
Timur Pocheptsov
root.cern.ch 1

Native graphics on Mac OS X

ROOT on iOS and RootBrowser app

Wednesday, March 13, 13

http://root.cern.ch
http://root.cern.ch

ROOT Users Workshop 11-14 March 2013

Motivation

• X11.application (XQuartz) is not required anymore.
• No mysterious crashes with XQuartz (we can not fix

XQuartz). But we can fix bugs in a ROOT’s code.
• We have an access to the native modern graphics on

Mac, not limited by outdated X11 (at the moment new
features we have: transparency, anti-aliasing,
gradient fills and shadows)

• We can mix native and ROOT’s widgets in a ROOT
GUI application.

2
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Timeline

• Project started in December 2011
• The first ‘alpha-version’ (without OpenGL support)

was available April 2012 (the first of 5.34 releases)
• May 2012 - OpenGL
• Became more stable and robust by September 2012
• Support for new Retina devices - October 2012
• pyROOT - February 2013.

3
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOT’s graphics:

4

ROOT’s GUI Framework
TGWindow, TGFrame, TGMainFrame, ... TGButton ...

TGSlider ... TGEtc.

TVirtualX

TGX11/TGX11TTF TGWin32

 X11 Win GDI

Window management, graphics, images, etc.

TSystem

TUnixSystem

 X11 Windows

TWinNTSystem

Event lo
op

Events (mouse, keyboard, geometry changes, etc.)

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOT’s graphics:

4

ROOT’s GUI Framework
TGWindow, TGFrame, TGMainFrame, ... TGButton ...

TGSlider ... TGEtc.

TVirtualX

TGX11/TGX11TTF TGWin32

 X11 Win GDI

Window management, graphics, images, etc.

TSystem

TUnixSystem

 X11 Windows

TWinNTSystem

Event lo
op

Events (mouse, keyboard, geometry changes, etc.)

 Mac OS X
(Cocoa)

TMacOSXSystem

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOT’s graphics:

4

ROOT’s GUI Framework
TGWindow, TGFrame, TGMainFrame, ... TGButton ...

TGSlider ... TGEtc.

TVirtualX

TGX11/TGX11TTF TGWin32

 X11 Win GDI

Window management, graphics, images, etc.

TSystem

TUnixSystem

 X11 Windows

TWinNTSystem

Event lo
op

Events (mouse, keyboard, geometry changes, etc.)

 Mac OS X
(Cocoa)

TMacOSXSystem

Mac OS X (Cocoa
and Quartz)

TGCocoa

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: TVirtualX

• TVirtualX - abstract base class, includes functions
for:
– Window management
– Pixmap and image management
– Font management
– Cursors
– Drag and drop
– OpenGL (window/context management)
– Graphical context management
– Drawing (GUI)
– Drawing (non-GUI - for TPad)

5

(Cocoa)

(Quartz 2D)

Emulation

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Cocoa, Objective-C

• Cocoa: object-oriented API, written in Objective-C programming
language

• Descendant of the NeXTSTEP API (‘NS’ prefix in class names for
‘NeXT STEP’)

• Consists of:
– Foundation Kit : containers, iterations, etc. - foundation.
– Application Kit : GUI programming
– Core Data : object persistence framework

• Objective-C:
– Simple general purpose object-oriented programming language
– Strict superset of the C programming language
– Adds simple object-oriented features (classes, protocols,

messaging etc.)
– You can mix Objective-C and C++ : Objective-C++

6
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Quartz 2D

7

• Native API on Mac OS X for 2D graphics
• I use Quartz 2D to render:

• Text
• Lines
• Paths (filled polygons and strokes)
• Gradients
• Shadows

• The same code draws on the screen, into the image, can also draw
into PDF context.

• From wikipedia: “Quartz 2D is available to all Mac OS X and iOS
application environments, and provides resolution-independent and
device-independent rendering of bitmap graphics, text, and vectors
both on-screen and in preparation for printing. ...“

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: TVirtualX

8

• $ROOTSYS/graf2/cocoa - new module introduced.
• Code is written in Objective-C++, contains C++ classes and functions + Objective-C

protocols, classes.
• The “heart” of the module is the TGCocoa class, which inherits TVirtualX.
• ROOT is not a pure C/C++ framework anymore! ;)

• Examples: TBrowser, Eve:

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: TVirtualX (graphics, examples)

9

• Thanks to Quartz, we have transparency, anti-aliasing, gradients
and shadows:

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: add OpenGL

10

• OpenGL with Cocoa (CMS Fireworks event display, compiled by Matevz
Tadel and Alja Mrak Tadel, using ROOT with Cocoa back-end):

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: event loop, TMacOSXSystem

• Typical Cocoa-based application has its own event loop hidden
inside a “black box” function - NSApplicationMain

• ROOT has its own event loop and knows nothing about
Cocoa’s event loop.

• Cocoa has NSApplication class, using methods of this class
you can (to some degree) emulate the same ‘native’ Cocoa’s
event loop.

• This is the work done in TMacOSXSystem class (core/macosx
module) - the new concrete TSystem’s implementation for Mac
OS X and Cocoa: works like TUnixSystem.

• Note: we have only one ROOT’s process now, not two
different applications, some things can happen faster than you
expect - I do not have to synchronize with X11 server.

11
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: event handling (dispatching)

12

• ROOT’s GUI requires X11-like events: implementation
should work like it’s a real X-server.

• X11 has quite sophisticated event model
• And Cocoa has a different event model (some events are

simpler, some - more complex, some events do not exist in
Cocoa).

• Cocoa events has to be ‘translated’ to X11-like events, if
it’s possible, also many artificial X11 events are generated.

• Event dispatching/processing is quite complicated and after
Cocoa’s window receive some simple event (e.g. ‘mouse
button press’), twisted logic is required to mimic X-server’s
event dispatching :)

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: drag and drop, copy and paste
operations

• Similar to the Windows version of ROOT:
– you can drag an object from a Finder’s window into a

ROOT’s window (if it supports D&D)
– you can drag objects between ROOT’s windows (if they

support D&D)
– copy and paste operations in a ROOT’s text editor

(TGTextView, TGTextEditor)
• Implementation is a mix of:

– Pure emulation (X11’s ‘properties’ and ‘selections’)
– Native API (Cocoa).

13
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: Retina displays

14

• Summer 2012: new MacBooks with Retina displays were
introduced.

• It’s possible to enable non-standard “HD-resolutions” on non-retina
device and test your app (Quartz Debug tool).

• In General, TGCocoa was “Retina-ready”. All GUI parts were ok
(clear and crisp text). Only a few modifications were done:
• Canvases/pads require larger pixmaps.
• OpenGL - almost literally one call:

• [self setWantsBestResolutionOpenGLSurface : YES];//
somewhere inside ROOTOpenGLView class

• Some coordinate-translation functions had to be replaced.
• Matevz Tadel updated graf3d/gl and graf3d/eve to use larger

viewports on Retina MacBooks (he also added a really nice
multisampling setting into system.rootrc).

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Implementation: pyROOT

• Did not work at the beginning.
• Fixed in February 2013 (many thanks to Wim for

help!):
– Required simple modification in TMacOSXSystem (now

DispatchOneEvent functions is even more TUnixSystem-
like).

– Simple modification in TGCocoa (ROOT’s process
manipulations/transformations)

– Modifications in pyROOT (done by Wim).

15
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

How-to install

• Available in the 5.34 release, ROOT must be
configured with --enable-cocoa option.

• Is default in the trunk (on Mac OS X 10.8)
• You can still switch back to the good old X11 version

- configure ROOT with --disable-cocoa option.
• Cocoa-specific tutorials are in $ROOTSYS/tutorials/

cocoa

16
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Conclusions, the status and future

• In general, it’s a complete TVirtualX implementation (minus several
very specific functions, which are never called from our GUI).

• It must be seriously tested - your feedback is welcome.
• The next step is to try to use multi-threaded rendering. Thread

management is done by Cocoa automatically. The tough part is on the
ROOT’s side, though - gVirtualX->DoSomething() - global variables,
object with a complex (shared) state.

• Now it’s possible to mix native controls and ROOT’s GUI

17

NSButton (Cocoa’s control)
inside TGMainFrame

Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOT on iOS

• Starting from 2010 ROOT can be compiled for iOS (but not
the trunk version at the moment):
– configure with iossim/ios as a platform.

• In principle, your iOS application has access to all ROOT’s
classes.

• But there is no ROOT’s interactive session on iOS, well,
this can also be done, but still:

• iOS has a very different GUI, ROOT’s GUI can not be
ported to iOS.

• ROOT’s non-GUI graphics (2D/3D) can be ported and we
have iOS specific version of TCanvas/TPad (== 2D-
graphics), implementation is based on the Quartz 2D API,
the same API as we use on Mac OS X.

18
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOT on iOS: RootBrowser app

• Simple ROOT based application for iOS (iPad
devices only)

• Simplified “version of TBrowser + TCanvas”.
• Uses TWebFile.
• Can browse ROOT files’ content and visualize TH1/

TH2/TGraph/TMultiGraph/TF1/TF2 objects (easy to
add other ROOT’s objects).

• Has a simplified version of “graphical editor” from
TCanvas.

• GUI is done with UIKit (Cocoa Touch, iOS-specific
counterpart for AppKit).

19
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOTBrowser app

• Example: browsing file contents

20
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

ROOTBrowser app: editor

21
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Demos?

22
Wednesday, March 13, 13

ROOT Users Workshop 11-14 March 2013

Thank you!

23
Wednesday, March 13, 13

