful!

● Suddenly you can add a single component to
your application and get loads of
functionality

● Hard for a user to configure -> Paste deploy
– Lets you specify config files
– Turns the settings in the config files into WSGI

apps:

from paste.deploy import loadapp

wsgi_app = loadapp('config:/path/to/config.ini')

Error Handling

...

from paste.cgitb_catcher import CgitbMiddleware

app = CgitbMiddleware(app,{'debug':False})

#app = CgitbMiddleware(app,{'debug':True})

...

or

...

from paste.evalexception import EvalException

app = EvalException(app)

...

demo

Future..

● More projects adopting WSGI
● More middleware components springing up
● An active community at wsgi.org
● Web frameworks with full WSGI stacks so

that you can pick and choose the best
components for your particular needs. (See
Pylons).

● A real alternative to Rails for rapid web
development?

If middleware can be both simple and robust,
and WSGI is widely available in servers and
frameworks, it allows for the possibility of an
entirely new kind of Python web application
framework: one consisting of loosely-coupled
WSGI middleware components. Indeed,
existing framework authors may even choose
to refactor their frameworks' existing services
to be provided in this way, becoming more like
libraries used with WSGI, and less like
monolithic frameworks. This would then allow
application developers to choose "best-of-
breed" components for specific functionality,
rather than having to commit to all the pros
and cons of a single framework.

Summary

● WSGI isn't too complicated
● If your app is WSGI compliant you can

instantly deploy it on a number of servers
● There are lots of powerful tools and

middleware already in existence and you
can easily re-use them -> see wsgi.org

● I'll be talking about Pylons later today which
is one of the first projects to use WSGI
throughout its stack.

Resources

● PEP 333
– http://www.python.org/dev/peps/pep-0333/

● Paste Website
– www.pythonpaste.org

● WSGI Website
– www.wsgi.org

● Web-SIG Mailing List
– http://www.python.org/community/sigs/current/

web-sig/

questions?
james@pythonweb.org

thank
you

