

ANTERNA

Outline

- Present ALICE detector and its physics results
- General ALICE upgrade in 2017-18
- New Inner Tracking System conceptual design
 - Expected detector performance
- From the concept to the final design:
 - Pixel chip developments
 - Mechanical integration
 - Cooling
- Conclusions

Present ALICE detector = = Tracking + Particle ID

ALICE physics results

Recently numerous measurements were performed including D mesons spectra in Pb-Pb and pp and their ratio R_{AA} giving information on charm energy loss inside Quark-Gluon Plasma

NLO(MNR) with EPS09 shad.
Rad+dissoc (0-20%)
WHDG rad+coll
POWLANG (Beraudo et al.)
BAMPS
BDMPS-ASW rad q=25
Rapp et al.

Performing these measurements down to $p_T = 0$ will give information on thermalization of charm in QGP and its possible thermal production.

General ALICE upgrade

- Why: improve the physics performance for:
 - Heavy flavor at low p_T
 - Quarkonia
 - Low-mass di-leptons
 - Heavy nuclear states
- What:
 - Smaller beam pipe: r_{out} =29.8 mm → 20 mm
 - New highly-granular and low-mass ITS
 - Continuous GEM readout of the TPC
 - New readout electronics of TOF, TRD,
 PHOS and Muon Spectrometer for high rate operation
 - New online and offline computing
- When: LHC LS2 (2017-18)

- How:
 - Better spatial resolution
 - Higher LHC luminosity: 6×10^{27} cm⁻²s⁻¹ → 50 kHz

ITS upgrade

2007

2018

- 6 layers: r_{min} = 39 mm
- Maximum readout rate (SDD)

$$= 1 \text{ kHz}$$

$\sigma_{r\varphi}$ [μ m]	$\sigma_{z}[\mu m]$	X/X_0
12	100	1.14
35	25	1.2
20	830	0.83
	12 35	12 100 35 25

- Better spatial resolution:
 - $r_{min} = 22 \text{ mm}$
 - More layers
 - Smaller segmentation
 - Lower material budget
- Faster readout:
 - $-1 \text{ kHz} \rightarrow 50 \text{ kHz in Pb-Pb}$
 - \sim 200 kHz in pp
- Radiation level:
 - 700 kRad + 10^{13} n_{eq} /cm² for the full integrated luminosity

(innermost layer including a safety factor = 4)

Silicon particle detectors

Hybrid pixels:

- Mature technology
- High radiation hardness
- Pixel pitch: ~ 50 μm
- Material budget: $\sim 1 \% X_0$ (100 + 50 µm total silicon thickness)
- High production cost

CMOS monolithic pixels:

- Novel technology
- Less radiation hard
- Pixel pitch: ~ 20 μm
- Material budget: $\sim 0.3 \% X_0$ (50 µm chip thickness)
- Low production cost

• Silicon micro-strips:

- Mature technology
- Allows to measure dE/dx for the particle ID
- Low resolution along beam direction
- Suited only for the low track density (outermost layers)

Conceptual detector layouts:

All pixels

Pixels + Strips

Layer	Туре	R [cm]	±z [cm]	Intrinsic resolution [µm]		Material budget
				rф	z	[% X ₀]
	Beam pipe	2.0	-	-	-	0.22
1	Pixels	2.2	11.2	4	4	0.3
2		2.8	12.1	4	4	0.3
3		3.6	13.4	4	4	0.3
4	Pixels / Strips	20.0	39.0	4 / 20	4 / 830	0.3 / 0.83
5		22.0	41.8	4/20	4/830	0.3 / 0.83
6		41.0	71.2	4/20	4/830	0.3 / 0.83
7		43.0	74.3	4 / 20	4/830	0.3 / 0.83

in the table above the intrinsic resolution and the material budget of pixel layers refer to CMOS monolithic pixels

Expected improvements of the detector performance:

- 3 × better pointing resolution
- $-2.5 \times \text{better p}_T \text{ resolution}$
- $2 \times$ better tracking efficiency at low p_T

From the concept to the final design

Inner barrel design

Inner Barrel (IB): 3 layers pixels

Radial position (mm): 22,28,36

Length in z (mm): 270

Nr. of staves: 12 + 16 + 20 = 48

Nr. of chips/stave: 9

Pixel size: \sim 20 μ m x 20 (30) μ m

Material thickness: ~ 0.3% X₀

Mechanical structure

Bump bonding

Pixel modules
13th Vienna Conference on
Instrumentation

Pixel chip technology

- Experience of the STAR-PXL with 0.35 μm CMOS technology made us to consider CMOS pixel sensors (CPS)
- Smaller feature size was needed to meet the radiation hardness and speed requirements of the ITS upgrade
- In 2012 TowerJazz 0.18 μm
 CMOS process has been
 validated (see talk by J. Baudot)

First sector of the STAR-PXL (Photo by courtesy of Leo Greiner (LBNL)

Pixel chip architecture

MISTRAL (IPHC Strasbourg) – baseline (most mature and advanced)

- Rolling shutter with in-pixel CDS, column-level discriminator, 2 rows parallel RO
- Integration time: 30 μs
- Power ≤ 400 mW/cm² (see talk of Jerome Baudot)

2. **ASTRAL** (IPHC Strasbourg)

- Rolling shutter with in-pixel CDS, in-pixel discriminators + data driven readout
- Integration time: 15 μs
- Power ≤ 350 mW/cm² (see talk of Jerome Baudot)

3. Parallel Rolling Shutter (RAL)

- Based on previous development.
- Integration time: ~40 μs
- Power < 200 mW/cm²

4. In-pixel discriminator + data driven readout (CERN)

- shaping time 2 µs, readout time 4 µs; < 100 mW / cm²

Stave and bus cable design

Figure 4.25: Picture of one polyimide flex cable.

Inner barrel stave

Weight X/X0 Cooling capacity 1.8 grams 0.31%

<25°C at 0.3W/cm2 <30°C at 0.5W/cm2

Wound Truss Structure with Pipes

Weight X/X0

Cooling capacity

1.4 grams 0.26%

<32°C at 0.3W/cm2

Wound truss structure +polyimide micro-channel

Weight X/X0 Cooling capacity 1.7 grams 0.30% <22°C at 0.3W/cm2

<25°C at 0.5W/cm2

Wound truss structure +Silicon micro-channel

Weight tbd X/XO tbd Cooling capacity tbd

Inner barrel assembly

13th Vienna Conference on Instrumentation

Outer barrel design (in progress)

Outer Barrel: 4 layers pixels (baseline)

Radial position (mm): 200, 220, 410, 430

Length in z (mm): 843, 1475

Nr. of staves: 48 + 52 + 96 + 102 = 298

Nr. of chips/stave: 28, 28, 52, 52

Pixel size: 20×20 μm² or bigger

Material thickness: ~ 0.8% X₀

Pixels Vs. Strips

The choice for the outer barrel will be based on:

- the outcome of the ongoing studies about the benefit for some specific physics signal of the PID with strips
- technical feasibility of large area pixel layers ~10 m²
 - power distribution
 - cooling
 - mechanical integration
- overall cost

Pixel chip with larger pitch and low power for the outer layers is under consideration

Final ITS integration

Conclusions and future plans

- Conceptual design of the new ALICE ITS:
 - with the single point resolution $\sigma_{r\phi} = \sigma_z = 4 \mu m$
 - and material budget: 0.3 % X₀ per layer
 - ensuring 3x better spatial resolution
 - and supporting high luminosity: $L = 6 \times 10^{27}$ cm⁻²s⁻¹
 - has been approved by the LHCC as a part of the general ALICE upgrade
- Challenging R&D is in progress addressing:
 - stringent requirements of resolution × readout speed × power consumption
 - system integration of the large surface pixel detector
- TDR to be ready by the end of Summer 2013

BACKUP SLIDES

New ITS layout summary

Radius [mm]	Length [mm]	Staves	Chips/stave	Material budget [% X ₀]
20	-			0.22
22	270	12	9	0.3
28		16		0.3
36		20		0.3
200	843	48	28	0.8
220		52		0.8
410	1475	96	F2	0.8
430		102	52	0.8
	20 22 28 36 200 220 410	20 - 22 28 270 36 200 843 220 410	20 - 22 12 28 270 16 36 20 200 200 843 52 410 96	20 - 22 12 28 270 16 9 36 20 200 200 843 28 220 410 96 1475

Cooling pipes performance

Polyimide micro-channels cooling performance

Stave stiffness tests

STRUCTURE STIFFNESS *TEST*

