Overview of the Thorium Programme in India

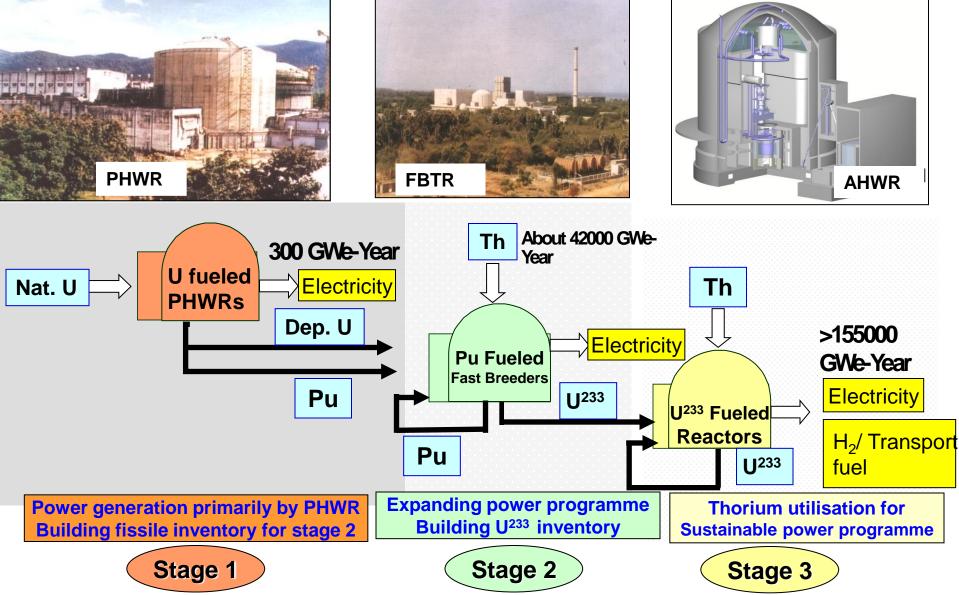
P.K. Vijayan, I.V. Dulera, P.D. Krishnani, K.K. Vaze, S. Basu and R.K. Sinha*, Bhabha Atomic Research Centre, Mumbai India Department of Atomic Energy, Mumbai, India* vijayanp@barc.gov.in

iThEC13-International Thorium Energy Conference, Geneva, Switzerland, October 27-31, 2013

CONTENTS

- Introduction
- Relevance of thorium to long term Indian nuclear power programme
- Advantages and challenges of thorium fuel cycle
- Indian experience with thorium fuel cycle
 - Mining, thorium fuel fabrication,
 - Thorium bundle irradiation, reprocessing and
 - Built research reactors based on U²³³ fuel
- Indian programme on thorium based reactors
 - AHWR and
 - Indian HTR Programme
- Concluding remarks

Introduction


Thorium is three to four times more abundant than uranium in the earth's crust
Relatively easy to mine
India has large reserves in the form of monazite sands along its southern and eastern coastal areas

Relevance of thorium to long term Indian nuclear power programme

भाग पठाव

The goal of three stage Indian nuclear power programme is resource sustainability- Accordingly power generation in 3rd stage is predominantly dependent on thorium based fuel

Current Status of Indian Three Stage Nuclear Power Programme

Stage – I PHWRs

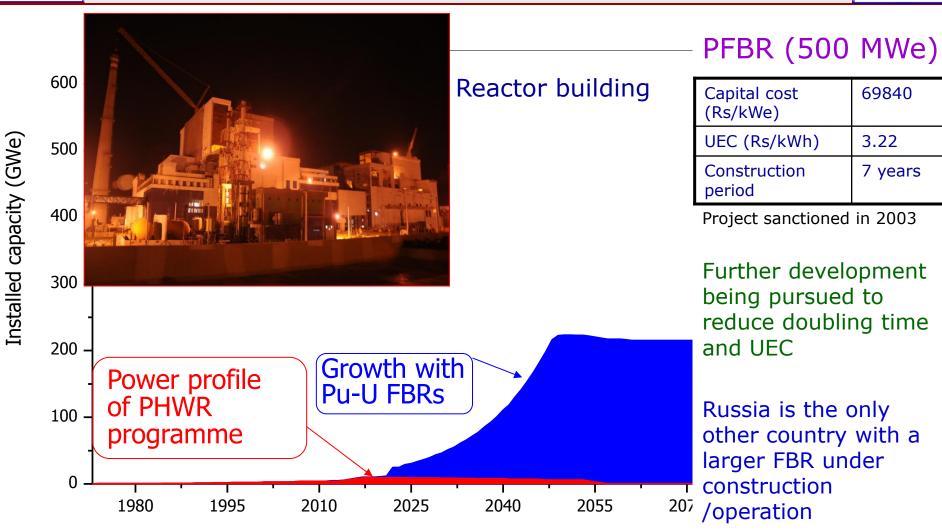
- 18 Operating
- 4x700 MWe Under construction
- Several others planned
- Gestation period has been reduced
- POWER POTENTIAL ≅ 10 GWe

LWRs

- 2 BWRs Operating
- 1 VVER— Achieved criticality (July, 2013) & commercial operation (Oct. 2013)
 1 VVER- under
- 1 VVER- under construction (~96%)

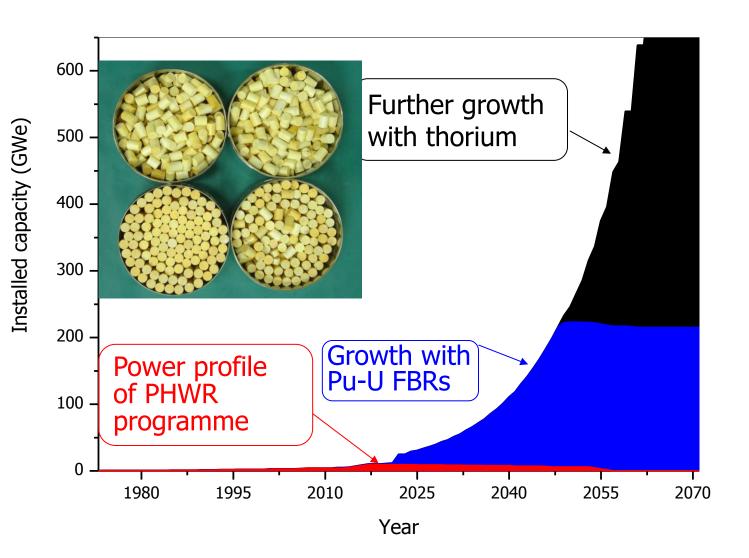
Overall view of Turbine & Nuclear Island Connected Building Stage - II Fast Breeder Reactors

- 40 MWth FBTR Operating since 1985
 Technology Objectives realised
- 500 MWe PFBR-Under Construction >95% complete
- TOTAL POWER
 POTENTIAL ≅ 42,000
 GWe-year



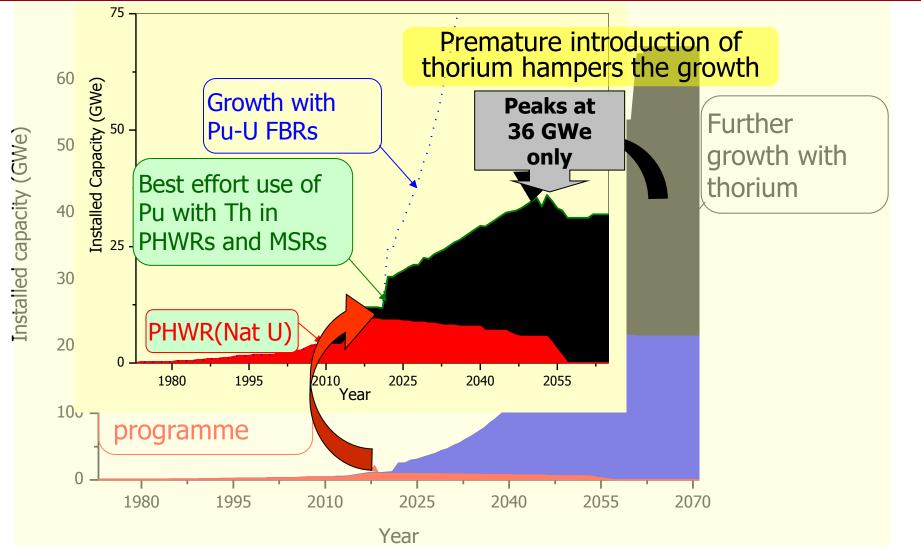
Stage - III Thorium Based Reactors

- 30 kWth KAMINI- Operating
- 300 MWe AHWR: Prelicensing safety appraisal by AERB completed, Site selection in progress
 POWER POTENTIAL IS
 VERY LARGE
- MSBRs Being evaluated as an option for large scale deployment



Results of a case study; assumptions 60000 te Uranium and short doubling time FBRs beyond 2021

Year


भाभा परमाणु अनुसंधान केंद्र

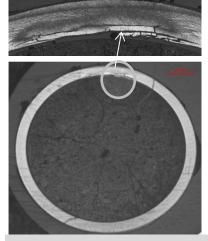
Results of a case study; assumptions 60000 te Uranium and short doubling time FBRs beyond 2021

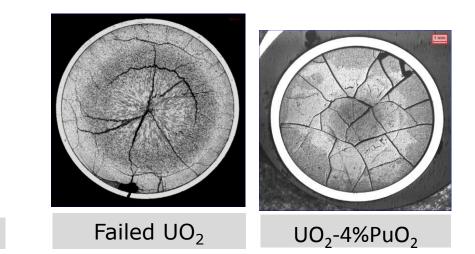
भाभा परमाणु अनुसंधान केंद्र

Results of a case study; assumptions 60000 te Uranium and short doubling time FBRs beyond 2021

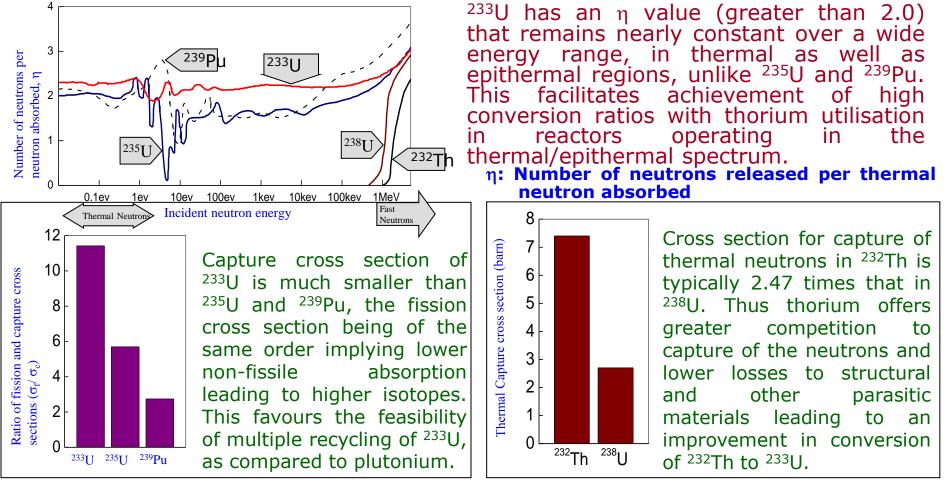
- Premature deployment of thorium leads to sub-optimal use of indigenous energy resource.
- Necessary to build-up a significant level of fissile material before launching thorium cycle in a big way for the third stage
- Incorporation of thorium in the blankets of metallic fuelled fast breeder reactors – after significant FBR capacity built-up
 - Full core and blanket thorium FBRs only after U-shortage felt
- Thorium based reactors expected to be deployed beyond 2070
- AHWR Thorium fuel cycle demonstrator by 2022
- Surplus ²³³U formed in these FBRs could drive HTRs including MSBRs

Important attributes and advantages of thorium fuel cycle

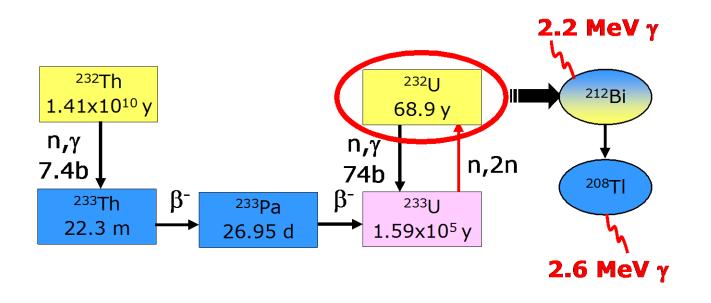

ThO₂ - Physical and Chemical properties


- Relatively inert. Does not oxidise unlike UO₂, which oxidizes easily to U₃O₈ and UO₃. Does not react with water.
- Higher thermal conductivity and lower co-efficient of thermal expansion compared to UO₂. Melting point 3350 °C as against 2800 °C for UO₂.
- Fission gas release rate one order of magnitude lower than that of UO₂.
- Good radiation resistance and dimensional stability

ThO₂-4%PuO₂

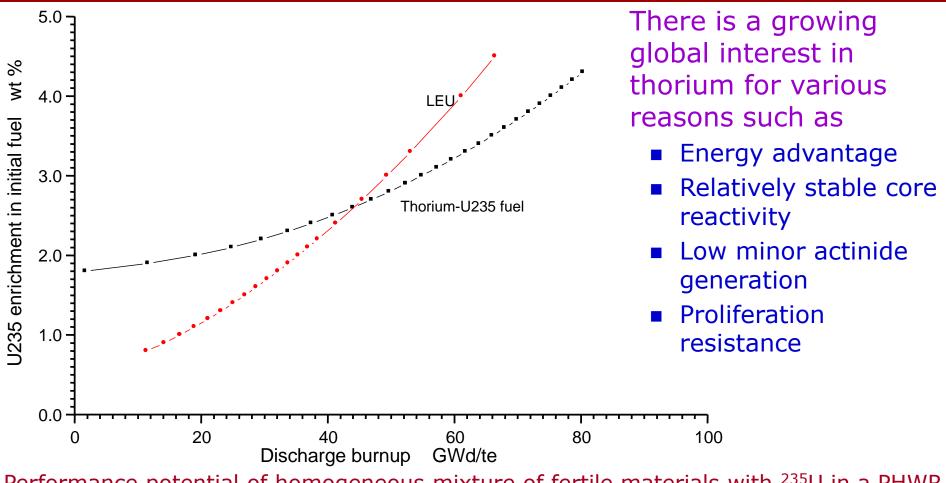

Failed ThO₂-4%PuO₂

Advantages of ²³³U-Thorium: Important Neutronic Characteristics


The neutronic characteristics of ²³³U-Th lead to:

- High potential for achieving near-breeding condition in thermal reactors
- High potential for tolerating higher parasitic absorption (e.g. in light water and structural materials)

Advantages of Thorium : Presence of ²³²U offers an Intrinsic Barrier to Proliferation



- ²³²U is formed via (n, 2n) reactions, from ²³²Th, ²³³Pa and ²³³U. The half-life of ²³²U is about 69 years. The daughter products (²⁰⁸Tl and ²¹²Bi) of ²³²U are high energy gamma emitting isotopes.
- Due to presence of ²³²U in separated ²³³U, thorium offers good proliferation-resistant characteristics.

Advantage of thorium over uranium becomes evident if thorium based fuels are used at high burnups

Performance potential of homogeneous mixture of fertile materials with ²³⁵U in a PHWR

By virtue of being lower in the periodic table than uranium, the long-lived minor actinides resulting from burnup are in much lower quantity with the thorium cycle

Challenges of thorium fuel cycle

Challenges of thorium fuel cycle

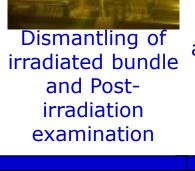
- Melting point of ThO₂ (3350 °C) is much higher than that of UO₂ (2800°C).
 - Much higher sintering temperature (>1700°C) is required to produce high density ThO₂ and ThO₂-based mixed oxide fuels.
 - Admixing of `sintering aid' (CaO, MgO, Nb₂O₅, etc) is required for achieving the desired pellet density at lower temperature.
- ThO₂ and ThO₂ based mixed oxide fuels are relatively inert and do not dissolve easily in concentrated nitric acid.
 - Addition of small quantities of HF in conc. HNO₃ is essential which cause corrosion of stainless steel equipment and piping in reprocessing plants.
 - The corrosion problem is mitigated with addition of aluminium nitrate.
 - Requires long dissolution time in boiling THOREX solution [13M HNO₃+0.05M HF+0.1M Al(NO₃)₃] for ThO₂ based fuel
- The irradiated Th or Th-based fuels contain significant amount of ²³²U, having a half-life of 68.9 years and is associated with strong gamma emitting daughter products, ²¹²Bi and ²⁰⁸Tl with very short half-life.
 - There is significant build-up of radiation dose with storage of spent Thbased fuel or separated ²³³U,
 - This necessitates remote and automated reprocessing and re-fabrication in heavily shielded hot cells, increasing the cost of fuel cycle activities.

- In the conversion chain of ²³²Th to ²³³U, ²³³Pa is formed as an intermediate, which has a relatively longer half-life (~27 days) as compared to ²³⁹Np (2.35 days) in the uranium fuel cycle thereby requiring longer cooling time of at least one year for completing the decay of ²³³Pa to ²³³U.
- Normally, Pa is passed into the fission product waste in the THOREX process, which could have long term radiological impact.
 - It is essential to separate Pa from the spent fuel solution prior to solvent extraction process for separation of ²³³U and thorium.
- The database and experience of thorium fuels and thorium fuel cycles are very limited, as compared to UO₂ and (U, Pu)O₂ fuels, and need to be augmented before large investments are made for commercial utilization of thorium fuels and fuel cycles.

Indian experiences with thorium fuel cycle R&D

Evolution of thorium fuel cycle development in India

Use of thoria bundle in PHWR



Thorium extraction

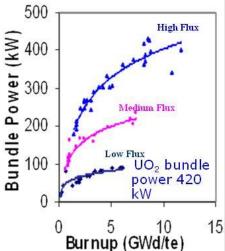
Irradiated fuel reprocessing and fabrication

KAMINI research AHWR critical reactor: facility ²³³U-Al Fuel

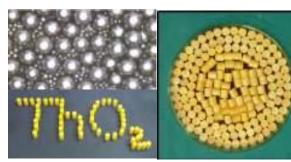

Thoria Irradiation in Indian reactors

CIRUS:

- Thoria rods irradiated in the reflector region for ²³³U production
- Irradiations of (Th, Pu) MOX fuels in Pressurised Water Loop to burnup of 18 GWd/te.
- **Dhruva:** Thoria based MOX fuel pins of AHWR are under irradiation
- **PURNIMA-II (1984 -1986):** First research reactor using ²³³U fuel.
- PURNIMA-III (1990-93): ²³³U-Al dispersion plate type fuel experiments
- KAMINI: Research reactor operating at 30 kW power, commissioned at Kalpakkam in 1996. Reactor based on ²³³U fuel in the form of U-Al alloy, for neutron radiography



- Thoria bundles irradiated in the blanket zone of Fast Breeder Test Reactor (FBTR)
 - ²³³U-MOX fuel being irradiated in FBTR
- Three PHWR stations at Kakrapar, Kaiga and Rajasthan (units 3&4) have irradiated a total of 232 thorium bundles, to maximum discharge burnup of 14 GWd/te. The power produced by the bundle just before discharge (600 FPD) was about 400 kW.

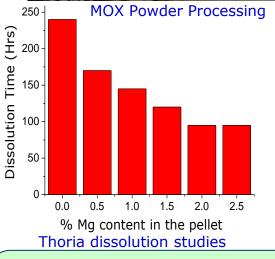


Fuel fabrication and reprocessing facility

- Experience with fabrication of thoria-based fuel
 - Thoria bundles for PHWRs.
 - Thoria assemblies for research reactor irradiation.
 - (Th-Pu) MOX pins for test irradiations.
- Fabrication was similar to that of UO₂ & (U-Pu) MOX

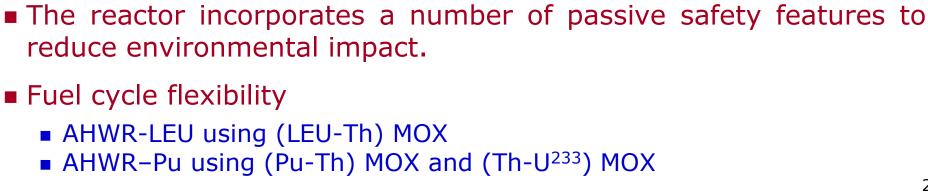
Thoria microspheres and ThO₂ Pellets fabricated for AHWR Critical Facility

Glove box and cask handling



Bundle dismantling

Impregnation setup


Thorium fuel cycle technologies is relatively complex because of inert nature of thoria radiological aspects

Indian Programme on thorium based reactors:

Advanced Heavy Water Reactor (AHWR)

Indian HTR programme

- Compact High Temperature Reactor (CHTR)
- Innovative High Temperature Reactor (IHTR)
- Molten salt Breeder reactor (MSBR)

- Provides transition to 3rd stage of the Indian **AHWR Schematic** Nuclear Power Programme.
- Addresses most issues relevant to advanced reactor designs like sustainability, enhanced safety, proliferation resistance and economic competitiveness.

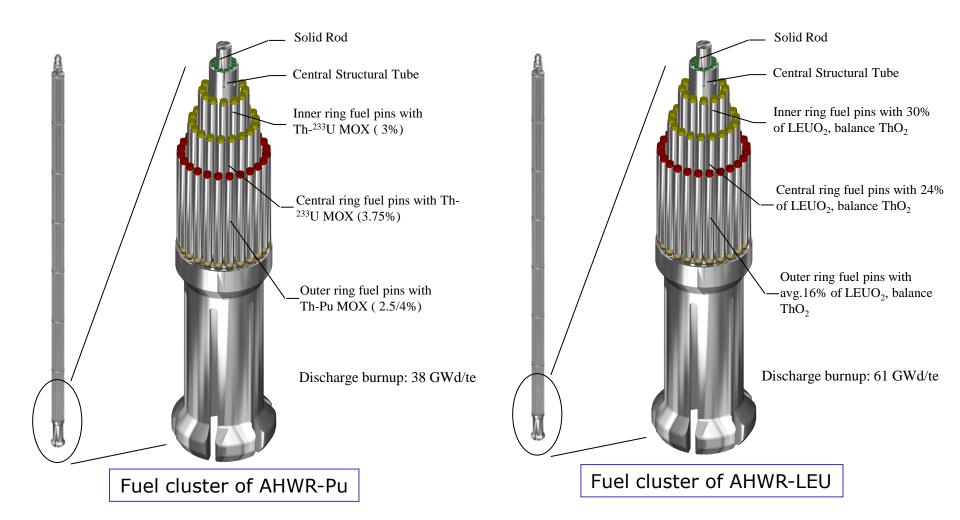
type, boiling light water cooled, and heavy water moderated reactor. AHWR is a technology demonstration reactor

■ AHWR is a 300 MWe, vertical, pressure tube

designed to achieve large-scale use of thorium

for power generation.

Fuel cycle flexibility


reduce environmental impact.

AHWR-LEU using (LEU-Th) MOX

AHWR-LEU: Advanced Heavy Water Reactor with LEU-Th MOX Fuel

Test Facilities for AHWR Design Validation

HPNCL

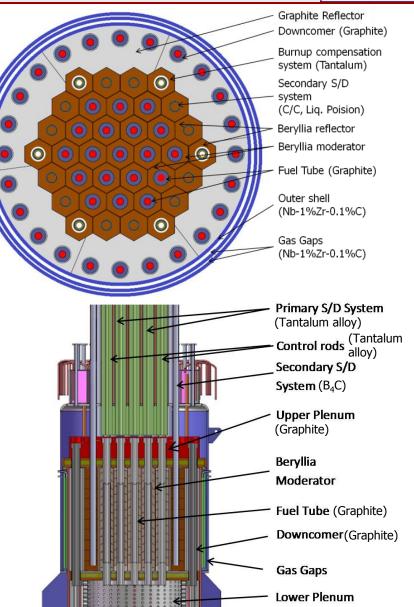
Moderator & liquid poison distribution

PCCTF

SDTF

Several test facilities have been setup for AHWR design validation. Some of these are devoted to the study of specific phenomena. Major test facilities include 3 MW BWL, ITL and AHWR critical facility. The ATTF at R&D Centre Tarapur is the latest of these.

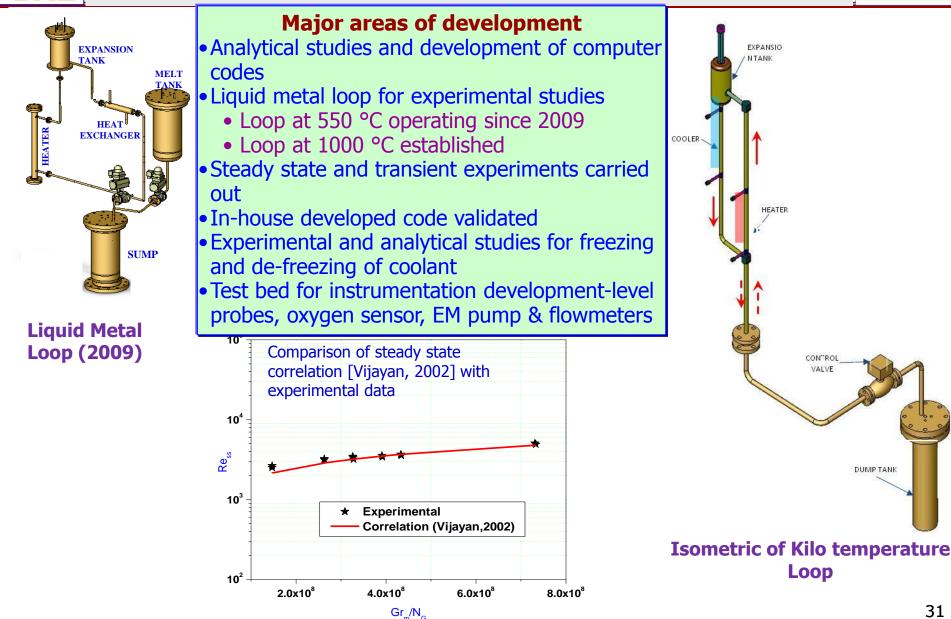
Indian High Temperature Reactor Programme


 Compact High Temperature Reactor (CHTR)- Technology Demonstrator 100 kWth, 1000 °C, TRISO coated particle fuel Several passive systems for reactor heat removal Prolonged operation without refuelling 	Status: Design of most of the systems worked out. Fuel and materials under development. Experimental facilities for thermal hydraulics setup. Facilities for design validation are under design.
 Innovative High Temperature Reactor for Hydrogen Production (IHTR) 600 MWth , 1000 °C, TRISO coated particle fuel Small power version for demonstration of technologies Active & passive systems for control & cooling On-line refuelling 	Status: Optimisation of reactor physics and thermal hydraulics design, selection of salt and structural materials in progress. Experimental facilities for molten salt based thermal hydraulics and material compatibility studies set-up.
 Indian Molten Salt Breeder Reactor (MSBR) Medium power, moderate temperature, demonstration reactor based on ²³³U-Th fuel cycle Small power version for demonstration of technologies Emphasis on passive systems for reactor heat removal under all scenarios and reactor conditions 	Status: Initial studies being carried out for conceptual design

Advanced Reactors – Indian Initiatives Compact High Temperature Reactor (CHTR)

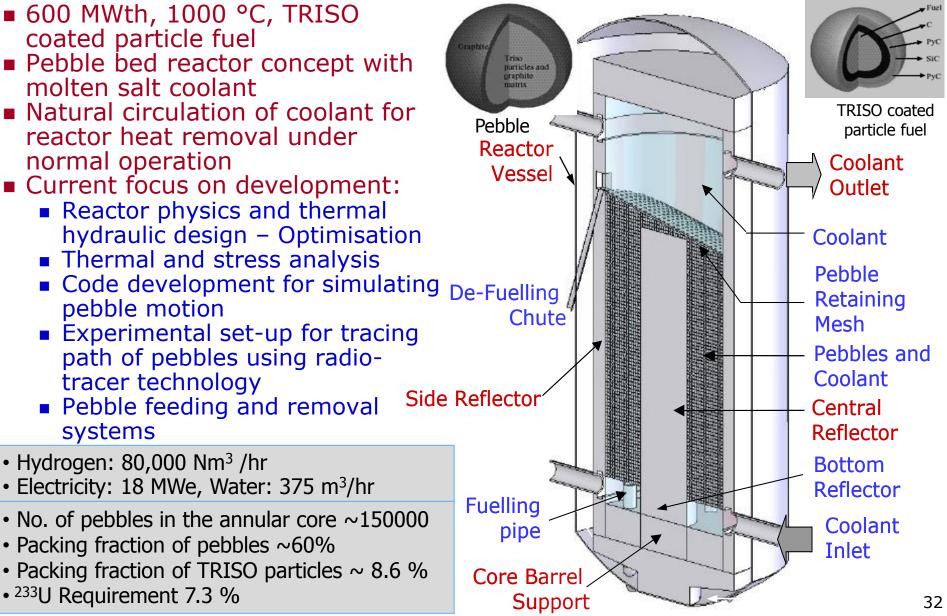
- CHTR is a technology demonstrator with the following features:
 - Coolant exit temperature of 1000°C -Facilitate hydrogen production.
 - Compact: For use as nuclear battery in remote areas with no grid connection.
 - Fuel using ²³³U-Th based on TRISO coated particle fuel with 15 years refuelling frequency and high burnup.
 - Ceramic core: BeO moderator, and graphite for fuel tube, downcomer tube and reflector
 - Coolant: Lead-Bismuth eutectic with 1670 °C as the boiling point.
 - Emphasis on reactor heat removal by passive systems e.g. natural circulation of coolant and high temperature heat pipes

Major Research & Development Areas in Progress

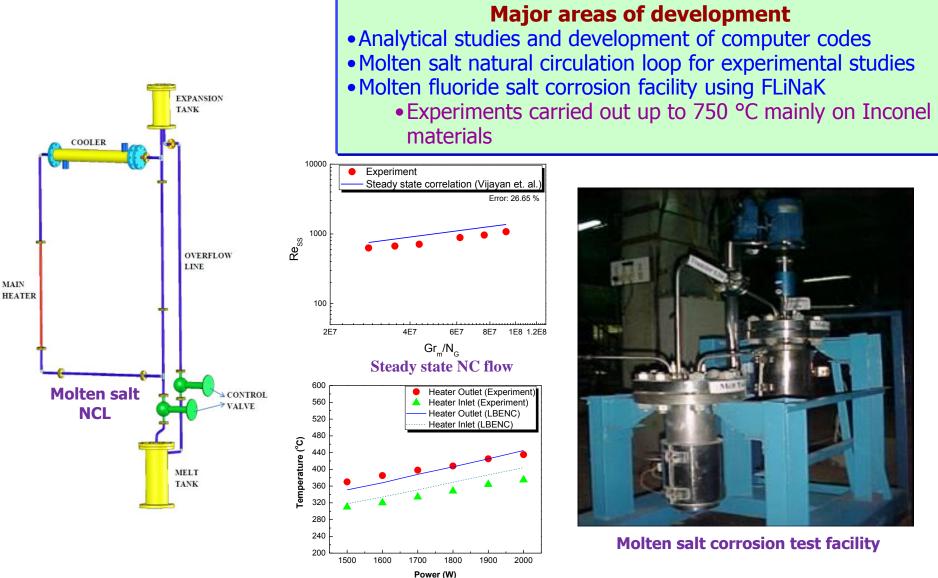


1
Status of development
Technology for TRISO coated particles & fuel compacts developed with surrogate material Fuel compacts
 Fuel tubes made using various techniques & materials including carbon-carbon composites Beryllia blocks manufacturing technology established Techniques for SiC coating on Kerel tubes
Indigenous development of alloy and manufacture of components for a lead- bismuth thermal hydraulic loop Nb-1%Zr- 0.1%C alloy
 LBE test loop operated to validate design codes. Loop for studies at 1000 °C established. Level probes, oxygen sensor, etc. developed for LBE coolant

Thermalhydraulic Studies for LBE Coolant



Innovative High Temperature Reactor (IHTR) for commercial hydrogen production



Thermal hydraulic studies and material compatibility studies for molten salt coolant

Predicted and measured temperatures

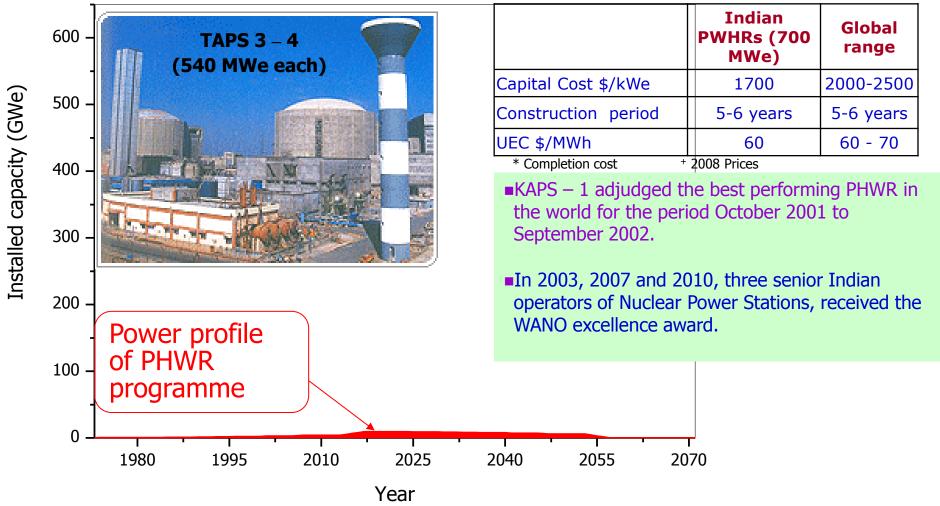
	Metallic ²³³ U/Th fuelled FBR with Th blanket ^[1]	Molten Salt Breeder Reactor ^[2]
Reactor Power	1000 MWe	1000 MWe
Cycle fissile inventory	6 tonnes*	<1 tonnes **
Breeding ratio	1.115	1.14

* Assuming out of core time (cooling + reprocessing + refabrication) to be 3 years ** Assumes online reprocessing

- Cycle fissile inventory for metallic fuelled FBRs are very high (~6 t) compared to MSBRs operating in thermal or epithermal spectrum
- Breeding ratio of 1.06 to 1.14 is possible in MSBRs operating in thermal and epithermal zone. FBRs will have BRs ~1.115
- Reprocessing in FBRs requires extensive clad removal and fuel refabrication – avoided in MSBR

MSBR provides significant advantages over metallic fuelled FBRs and hence is an attractive option for the 3rd stage and conceptual design of IMSBR in progress.

Concluding Remarks


- Thorium offers a sustainable and proliferation resistant fuel option with lower minor actinides burden
- Over a period of time, indigenous technologies developed for all the aspects of thorium fuel cycle
- AHWR is being developed as a technology demonstrator for industrial scale thorium fuel cycle
- India is developing thorium based high temperature reactor concepts dedicated for hydrogen production
- Large scale deployment of molten salt breeder reactors is envisaged during the third stage of Indian nuclear power programme

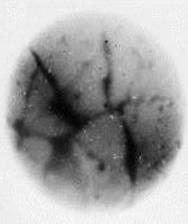
Thank you

NPCIL is a AAA (CRISIL) rated company for ten years in a row.

Results of a case study; assumptions 60000 te Uranium and short doubling time FBRs beyond 2021

Challenges of thorium fuel cycle

- Melting point of ThO₂ (3350 °C) is much higher than that of UO₂ (2800°C).
 - Much higher sintering temperature (>1700°C) is required to produce high density ThO₂ and ThO₂-based mixed oxide fuels.
 - Admixing of `sintering aid' (CaO, MgO, Nb₂O₅, etc) is required for achieving the desired pellet density at lower temperature.
- ThO₂ and ThO₂ based mixed oxide fuels are relatively inert and do not dissolve easily in concentrated nitric acid.
 - Addition of small quantities of HF in conc. HNO₃ is essential which cause corrosion of stainless steel equipment and piping in reprocessing plants.
 - The corrosion problem is mitigated with addition of aluminium nitrate.
 - Requires long dissolution time in boiling THOREX solution [13M HNO₃+0.05M HF+0.1M Al(NO₃)₃] for ThO₂ based fuel
- The irradiated Th or Th-based fuels contain significant amount of ²³²U, having a half-life of 68.9 years and is associated with strong gamma emitting daughter products, ²¹²Bi and ²⁰⁸Tl with very short half-life.
 - There is significant build-up of radiation dose with storage of spent Thbased fuel or separated ²³³U,
 - This necessitates remote and automated reprocessing and re-fabrication in heavily shielded hot cells, increasing the cost of fuel cycle activities.


Post Irradiation Examination (PIE) of thoria fuel

- The PIE was carried out for one of the discharged bundles from Kakrapar unit-2, which had seen 508 full power days.
 - Dissolution tests done for uranium isotope composition and fission products and compared with theoretical evaluations.
 - \bullet Power distribution shows peaking at the outer pins for $\rm UO_2$ bundle and at intermediate pins for thoria bundle.
 - Fission products (137 Cs) migrate to thoria pellet cracks unlike upto periphery in UO₂ fuel.

					Power peaking in the central elements		
	²³² U	²³³ U	²³⁴ U	²³⁵ U	236U		Atom % fission = 1.25% Fission products measured were
Mass Spectrometric Analysis	0.0459	88.78	9.95	1.0	0.085	0.14	¹²⁵ Sb, ¹³⁴ Cs, ¹³⁷ Cs, ¹⁴⁴ Ce- ¹⁴⁴ Pr, ¹⁵⁴ Eu, ¹⁵⁵ Eu, ⁹⁰ Sr.
Theoretical Prediction *	0.0491	90.556	10.945	1.07	0.0918		Gross activity of the bundle measured

 α -Autoradiograph β , γ - Autoradiograph

PIE hot cell facility Fission gas analysis set up

Brief history of thorium fuel based reactors

Experience with thorium based fuels in world -Thorium fuel experience of more than three decades old exists for test reactors & power reactors of different types

Name & country	Туре	Power	Fuel	Operation	Shipping port Reactor: A major experience in the use of thorium
Lingen, Germany	BWR	60 MWe	Test fuel (Th+Pu)O ₂ pellets	Till 1973	First large-scale nuclear power reactor for electricity-60 MWe Test bench for thermal breeder using ²³³ U fuel Operated as LWBR during 1977-1982
MSRE, ORNL, USA	MSBR	8 MWt	²³³ U molten fluorides	1964-1969	1.39% more fissile fuel at EOL Breeding success achieved by high cost of sophisticated core by sacrificing reactor performance
Shippingport & Indian Point 1, USA	LWBR, PWR	60 MWe 285 MWe	Th+ ²³³ U driver fuel, Oxide Pellets	1977-1982 1962-1980	MECHANISMS AND LEAD SCREWS
SUSPOP/KSTR, KEMA, Netherlands	Aqueous homogeneous suspension	1 MWt	Th+HEU, Oxide pellets	1974-1977	MODULE SUSPENSION COMPONENT SYSTEM
NRU & NRX, Canada	MTR		Th+ ²³⁵ U, Test fuel	Irradiation of few elements	SEED FUEL ASSEMBLIES HOLD DOWN BARREL

1966: MSRE Molten-Salt Reactor Experiment (MSRE) Operated for 17,655 h

SUPPORT

STRUCTURE

ASSEMBLY

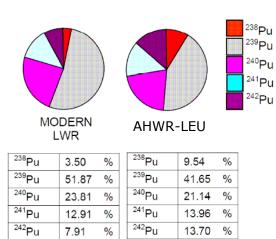
BLANKET FUEL

REFLECTOR

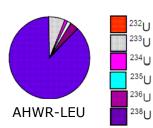
ASSEMBLIES

ASSEMBLIES AND

Thorium based fuels have been loaded either partially or fully in High Temperature Gas cooled Reactor (HTGR) cores.



Name & country	Туре	Power	Fuel	Operation
AVR, Germany	HTGR (Pebble bed)	15 MWe	Th+ ²³⁵ U driver fuel, Coated fuel particles of oxide & dicarbides	1967-1988
THTR- 300, Germany	HTGR (Pebble bed)	300 MWe	Th+ ²³⁵ U driver fuel, Coated fuel particles of oxide & dicarbides	1985-1989
Dragon, UK, OECD	HTGR (Prismatic block)	20 MWt	Th+ ²³⁵ U driver fuel, Coated fuel particles of oxide & dicarbides	1964-1976
Peach Bottom, USA	HTGR (Prismatic block)	40 MWe	Th+ ²³⁵ U driver fuel, Coated fuel particles of oxide & dicarbides	1967-1974
Fort St. Vrain, USA	HTGR (Prismatic block)	330 MWe	Th+ ²³⁵ U driver fuel, Coated fuel particles, Dicarbides	1976-1989


- AHWR is a technology demonstration reactor is designed to achieve large-scale use of thorium for power generation.
- Addresses most issues required in advanced reactor designs
 - Enhanced safety, Proliferation concern, Minimize waste burden
 - Maximize resource utilisation (sustainability) and
 - Economic competitiveness

MODERN LWR

L L	.vvR	
²³² U	0.00	%
²³³ U	0.00	%
²³⁴ U	0.00	%
²³⁵ U	0.82	%
²³⁶ U	0.59	%
²³⁸ U	98.59	%

0.02

6.51

1.24

1.62

3.27

87.35

%

%

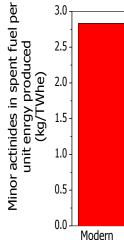
%

%

%

%

232U


233

234U

235

236

238

LWR¹

AHWR-

LEU