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Motivation

• X11.application (XQuartz) is not required anymore.
• No mysterious crashes with XQuartz (we can not fix 

XQuartz). But we can fix bugs in a ROOT’s code.
• We have an access to the native modern graphics on 

Mac, not limited by outdated X11 (at the moment new 
features we have: transparency, anti-aliasing, 
gradient fills and shadows)

• We can mix native and ROOT’s widgets in a ROOT 
GUI application.
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Timeline

• Project started in December 2011
• The first ‘alpha-version’ (without OpenGL support) 

was available April 2012 (the first of 5.34 releases)
• May 2012 - OpenGL
• Became more stable and robust by September 2012
• Support for new Retina devices - October 2012
• pyROOT - February 2013.
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ROOT’s graphics:

4

ROOT’s GUI Framework 
TGWindow, TGFrame, TGMainFrame, ... TGButton ...

TGSlider ... TGEtc.

TVirtualX

TGX11/TGX11TTF TGWin32

 X11                                         Win GDI

Window management, graphics, images, etc.

TSystem

TUnixSystem

 X11                                         Windows

TWinNTSystem

Event lo
op

Events (mouse, keyboard, geometry changes, etc.)
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Implementation: TVirtualX

• TVirtualX - abstract base class, includes functions 
for:
– Window management
– Pixmap and image management
– Font management
– Cursors
– Drag and drop
– OpenGL (window/context management)
– Graphical context management 
– Drawing (GUI)
– Drawing (non-GUI - for TPad)
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(Cocoa)

(Quartz 2D)

Emulation
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Cocoa, Objective-C

• Cocoa: object-oriented API, written in Objective-C programming 
language

• Descendant of the NeXTSTEP API (‘NS’ prefix in class names for 
‘NeXT STEP’)

• Consists of:
–  Foundation Kit : containers, iterations, etc. - foundation.
–  Application Kit : GUI programming
–  Core Data : object persistence framework

• Objective-C:
–  Simple general purpose object-oriented programming language
–  Strict superset of the C programming language
–  Adds simple object-oriented features (classes, protocols, 

messaging etc.)
– You can mix Objective-C and C++ : Objective-C++
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Quartz 2D
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• Native API on Mac OS X for 2D graphics
• I use Quartz 2D to render:

• Text
• Lines
• Paths (filled polygons and strokes)
• Gradients
• Shadows

• The same code draws on the screen, into the image, can also draw 
into PDF context.

• From wikipedia: “Quartz 2D is available to all Mac OS X and iOS 
application environments, and provides resolution-independent and 
device-independent rendering of bitmap graphics, text, and vectors 
both on-screen and in preparation for printing. ...“
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Implementation: TVirtualX 

8

• $ROOTSYS/graf2/cocoa - new module introduced.
• Code is written in Objective-C++, contains C++ classes and functions + Objective-C 

protocols, classes.
• The “heart” of the module is the TGCocoa class, which inherits TVirtualX.
• ROOT is not a pure C/C++ framework anymore! ;)

• Examples: TBrowser, Eve:
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Implementation: TVirtualX (graphics, examples)
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• Thanks to Quartz, we have transparency, anti-aliasing, gradients 
and shadows:
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Implementation: add OpenGL
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• OpenGL with Cocoa (CMS Fireworks event display, compiled by Matevz 
Tadel and Alja Mrak Tadel, using ROOT with Cocoa back-end):
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Implementation: event loop, TMacOSXSystem

• Typical Cocoa-based application has its own event loop hidden 
inside a “black box” function - NSApplicationMain

• ROOT has its own event loop and knows nothing about 
Cocoa’s event loop.

• Cocoa has NSApplication class, using methods of this class 
you can (to some degree) emulate the same ‘native’ Cocoa’s 
event loop.

• This is the work done in TMacOSXSystem class (core/macosx 
module) - the new concrete TSystem’s implementation for Mac 
OS X and Cocoa: works like TUnixSystem.

• Note: we have only one ROOT’s process now, not two 
different applications, some things can happen faster than you 
expect - I do not have to synchronize with X11 server.
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Implementation: event handling (dispatching)
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• ROOT’s GUI requires X11-like events: implementation 
should work like it’s a real X-server.

• X11 has quite sophisticated event model
• And Cocoa has a different event model (some events are 

simpler, some - more complex, some events do not exist in 
Cocoa).

• Cocoa events has to be ‘translated’ to X11-like events, if 
it’s possible, also many artificial X11 events are generated.

• Event dispatching/processing is quite complicated and after 
Cocoa’s window receive some simple event (e.g. ‘mouse 
button press’), twisted logic is required to mimic X-server’s 
event dispatching :)
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Implementation: drag and drop, copy and paste 
operations

• Similar to the Windows version of ROOT:
– you can drag an object from a Finder’s window into a 

ROOT’s window (if it supports D&D)
– you can drag objects between ROOT’s windows (if they 

support D&D)
– copy and paste operations in a ROOT’s text editor 

(TGTextView, TGTextEditor)
• Implementation is a mix of:

– Pure emulation (X11’s ‘properties’ and ‘selections’)
– Native API (Cocoa).
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Implementation: Retina displays
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• Summer 2012: new MacBooks with Retina displays were 
introduced.

• It’s possible to enable non-standard “HD-resolutions” on non-retina 
device and test your app (Quartz Debug tool).

• In General, TGCocoa was “Retina-ready”. All GUI parts were ok 
(clear and crisp text). Only a few modifications were done: 
• Canvases/pads require larger pixmaps.
• OpenGL - almost literally one call: 

• [self  setWantsBestResolutionOpenGLSurface : YES];//
somewhere inside ROOTOpenGLView class

• Some coordinate-translation functions had to be replaced.
• Matevz Tadel updated graf3d/gl and graf3d/eve to use larger 

viewports on Retina MacBooks (he also added a really nice 
multisampling setting into system.rootrc).
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Implementation: pyROOT

• Did not work at the beginning.
• Fixed in February 2013 (many thanks to Wim for 

help!):
– Required simple modification in TMacOSXSystem (now 

DispatchOneEvent functions is even more TUnixSystem- 
like).

– Simple modification in TGCocoa (ROOT’s process 
manipulations/transformations)

– Modifications in pyROOT (done by Wim).
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How-to install

• Available in the 5.34 release, ROOT must be 
configured with --enable-cocoa option.

• Is default in the trunk (on Mac OS X 10.8)
• You can still switch back to the good old X11 version 

- configure ROOT with --disable-cocoa option.
• Cocoa-specific tutorials are in $ROOTSYS/tutorials/

cocoa
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Conclusions, the status and future

• In general, it’s a complete TVirtualX implementation (minus several 
very specific functions, which are never called from our GUI).

• It must be seriously tested - your feedback is welcome.  
• The next step is to try to use multi-threaded rendering. Thread 

management is done by Cocoa automatically. The tough part is on the 
ROOT’s side, though - gVirtualX->DoSomething() - global variables, 
object with a complex (shared) state.

• Now it’s possible to mix native controls and ROOT’s GUI
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NSButton (Cocoa’s control) 
inside TGMainFrame
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ROOT on iOS

• Starting from 2010 ROOT can be compiled for iOS (but not 
the trunk version at the moment):
– configure with iossim/ios as a platform.

• In principle, your iOS application has access to all ROOT’s 
classes.

• But there is no ROOT’s interactive session on iOS, well, 
this can also be done, but still:

• iOS has a very different GUI, ROOT’s GUI can not be 
ported to iOS.

• ROOT’s non-GUI graphics (2D/3D) can be ported and we 
have iOS specific version of TCanvas/TPad (== 2D-
graphics), implementation is based on the Quartz 2D API, 
the same API as we use on Mac OS X.
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ROOT on iOS: RootBrowser app

• Simple ROOT based application for iOS (iPad 
devices only)

• Simplified “version of TBrowser + TCanvas”.
• Uses TWebFile.
• Can browse ROOT files’ content and visualize TH1/

TH2/TGraph/TMultiGraph/TF1/TF2 objects (easy to 
add other ROOT’s objects).

• Has a simplified version of “graphical editor” from 
TCanvas.

• GUI is done with UIKit (Cocoa Touch, iOS-specific 
counterpart for AppKit).
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ROOTBrowser app

• Example: browsing file contents
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ROOTBrowser app: editor
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Demos?
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Thank you!
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