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Outline

• A simple example of Bayesian testing

• A Bayesian formulation of the generic HEP problem

• Multiplicity

– Of hypotheses

– Of cuts

• Choosing priors for Bayesian testing

• A random thought about unfolding
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A Simple Example of Bayesian Testing

Data: N = # events observed in time T that are characteristic of Higgs

boson production in LHC particle collisions.

Statistical Model: N has density

Poisson(N | s+ b) =
(s+ b)Ne−(s+b)

N !
,

where

• s is the mean rate of production of Higgs events in time T ;

• b is the (known) mean rate of production of events with the same

characteristics from background sources in time T .

To test: H0 : s = 0 vs H1 : s > 0. (H0 corresponds to ‘no Higgs.’)
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P-value: P (N ≥ Nobserved | b, s = 0) =
∑∞

j=N Poisson(j | 0 + b)

Case 1: p = 0.00025 if N = 7, b = 1.2

Case 2: p = 0.025 if N = 6, b = 2.2.

• Those who understand p-values know their use is difficult:

Luc Demortier: In any search for new physics, a small p value should only be

seen as a first step in the interpretation of the data, to be followed by a

serious investigation of an alternative hypothesis. Only by showing that the

latter provides a better explanation of the observations than the null

hypothesis can one make a convincing case for discovery.

• Bayesian analysis directly measures if the alternative hypothesis

provides a better explanation.

Sequential testing: This is actually a sequential experiment, so p should be

adjusted to account for multiple looks at the data. Bayesian analysis does

not need such a correction.
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Bayes factor of H0 to H1: ratio of likelihood under H0 to average likelihood

under H1 (or “odds” of H0 to H1)

B01(N) =
Poisson(N | 0 + b)∫∞

0
Poisson(N | s+ b)π(s) ds

=
bN e−b∫∞

0
(s+ b)N e−(s+b)π(s) ds

.

Subjective approach: Choose π(s) subjectively (e.g., using the standard

physics model predictions of the mass of the Higgs).

Objective approach: Choose π(s) to be the ‘intrinsic prior’ (not discussed

here) πI(s) = b(s+ b)−2. (Note that this prior is proper and has median b.)

Bayes factor: is then given by

B01 =
bN e−b∫∞

0
(s+ b)N e−(s+b)b(s+ b)−2 ds

=
b(N−1) e−b

Γ(N − 1, b)
,

where Γ is the incomplete gamma function.

Case 1: B01 = 0.0075 (recall p = 0.00025)

Case 2: B01 = 0.26 (recall p = 0.025)
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Posterior probability of the null hypothesis: The objective choice of prior

probabilities of the hypotheses is Pr(H0) = Pr(H1) = 0.5, in which case

Pr(H0 | N) = (1 +B−1
01 )−1 .

Case 1: Pr(H0 | N) = 0.0075 (recall p = 0.00025)

Case 2: Pr(H0 | N) = 0.21 (recall p = 0.025)

Complete posterior distribution: is given by

• Pr(H0 | N), the posterior probability of null hypothesis

• π(s | N,H1), the posterior distribution of s under H1

A useful summary of the complete posterior is Pr(H0 | N) and

C, a (say) 95% posterior credible set for s under H1.

Case 1: Pr(H0 | N) = 0.0075; C = (1.0, 10.5)

Case 2: Pr(H0 | N) = 0.21; C = (0.2, 8.2)

Note: For testing precise hypotheses, confidence intervals alone are not a

satisfactory inferential summary. Note also that Bayes gives a joint

summary, so no correction of the confidence interval is needed after testing.
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Figure 1: Pr(H0 | N) (the vertical bar), and the posterior density for s given

N and H1.
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Is the discrepancy between p-values and Bayes factors due to
choice of the prior?

A lower bound on the likelihood ratio (or Bayes factor): choose π(s) to be

a point mass at ŝ, yielding

B01(N) =
Poisson(N | 0 + b)∫∞

0
Poisson(N | s+ b)π(s) ds

≥ Poisson(N | 0 + b)

Poisson(N | ŝ+ b)

= min{1,
(

b

N

)N

eN−b} .

Case 1: B01 ≥ 0.0014 (recall p = 0.00025)

Case 2: B01 ≥ 0.11 (recall p = 0.025)

Note: This use of robust Bayesian analysis was done in Edwards, Lindman and

Savage (1963) and Berger and Sellke (1987); many generalizations followed;

indeed, there is now the Society of Imprecise Probabilities.
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A Bayesian Formulation of the Basic HEP Problem

The statistical model (following Richard Lockhart’s Banff II writeup):

• N is the observed Poisson number of events.

• The events are independent and each has characteristics (‘marks’ in the

Poisson process world) Xi, i = 1, . . . , N .

• Under H0: background only,

– the mean of N is b,

– the density of the Xi is fb(x) > 0.

• There may be a signal Poisson process with mean s and density fs(x).

• Under H1: background + signal,

– the mean of N is b+ s,

– the density of the Xi is (γfb(x) + (1− γ)fs(x)), where γ = b
(b+s) .

• Consider the case where fb(x) and fs(x) are known but b and s are

unknown.
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Bayes factor of H1 to H0 for priors π0(b) and π1(b, s) = π0(b)π1(s | b):

B10 =

∫∞
0

∫∞
0

(b+ s)Ne−(b+s)
∏N

i=1[γfb(xi) + (1− γ)fs(xi)]π1(b, s) dsdb∫∞
0

bNe−b
∏N

i=1[fb(xi)]π0(b)db

=

∫∞
0

∫∞
0

bNe−(b+s)
∏N

i=1

[
1 + sfs(xi)

bfb(xi)

]
π0(b)π1(s | b) dsdb∫∞

0
bNe−b π0(b)db

.

Note that, if b is known, this becomes

B10 =

∫ ∞

0

e−s
N∏
i=1

[
1 +

sfs(xi)

bfb(xi)

]
π1(s | b) ds .

Priors: Intrinsic priors are πI
0(b) = b−1/2 (note that it is improper) and

πI
1(s | b) = b(s+ b)−2 (note that it is proper).

Note: Ignoring the densities fs and fb and basing the answer solely on N is

equivalent to assuming that fs ≡ fb.
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Look-elsewhere Concerns are Automatically Handled

I. Multiple Hypotheses: Suppose Nj of the Xi are in bin Bj , j = 1, . . . ,M ,

and that we assume we have only densities fs(Bj) and fb(Bj). Then

B10 =

∫∞
0

∫∞
0

bNe−(b+s)
∏M

i=1

[
1 +

sfs(Bj)
bfb(Bj)

]Nj

π0(b)π1(s | b) dsdb∫∞
0

bNe−b π0(b)db
.

Suppose fs(Bj) gives probability one to some unknown bin B (the signal

could occur in only one bin), with each bin being equally likely. Then

B10 =

EB

[∫∞
0

∫∞
0

bNe−(b+s)
∏M

i=1

[
1 + sfs(B)

bfb(Bj)

]Nj

π0(b)π1(s | b) dsdb
]

∫∞
0

bNe−b π0(b)db

=
1

M

M∑
j=1

∫∞
0

∫∞
0

bNe−(b+s)
[
1 + s

bfb(Bj)

]Nj

π0(b)π1(s | b) dsdb∫∞
0

bNe−b π0(b)db
,

so that the results from each Hj :signal in Bj are downweighted by 1/M .

11



PHYSTAT2011 CERN; January 17, 2011'

&

$

%

II. Multiple Cuts:

• Bayesian analysis has no easy way to adjust for cuts.

– Cuts produce subsets of the data, but there is no Bayesian way to analyze

separate subsets and combine them (unless the subsets are independent).

– If each cut produces an Nj , one could legitimately consider the joint

distribution of the Nj , but that is too hard.

– One could, of course, consider the union of the data from the cuts.

• Are cuts necessary if one does a Bayesian analysis?

Suppose fs(x) = 0 for x ∈ Ωc. We could cut on Ω, but do we need to do so?

B10 =

∫∞
0

∫∞
0

bNe−(b+s)
∏

{i:xi∈Ω}

[
1 + sfs(xi)

bfb(xi)

]
π0(b)π1(s | b) dsdb∫∞

0
bNe−b π0(b)db

=

∫ ∞

0

B10(xΩ | b)π0(b | xΩ, xΩc)db (follows from algebra, not probability) ,

where xΩ (xΩc) is the data in Ω (in Ωc). Bayes indeed uses the cut data to

find the Bayes factor given b, but uses all the data to learn more about b.
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An example of the difficulty in frequentist control of multiplicity:

One tests H0i : µi = 0 versus H1i : µi > 0, i = 1, ...,m.

Data: Xi are normally distributed with mean θi, variance 1, and

correlation ρ.

If ρ = 0, one can just do individual tests at level α/m (Bonferroni) to

obtain an overall error probability of α.

If ρ > 0, harder work is needed:

• Choose an overall decision rule, e.g., “declare µi to be the signal if Xi

is the largest value and Xi > K.”

• Compute the corresponding error probability:

α = EZ

[
1− Φ

(
K −√

ρZ
√
1− ρ

)m]
,

where Φ is the standard normal cdf and Z is standard normal.

Note that this gives (essentially) the Bonferroni correction when ρ = 0, and

converges to 1− Φ[K] as ρ → 1.
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Choosing priors for “common parameters” in testing

If evidence-based priors are not available, here are some guidelines:

• Gold standard: if there are parameters in each hypothesis that have

the same group invariance structure, one can use the right-Haar priors

for those parameters (even though improper) (Berger, Pericchi and

Varshavsky, 1998)

• Silver standard: if there are parameters in each hypothesis that have

the same scientific meaning (e.g. background mean), reasonable default

priors (e.g. reference priors or the constant prior 1) can typically be

used.

• Bronze standard: to try to obtain parameters that have the same

scientific meaning (beware the “fallacy of Greek letters”), one strategy

often employed is to orthogonalize the parameters, i.e., reparameterize

so that the partial Fisher information for those parameters is zero.
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Choosing priors for non-common parameters

If evidence-based priors are not available, here are some guidelines:

• Vague proper priors are horrible (related to the Jeffreys-Lindley

paradox): for instance, if X ∼ N(µ, 1) and we test H0 : µ = 0 versus

H1 : µ ̸= 0 with a Uniform(−c, c) prior for θ, the Bayes factor is

B01(c) =
f(x | 0)∫ c

−c
f(x | µ)(2c)−1dµ

≈ 2c f(x | 0)∫∞
−∞ f(x | µ)dµ

for large c, which depends dramatically on the choice of c.

• Improper priors are problematical, because they are unnormalized; is

B01 =
f(x | 0)∫∞

−∞ f(x | µ)(1)dµ
or B01 =

f(x | 0)∫∞
−∞ f(x | µ)(2)dµ

?

• Robust solution: if one can specify a plausible range c1 ≤ c ≤ c2, look

at B01(c) over this range and hope the conclusion is robust. (Not

obvious for higher dimensional parameters, but there is a literature.)
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Case 1: π(µ) is Uniform(0, 10) (e.g., known upper limit on µ)

• Observe x = 2: p = 0.025, while Pr(H0 | x = 2) = 0.54

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 1.3× 10−3

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 6.0× 10−8

Case 2: π(µ) is Normal(4, 1) (arising from a previous experiment)

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 4.7× 10−4

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 5.8× 10−8

Case 3: π(µ) is a point mass at 4 (the prediction of a new theory).

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 3.4× 10−4

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 1.1× 10−7

Conservative conversion of p to Pr(H0 | x): Pr(H0 | x) = (1 + (−ep log p)−1)−1:

• Observe x = 4: p = 3.1× 10−5, while Pr(H0 | x = 4) = 8.8× 10−4

• Observe x = 6: p = 1.0× 10−9, while Pr(H0 | x = 6) = 5.7× 10−8
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Various proposed default priors for non-common parameters

• Fractional priors (O’Hagan): use a fraction γ of the model likelihood

(usually γ =‘parameter dimension’/‘sample size’) as the prior, with

L(θ)1−γ as the likelihood.

• Intrinsic priors (Berger, Pericchi and others): generate priors from

“training samples” (either actual subsets of the data, or imaginary data

generated under the null model).

• Conventional priors that have at least some nice properties: e.g.,

Zellner-Siow priors for linear models are

– invariant to scale changes in covariates

– consistent (the true model will be selected as n → ∞)

– information-consistent (e.g., will reject as t or F statistics → ∞)

– coherent (roughly, are logically connected)

• Various efforts at ‘predictive matching’ priors.

• Approximations (such as BIC); these can capture part of the prior

influence, but not all.
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Comment on Unfolding

Shyamalkumar (unpublished) had the following interesting result about

finding π(θ) such that

mπ(x) =

∫
f(x | θ)π(θ) dθ

is as close as possible to an estimated m̂(x):

• choose any initial π0(θ) that has support everywhere;

• iteratively compute

πl(θ) =

∫
πl−1(θ | x)m̂(x)dx , where πl−1(θ | x) = πl−1(θ)f(x | θ)∫

πl−1(θ)f(x | θ)dθ
.

Fact: π∗(θ) = liml→∞ πl(θ) is the density for which mπ(x) is as close as

possible to m̂(x) in Kullback-Leibler divergence.
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A Possibly Interesting Implementation via Particle Filtering:

• Represent πl(θ) by a collection of particles {θi} with weights {w(l)
i }.

(Initialize with a random sample {θi} from π0(θ), so the initial weights

are equal.)

• Then πl(θ | x) would be the same collection of particles but with

modified weights

w
(l)
i (x) =

w
(l−1)
i f(x | θi)∑

j w
(l−1)
j f(x | θj)

,

and πl(θ) would be the same collection of particles but with weights

w
(l)
i =

∫
w

(l)
i (x)m̂(x)dx .

• As one progresses one will need to add new particles adapting to the

evolving density, but there are likely techniques in particle filtering for

doing this.
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Miscellaneous Comments

• Bayesian combining of independent evidence is straightforward: for

instance
B10(x1, x2 | π) = B10(x2 | π(· | x1))B10(x1 | π) .

• Concerning the Bayesian approach to the look-elsewhere effect:

– Not all look-elsewhere effects (e.g., observation of sequential data)

require Bayesian adjustment.

– Bayesian correction can always be formulated as choice of prior

probabilities of models.
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Thanks!
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