Optimizing the basis of $B \rightarrow K^*I^+I^-$ observables and understanding its tensions

Joaquim Matias Universitat Autònoma de Barcelona

EPS 2013, Stockholm

Based on: S. Descotes-Genon, T. Hurth, JM, J. Virto, JHEP 1305 (2013) 137S. Descotes-Genon, JM, J. Virto, in preparation

July 19, 2013

PLAN of the TALK

- Why is so important the measurement of $B \to K^*(\to K\pi)I^+I^-$?
- The path towards an optimized basis of observables to describe this 4-body decay.
- First analysis of new data on $P_{1,2}$ and understanding of its tensions (3σ).
- Conclusions

- ⇒ In the short term the best paradigm to unveil **New Physics** will be an accurate analysis of Wilson coefficients.
 - UT for CPV ↔ Wilson Coefficient correlations for Rare Decays
 - Wilson Coefficients are tested $C_i = C_i^{SM} + \delta \mathbf{C_i}$ different levels of accuracy allow different ranges of NP

Wilson coefficients	<u>Observables</u>	SM values
$C^{eff}_{7}(\mu_{\mathbf{b}})$	$\mathcal{B}(ar{\mathcal{B}} o X_s\gamma), A_I(B o K^*\gamma), S_{K^*\gamma}, A_{FB}, F_L$	- 0.292
$C_9(\mu_{\mathbf{b}})$	$\mathcal{B}(B o X_s\ell\ell), A_{FB}, F_L$	4.075
$C_{10}(\mu_{\mathbf{b}})$	$\mathcal{B}(B_s o \mu^+\mu^-), \mathcal{B}(B o X_s\ell\ell), A_{FB}, F_L$	-4.308
$\mathbf{C_7'}(\mu_{\mathbf{b}})$	$\mathcal{B}(ar{B} o X_s \gamma), A_I(B o K^* \gamma), S_{K^* \gamma}, A_{FB}, F_L$	-0.006
$\mathbf{C}_{\mathbf{q}}^{i}(\mu_{\mathbf{b}})$	$\mathcal{B}(B o X_s\ell\ell), A_{FB}, F_L$	0
$C_{10}'(\mu_{\mathbf{b}})$	$\mathcal{B}(B_s o \mu^+\mu^-), A_{FB}, F_L$	0

High Precision Observables are necessary to disentangle NP and to overconstrain the deviations δC_i of Wilson Coefficients from SM in order to reduce allowed regions.

- ⇒ In the short term the best paradigm to unveil **New Physics** will be an accurate analysis of Wilson coefficients.
 - *UT* for CPV ↔ *Wilson Coefficient* correlations for Rare Decays
 - Wilson Coefficients are tested $C_i = C_i^{SM} + \delta \mathbf{C_i}$ { different levels of accuracy allow different ranges of NP

Wilson coefficients	<u>Observables</u>	SM values
$C^{eff}_{7}(\mu_{b})$	$\mathcal{B}(\bar{B} o X_s \gamma), A_I(B o K^* \gamma), S_{K^* \gamma}, A_{FB}, F_L, P_2, P_{4.5}'$	-0.292
$C_9(\mu_{\mathbf{b}})$	$\mathcal{B}(B o X_s\ell\ell), A_{FB}, F_L, extstyle{P_2, P'_{4.5}}$	4.075
$C_{10}(\mu_{b})$	$\mathcal{B}(B_s o \mu^+\mu^-), \mathcal{B}(B o X_s\ell\ell), A_{FB}, F_L, extstyle{P'_4}$	-4.308
$\mathbf{C_7'}(\mu_{\mathbf{b}})$	$\mathcal{B}(ar{\mathcal{B}} ightarrow X_s\gamma), A_I(\mathcal{B} ightarrow K^*\gamma), S_{K^*\gamma}, A_{FB}, F_L, rac{P_1}{P_1}$	-0.006
$\mathbf{C_9'}(\mu_{\mathbf{b}})$	$\mathcal{B}(B o X_s\ell\ell), A_{FB}, F_L, rac{P_1}{P_1}$	0
$\mathbf{C_{10}^{\prime}}(\mu_{\mathbf{b}})$	$\mathcal{B}(\mathcal{B}_s o\mu^+\mu^-), \mathcal{A}_{ extsf{FB}}, \mathcal{F}_{ extsf{L}}, extsf{P_1}, extsf{P_4}'$	0

High Precision Observables are necessary to disentangle NP and to overconstrain the deviations δC_i of Wilson Coefficients from SM in order to reduce allowed regions.

 $\Rightarrow B \to K^*(\to K\pi)\mu^+\mu^-$ fulfills the requirements by means of clean observables $P_{1,2,3}, P'_{4,5,6,8}$ improving the precision in not very accurately constrained coefficients like C_9 or $C'_{7,9,10}$ (soon). New Physics in phases of Wilson Coefficients: $P_3, P'_{6,8}$.

All those observables come from the decay $\bar{\bf B}_{\bf d}\to \bar{\bf K}^{*0}(\to {\bf K}^-\pi^+){\bf l}^+{\bf l}^-$ with the K^{*0} on the mass shell. It is described by $s=q^2$ and three angles $\theta_{\bf l}$, $\theta_{\bf K}$ and ϕ

$$\frac{d^4\Gamma(\bar{B}_d)}{dq^2\,d\cos\theta_I\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_I,\theta_K,\phi)$$

The differential distribution splits in J_i coefficients:

$$J(q^2, \theta_I, \theta_K, \phi) =$$

$$J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_I + J_3 \sin^2 \theta_K \sin^2 \theta_I \cos 2\phi$$

$$+ J_4 \sin 2\theta_K \sin 2\theta_I \cos \phi + J_5 \sin 2\theta_K \sin \theta_I \cos \phi + (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_I$$

$$+ J_7 \sin 2\theta_K \sin \theta_I \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_I \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_I \sin 2\phi.$$

There is a corresponding *CP*- conjugate distribution for $\mathbf{B_d} \to \mathbf{K^{*0}} (\to \mathbf{K^-} \pi^+) \mathbf{I^+} \mathbf{I^-}$ function of \bar{J} .

The information on

- the transversity amplitudes of the K^* $(A_{\perp,\parallel,0})$ is inside the coefficients J_i .
- short distance physics C_i is encoded in $(A_{\perp,\parallel,0} = C_i \times \text{form factors})$

$$\begin{split} J_{1s} &= \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(A_{\perp}^L A_{\perp}^{R^*} + A_{\parallel}^L A_{\parallel}^{R^*} \right), \\ J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[|A_t|^2 + 2\operatorname{Re} (A_0^L A_0^{R^*}) \right] + \beta_{\ell}^2 |A_S|^2, \\ J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \right], \quad J_{2c} &= -\beta_{\ell}^2 \left[|A_0^L|^2 + (L \to R) \right], \\ J_3 &= \frac{1}{2} \beta_{\ell}^2 \left[|A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + (L \to R) \right], \quad J_4 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Re} (A_0^L A_{\parallel}^{L^*}) + (L \to R) \right], \\ J_5 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Re} (A_0^L A_{\perp}^{L^*}) - (L \to R) - \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re} (A_{\parallel}^L A_S^* + A_{\parallel}^R A_S^*) \right], \\ J_{6s} &= 2\beta_{\ell} \left[\operatorname{Re} (A_{\parallel}^L A_{\perp}^{L^*}) - (L \to R) \right], \quad J_{6c} &= 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re} \left[A_0^L A_S^* + (L \to R) \right], \\ J_7 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Im} (A_0^L A_{\parallel}^{L^*}) - (L \to R) + \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Im} (A_{\perp}^L A_S^* + A_{\perp}^R A_S^*) \right], \\ J_8 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Im} (A_0^L A_{\perp}^L^*) + (L \to R) \right], \quad J_9 &= \beta_{\ell}^2 \left[\operatorname{Im} (A_{\parallel}^L^* A_{\perp}^L) + (L \to R) \right] \end{split}$$

In red lepton mass terms $(\beta_{\ell}^2 = 1 - 4m_{\ell}^2/q^2)$.

[Egede, Hurth, JM, Ramon, Reece'10]

An important step forward to find a complete description of the distribution was the identification of the **symmetries** of the distribution:

Transformation of amplitudes leaving distribution invariant.

Symmetries determine the minimal # observables for each scenario:

$$n_{obs} = 2n_A - n_S$$

Case	Coefficients	Amplitudes	Symmetries	Observables
$m_{\ell} = 0, A_{S} = 0$	11	6	4	8 ←
$m_\ell=0$	11	7	5	9
$m_{\ell} > 0$, $A_{S} = 0$	11	7	4	10
$m_{\ell} > 0$	12	8	4	12

All symmetries (massive and scalars) were found explicitly later on. [JM, Mescia, Ramon, Virto'12]

Symmetries \Rightarrow # of observables \Rightarrow determine a basis: each angular observable constructed can be expressed in terms of this basis.

Main criteria to define this basis: minimize the form factor sensitivity

The concept of clean observables

For a long time huge efforts were devoted (still now) to measure the position of the zero of the forward-backward asymmetry A_{FB} of $B \to K^* \mu^+ \mu^-$.

Reason:

- At LO the soft form factor dependence $(\xi_{\perp}(q^2), \xi_{\parallel}(q^2))$ cancels exactly at the position of the zero q_0^2 (dependence appears at NLO).
- A relation among C_q^{eff} and C_7^{eff} arises at the zero (at LO):

$$\mathbf{C_9^{eff}}(q_0^2) + 2 \frac{m_b M_B}{q_0^2} \mathbf{C_7^{eff}} = 0$$

A similar idea was incorporated in the construction of the transverse asymmetry

[Kruger, J.M'05]

[Becirevic et al.'12]

$$P_1 = A_T^{(2)}(q^2) = \frac{|A_\perp|^2 - |A_{||}|^2}{|A_\perp|^2 + |A_{||}|^2}$$

$$P_2 = rac{A_T^{re}}{2} = rac{{
m Re}(A_\perp^{L*}A_{||}^L - A_\perp^RA_{||}^{R*})}{|A_\perp|^2 + |A_{||}|^2}$$

where $A_{\perp,||}$ correspond to two transversity amplitudes of the K^* .

- Both asymmetries exhibits an exact cancellation of soft form factors **not only at a point** (like A_{FB}) but in the full low- q^2 range $(0.1 6 \text{ GeV}^2)$.
- First examples of clean observables that could be measured.
- $A_T^{(2)}$ is constructed to detect presence of RH currents ($A_{\perp} \sim -A_{||}$ in the SM), A_T^{re} complements (partly supersedes) A_{FB} since it contains similar information, but in a theoretically better controlled way.

[Egede, Hurth, JM, Ramon, Reece'08, and '10]

ullet Later on a set of **transverse asymmetries** called $A_{T}^{(3,4,5)}$ were proposed

$$\boldsymbol{A_{T}^{(3)}} = \frac{|A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R*}A_{\parallel}^{R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \quad \boldsymbol{A_{T}^{(4)}} = \frac{|A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R*}A_{\perp}^{R}|}{|A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R*}A_{\parallel}^{R}|} \quad \boldsymbol{A_{T}^{(5)}} = \frac{|A_{\perp}^{L}A_{\parallel}^{R*} + A_{\perp}^{R*}A_{\parallel}^{L}|}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}$$

[Bobeth, Hiller, Dyk,'10]

• Also at the low-recoil a set of clean observables called $H_{\rm T}^{(1,2,3)}$ were proposed that correspond to $P_{4,5,6}$ at large-recoil.

$$\mathbf{H_{T}^{(1)}} \!\!=\!\! \frac{\mathrm{Re}(A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R*}A_{\parallel}^{R})}{\sqrt{|A_{0}|^{2}|A_{\parallel}|^{2}}}, \ \mathbf{H_{T}^{(2)}} \!\!=\!\! \frac{\mathrm{Re}(A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R*}A_{\perp}^{R})}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}}, \ \mathbf{H_{T}^{(3)}} \!\!=\!\! \frac{\mathrm{Re}(A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R*}A_{\perp}^{R})}{\sqrt{|A_{\parallel}|^{2}|A_{\perp}|^{2}}}$$

[Altmannshofer, Ball, Bharucha, Buras, Straub, Wick'09]

• In parallel a set of CP-conserving and CP-violating observables S_i and A_i were constructed directly from the coefficients of the distribution, easy to measure but **not** following the criteria of **clean observables**:

$$\mathbf{S_i} = \frac{\int_{bin} dq^2 [J_i + \bar{J_i}]}{d\Gamma/dq^2 + d\bar{\Gamma}/dq^2} \;, \quad \mathbf{A_i} = \frac{\int_{bin} dq^2 [J_i - \bar{J_i}]}{d\Gamma/dq^2 + d\bar{\Gamma}/dq^2} \;.$$

Finally we arrived to an Optimal Basis of observables, a compromise between:

- Excellent experimental accessibility and simplicity of the fit.
- Reduced FF dependence (in the large-recoil region: $0.1 \le q^2 \le 8 \text{ GeV}^2$).

Our proposal for CP-conserving basis:

$$\left\{\frac{d\Gamma}{dq^2}, A_{FB}, P_1, P_2, P_3, P_4', P_5', P_6'\right\} \text{ or } P_3 \leftrightarrow P_8' \text{ and } A_{FB} \leftrightarrow F_L$$

where $P_1=A_T^2$ [Kruger, J.M'05], $P_2=\frac{1}{2}A_T^{\rm re}$, $P_3=-\frac{1}{2}A_T^{\rm im}$ [Becirevic, Schneider'12] and $P_{4,5,6}'$ [Descotes, JM, Ramon, Virto'13]) given by

$$P'_i = \frac{1}{k_i N_i} [J_i + \bar{J}_i]$$
 $N_i = \sqrt{-(J_{2s} + \bar{J}_{2s})(J_{2c} + \bar{J}_{2c})}$ $k_4 = 1, k_5 = 2, k_6 = -2$

and the corresponding **CP-violating basis** $(J_i + \bar{J}_i \rightarrow J_i - \bar{J}_i \text{ in numerators})$:

$$\left\{\textbf{A}_{CP}, \textbf{A}_{FB}^{CP}, \textbf{P}_{1}^{CP}, \ \textbf{P}_{2}^{CP}, \ \textbf{P}_{3}^{CP}, \ \textbf{P}_{4}^{\prime CP}, \ \textbf{P}_{5}^{\prime CP}, \ \textbf{P}_{6}^{\prime CP}\right\} \ \text{or} \ \textbf{P}_{3}^{CP} \leftrightarrow \textbf{P}_{8}^{\prime CP} \ \text{and} \ \textbf{A}_{FB}^{CP} \leftrightarrow \textbf{F}_{L}^{CP}$$

Computation of Primary Observables

Large-recoil: NLO QCDfactorization $+ \mathcal{O}(\Lambda/m_b)$. Soft form factors $\xi_{\perp,\parallel}(q^2)$ from

$$\xi_{\perp}(q^2) = m_B/(m_B + m_{K^*})V(\mathbf{q}^2)$$
 $\xi_{\parallel}(q^2) = (m_B + m_{K^*})/(2E)\mathbf{A}_1(\mathbf{q}^2) - (m_B - m_{K^*})/(m_B)\mathbf{A}_2(\mathbf{q}^2)$

• FF at $q^2 = 0$ and slope parameters are computed by [Khodjamirian et al.'10] (KMPW) using LCSR.

Tensor form factors $\mathcal{T}_{\perp,\parallel}$ are computed in QCDF following [Beneke, Feldmann, Seidel'01,'05] including factorizable and non-factorizable contributions.

Low-recoil: LCSR are valid up to $q^2 \le 14 \text{ GeV}^2$. We extend FF determination [Bobeth & Hiller & Dyk'10] till 19 Gev² and cross check the consistency with **lattice** QCD. In HQET one expects the ratios to be near one

$$R_1 = \frac{T_1(q^2)}{V(q^2)}$$
, $R_2 = \frac{T_2(q^2)}{A_1(q^2)}$, $R_3 = \frac{q^2}{m_B^2} \frac{T_3(q^2)}{A_2(q^2)}$.

Our approach at low-recoil: we determine $T_{1,2}$ by exploiting the ratios $R_{1,2}$ allowing for up to a 20% breaking, i.e., $R_{1,2}=1+\delta_{1,2}$. All other form factors extrapolated from KMPW. We find perfect agreement between our determination of $T_{1,2}$ using $R_{1,2}$ and lattice data.

Integrated observables

Contact between theory and experiment:

Indeed the observables are measured in bins.

Present bins: [0.1,2], [2,4.3], [4.3,8.68], [1,6], [14.18,16], [16,19] GeV².

This requires a **redefinition** of observables in bins: $\langle J_i \rangle_{\rm bin} = \int_{bin} [J_i + \bar{J_i}] dq^2$

$$\left\langle A_{T}^{(2)}\right\rangle_{\mathrm{bin}} \equiv \left\langle P_{1}\right\rangle_{\mathrm{bin}} = \frac{\left\langle J_{3}\right\rangle_{\mathrm{bin}}}{2\left\langle J_{2s}\right\rangle_{\mathrm{bin}}} \qquad \left\langle P_{2}\right\rangle_{\mathrm{bin}} = \frac{\left\langle J_{6s}\right\rangle_{\mathrm{bin}}}{8\left\langle J_{2s}\right\rangle_{\mathrm{bin}}} \qquad \left\langle P_{3}\right\rangle_{\mathrm{bin}} = -\frac{\left\langle J_{9}\right\rangle_{\mathrm{bin}}}{4\left\langle J_{2s}\right\rangle_{\mathrm{bin}}}$$

$$\langle P_4' \rangle_{\rm bin} = \frac{\langle J_4 \rangle_{\rm bin}}{\sqrt{-\langle J_{2s} \rangle_{\rm bin} \langle J_{2c} \rangle_{\rm bin}}} \qquad \langle P_5' \rangle_{\rm bin} = \frac{\langle J_5 \rangle_{\rm bin}}{2\sqrt{-\langle J_{2s} \rangle_{\rm bin} \langle J_{2c} \rangle_{\rm bin}}} \qquad \langle P_6' \rangle_{\rm bin} = \frac{-\langle J_7 \rangle_{\rm bin}}{2\sqrt{-\langle J_{2s} \rangle_{\rm bin} \langle J_{2c} \rangle_{\rm bin}}}.$$

Similar definitions for $\langle P_i^{CP} \rangle_{\rm bin}$ with $J_i - \bar{J_i}$.

 $P_{1,2,3}$ were first indirectly measured via S_3 , A_{im} , A_{FB} , F_L (and already provide constraints).

First results on $P_{1,2}$ available since Beauty 2013. BUT it is urgent to get experimental measurements of P'_i

Binned SM predictions for $\langle P_{1,2,3} \rangle$ and $\langle P'_{4,5,6,8} \rangle$ JHEP 1305 (2013) 137

R. Aaij et al. LHCb, 1304.6325 [hep-ex]

At Beauty $P_{1,2}$ were presented. Conclusion: Results consistent with SM predictions. BUT ...

Regarding measurement of P_1 at LHCb:

- Three first bins same 'shape' as CDF.
- Why error bars so large?
- Too early to draw any definite conclusion on existence or not of right-handed currents.

We suggest a new folding to measure uniquely P_1 .

$$d\Gamma(\hat{\phi}, \hat{\theta}_{\ell}, \hat{\theta}_{K}) + d\Gamma(\hat{\phi}, \hat{\theta}_{\ell}, \pi - \hat{\theta}_{K}) + d\Gamma(-\hat{\phi}, \pi - \hat{\theta}_{\ell}, \hat{\theta}_{K}) + d\Gamma(-\hat{\phi}, \pi - \hat{\theta}_{\ell}, \pi - \hat{\theta}_{\ell}, \pi - \hat{\theta}_{K}) = f(P_{1}, F_{L}) + g(A_{S}^{5}, A_{S}^{8})$$

R. Aaij et al. LHCb, 1304.6325 [hep-ex]

At Beauty $P_{1,2}$ were presented. Conclusion: Results consistent with SM predictions. BUT ...

Regarding measurement of P_1 at LHCb:

- Three first bins same 'shape' as CDF.
- Why error bars so large?
- Too early to draw any definite conclusion on existence or not of right-handed currents.
- P_1 can discriminate clearly **at large recoil** on the presence of $\delta C_7'$, $\delta C_9'$ and $\delta C_{10}'$ if error bars reduced:
 - $\delta C_7' > 0$ (a bit large) **BLUE**
 - $\delta C_9' > 0$ also can generate it. RED
 - $\delta C_{10}' < 0$ together with ($\delta C_7' > 0$ GREEN or $\delta C_9' > 0$ ORANGE) can reproduce the shape easily.

We suggest a new folding to measure uniquely P_1 .

$$d\Gamma(\hat{\phi}, \hat{\theta}_{\ell}, \hat{\theta}_{K}) + d\Gamma(\hat{\phi}, \hat{\theta}_{\ell}, \pi - \hat{\theta}_{K}) + d\Gamma(-\hat{\phi}, \pi - \hat{\theta}_{\ell}, \hat{\theta}_{K}) + d\Gamma(-\hat{\phi}, \pi - \hat{\theta}_{\ell}, \pi - \hat{\theta}_{\ell}, \pi - \hat{\theta}_{\ell}) = f(P_{1}, F_{L}) + g(A_{S}^{5}, A_{S}^{8})$$

First measurement and analysis of P_1, P_2

Concerning the forward-back asymmetry (A_{FB}) and P_2 :

- P_2 is the evolved version of A_{FB} , but, they play a complementary role.
- It magnifies a tiny tension in the second bin of A_{FB} .
- ullet Both zeroes prefer a higher value $q_0^{2exp}=4.9\pm0.9~{
 m GeV^2}$ compared to $q_0^{2SM}=3.95\pm0.38~{
 m GeV^2}$.

At LO how to move the position of the zero to the right?

$$q_0^{2LO} = -2m_b M_B \frac{C_7^{eff} C_{10} - C_7' C_{10}'}{C_9^{eff} (q_0^2) C_{10} - C_9' C_{10}'}$$

where $C_i = C_i^{SM} + \delta C_i$

Four main possibilities on how to test them:

	Constraint:	Constraint:	Constraint:
Mechanism	A_{FB} in 3	P_2 in 3	P_1 in 3
	bins	bins	bins
I. $\delta C_7 < 0$	OK	OK	~
II. $\delta C_9 < 0$	OK	OK	\sim
III. $(\delta C_7' > 0, \delta C_{10}' < 0)$	OK	~	OK
IV. $(\delta C_7' < 0, \delta C_{10}' > 0)$	NO	\sim	NO
$\overline{V.}\ (\deltaC_9'>0.\deltaC_{10'}<0)$	OK	~	OK
VI. $(\delta C_9' < 0, \delta C_{10}' > 0)$	NO	\sim	NO

Mechanism I, II, III and V preferred.

- $\delta C_7 < 0$ preferred by radiative constraints.
- $\delta C_9 < 0$, mechanism mainly tested with P_5'
- Mec. III-VI sign of $\delta C'_{10}$ tested by P'_4 and P_1 .
- Mec. III-IV sign of $\delta C_7'$ tested by P_1
- Mec. V, $\delta C_{o}'$ can be tested by P_1 .

At LO how to move the position of the zero to the right?

$$q_0^{2LO} = -2m_b M_B \frac{C_7^{eff} C_{10} - C_7' C_{10}'}{C_0^{eff} (q_0^2) C_{10} - C_9' C_{10}'}$$

Six main possibilities and how to test them:

	Constraint:	Constraint:	Constraint:
Mechanism	A_{FB} in 3	P_2 in 3	P_1 in 3
	bins	bins	bins
I. $\delta C_7 < 0$	OK	OK	~
II. $\delta C_9 < 0$	OK	OK	\sim
III. $(\delta C_7' > 0, \delta C_{10}' < 0)$	OK	~	OK
IV. $(\delta C_7' < 0, \delta C_{10}' > 0)$	NO	~	NO
V. $(\delta C_9' > 0, \delta C_{10'} < 0)$	OK	~	OK
VI. $(\delta C_9' < 0, \delta C_{10}' > 0)$	NO	~	NO

Mechanism I, II, III and V preferred.

- $\delta C_7 < 0$ preferred by radiative constraints.
- $\delta C_9 < 0$, mechanism mainly tested with P_5'
- Mec. III-VI sign of $\delta C'_{10}$ tested by P'_4 and P_1 .
- Mec. III-IV sign of $\delta C_7'$ tested by P_1
- Mec. V, $\delta C_{q}'$ can be tested by P_1 .

After analyzing different scenarios we have perform a frequentist analysis with asymmetric errors and NP error bars to an scenario with δC_7 and δC_9 including: I. $\mathcal{B}(B \to X_s \gamma)$, $A_I(B \to K^* \gamma)$, $S_{K^* \gamma}$, $\mathcal{B}(B \to X_s \mu^+ \mu^-)$ and $\mathcal{B}(B_s \to \mu^+ \mu^-)$ together with P_1 , P_2 , A_{FB} of $B \to K^* \mu^+ \mu^-$.

Result in $\delta C_7 - \delta C_9$:

We find 3σ deviation from SM prediction for C_9 (check the rest of basis P'_i !)

- \bullet 3 large-recoil bins (colored) $C_7 \in (-0.332, -0.287) \text{ and } C_9 \in (2.58, 3.38)$
- ONLY 1-6 bin at large recoil (orange)
- 3 large-recoil and 2 low-recoil bins (dashed)

Robustness tests:

- We have check using naive factorization that the effect on C_9 is confirmed.
- Also the bin 1-6 confirms the deviation.
- We have analyzed two types of charm effects:
 - m_c value: Increasing m_c up to 1.4 GeV reduces significance to 2.3 σ .
 - non-perturbative $c \bar{c}$ contribution (KMPW) increases slightly the significance above 3 σ .

P₂ for New Physics
$$\delta C_9 = -1.5$$
 (red box)
SM binned prediction in gray \Rightarrow LHCb data crosses in blue

For completeness we show also the result of full fit to all:

- $\delta C_{10}, \delta C'_{7,9,10}$ are already consistent with SM at 1σ
- δC_7 at 2σ
- δC_9 at 3σ

Coefficient	1σ	2σ	3σ
δC_7	[-0.04, -0.01]	[-0.06, 0.01]	[-0.08, 0.03]
δC_9	[-1.2, -0.5]	[-1.5, -0.1]	[-1.8, 0.4]
δC_{10}	[0, +1.8]	[-0.8, 2.4]	[-1.8, 3.4]
$\delta C_7'$	[-0.05, 0.03]	[-0.1, 0.08]	[-0.14, 0.13]
$\delta C_9'$	[-0.2, 1]	[-0.8, 1.4]	[-1.4, 1.8]
$\delta C'_{10}$	[-0.8, 0.2]	[-1.4, 0.6]	[-2.0, 1.0]

6

 $q^2 \, (\text{GeV}^2)$

Table : 68.3% (1 σ), 95.5% (2 σ) and 99.7% (3 σ) confidence intervals for the NP contributions to Wilson coefficients resulting from the global analysis.

Conclusions

- We have combined recent LHCb measurements on the first two theoretically clean observables $P_{1,2}$ of the optimal basis together with A_{FB} , other radiative modes and $B_s \to \mu^+ \mu^-$. We work in the framework of NLO QCDF at large-recoil and HQET at low-recoil.
- We have found a strong indication for a negative possible New Physics contribution to the coefficient C_9 at 3σ using large-recoil data and 2.6σ using both large and low-recoil data. This result corresponds to a range for C_9 inside a 68% CL of $2.6 \le C_9 \le 3.4$ to be compared with the SM value for $C_9^{SM} = 4.075$ at same μ_b scale. Different robustness tests have been included.
- A too large error bars on P_1 does not allow **yet** to draw any definite conclusion on the existence or not of right-handed currents. Still in our global fit we do not see clear indications of the need to introduce them.

Prospects: A measurement of the rest of the basis P'_i is essential to disprove or confirm this result

BACK-UP SLIDES

Computation of Primary Observables

Large-recoil: NLO QCDfactorization + $\mathcal{O}(\Lambda/m_b)$. Soft form factors $\xi_{\perp,\parallel}(q^2)$ from

$$\xi_{\perp}(q^2) = m_B/(m_B + m_{K^*})V(q^2)$$
 $\xi_{\parallel}(q^2) = (m_B + m_{K^*})/(2E)\mathbf{A}_1(q^2) - (m_B - m_{K^*})/(m_B)\mathbf{A}_2(q^2)$

• FF at $q^2 = 0$ and slope parameters are computed by [Khodjamirian et al.'10] (KMPW) using LCSR.

Tensor form factors $\mathcal{T}_{\perp,\parallel}$ are computed in QCDF following [Beneke, Feldmann, Seidel'01,'05] including factorizable and non-factorizable contributions.

The wide spread of different errors in literature associated to FF:

$$V(0)=0.31\pm0.04$$
 and $A(0)=0.33\pm0.03$ [W. Altmannshofer et al.'09]

$$V(0) = 0.36 \pm 0.17$$
 and $A(0) = 0.29 \pm 0.10$ [A. Khodjamirian et al. '10].

Even central values have shifted significantly $V(0) = 0.41 \pm 0.05$

[P. Ball and R. Zwicky, '05] (BZ).

Figure : Predictions in SM and for one benchmark point of NP for P_1 (left) and S_3 (right). The yellow boxes are the SM predictions integrated in five 1 GeV² bins. The blue curve corresponds to the central values for the NP scenario. The green/grey band is the total uncertainty considering two different FF determinations (BZ/KMPW).

Low-recoil: LCSR are valid up to $q \le 14 \text{ GeV}^2$. We extend FF determination [Bobeth & Hiller & Dyk'10] till 19 Gev² and cross check the consistency with **lattice** QCD. In HQET one expects the ratios to be near one

$$R_1 = \frac{T_1(q^2)}{V(q^2)}$$
, $R_2 = \frac{T_2(q^2)}{A_1(q^2)}$, $R_3 = \frac{q^2}{m_B^2} \frac{T_3(q^2)}{A_2(q^2)}$.

• BZ was problematic with R_3 .

Our approach: we determine $T_{1,2}$ by exploiting the ratios $R_{1,2}$ allowing for up to a 20% breaking, i.e., $R_{1,2} = 1 + \delta_{1,2}$. All other form factors extrapolated from KMPW.

• We find excellent agreement between our determination of $T_{1,2}$ using $R_{1,2}$ and lattice data.

Integrated observables

Contact between theory and experiment:

Indeed the observables are measured in bins.

Present bins: [0.1,2], [2,4.3], [4.3,8.68], [1,6], [14.18,16], [16,19] GeV².

Comments on the bins:

- Ultralow bin region [0.1,1] including light-resonances analyzed in [S. Jager, JM Camalich]'12. Binning tends to wash out the resonances.
- ullet The region $q^2\sim 6-8.68~{
 m GeV^2}$ can be affected by charm-loop effects. [Khodjamirian, Mannel, Pivovarov, Wang'10]
- The middle bin [10.09, 12.89] GeV² between J/Ψ and $\Psi(2s)$. Charm-loop effects lead to a destructive interference (raw estimate). We treat it as a simple interpolation.
- Suggestion to experimentalists on binning: [1,2], [2,4.3], [4.3,6]

- Another possible source of uncertainty is the S-wave contribution coming from $B \to K_0^* I^+ I^-$ decay. [Becirevic, Tayduganov '13], [Blake et al.'13]
- We will assume that both P and S waves are described by q^2 -dependent FF times a Breit-Wigner function.
- The **distinct** angular dependence of the S-wave terms in **folded** distributions allow to disentangle the signal of the P-wave from the S-wave: $P_i^{(\prime)}$ can be **disentangled** from S-wave pollution [JM'12].

Problem: Changing the normalization used for the distribution from

$$rac{d\Gamma_K^*}{dq^2} \equiv \Gamma_{K^*}'
ightarrow \Gamma_{full}'$$

introduces a $(1 - F_S)$ in front of the P-wave.

$$\Gamma'_{full} = \Gamma'_{K^*} + \Gamma'_{S}$$

and the longitudinal polarization fraction associated to Γ_S' is

$$\mathbf{F_S} = \frac{\Gamma_S'}{\Gamma_{full}'}$$
 and $1 - \mathbf{F_S} = \frac{\Gamma_{K^*}'}{\Gamma_{full}'}$

The modified distribution including the **S-wave** and new normalization Γ'_{full} :

$$\begin{split} &\frac{1}{\Gamma_{full}'}\frac{d^4\Gamma}{dq^2\,d\cos\theta_K\,d\cos\theta_I\,d\phi} = \frac{9}{32\pi}\bigg[\frac{3}{4}\mathbf{F_T}\sin^2\theta_K + \mathbf{F_L}\cos^2\theta_K \\ &+ (\frac{1}{4}\mathbf{F_T}\sin^2\theta_K - F_L\cos^2\theta_K)\cos2\theta_I + \frac{1}{2}\mathbf{P_1}\mathbf{F_T}\sin^2\theta_K\sin^2\theta_I\cos2\phi \\ &+ \sqrt{\mathbf{F_TF_L}}\left(\frac{1}{2}\mathbf{P_4'}\sin2\theta_K\sin2\theta_I\cos\phi + \mathbf{P_5'}\sin2\theta_K\sin\theta_I\cos\phi\right) \\ &- \sqrt{\mathbf{F_TF_L}}\left(\mathbf{P_6'}\sin2\theta_K\sin\theta_I\sin\phi - \frac{1}{2}\mathbf{Q_1'}\sin2\theta_K\sin2\theta_I\sin\phi\right) \\ &+ 2\mathbf{P_2F_T}\sin^2\theta_K\cos\theta_I - \mathbf{P_3F_T}\sin^2\theta_K\sin^2\theta_I\sin2\phi\bigg]\left(1 - \mathbf{F_S}\right) + \frac{1}{\Gamma_{full}'}\mathbf{W_S} \end{split}$$

in the massless case and where the polluting terms are

$$\begin{split} \frac{\mathbf{W_S}}{\Gamma_{full}'} &= & \frac{3}{16\pi} \left[\mathbf{F_S} \sin^2 \theta_\ell + \mathbf{A_S} \sin^2 \theta_\ell \cos \theta_K + \mathbf{A_S^4} \sin \theta_K \sin 2\theta_\ell \cos \phi \right. \\ & \left. + \mathbf{A_S^5} \sin \theta_K \sin \theta_\ell \cos \phi + \mathbf{A_S^7} \sin \theta_K \sin \theta_\ell \sin \phi + \mathbf{A_S^8} \sin \theta_K \sin 2\theta_\ell \sin \phi \right] \end{split}$$

We can get bounds on the size of the S-wave polluting terms. Let's take for instance A_S

$$\mathbf{A_{S}} = 2\sqrt{3} \frac{1}{\Gamma'_{f_{tll}l}} \int \operatorname{Re} \left[(A'_{0}{}^{L}A_{0}^{L*} + A'_{0}{}^{R}A_{0}^{R*})BW_{K_{0}^{*}}(m_{K\pi}^{2})BW_{K^{*}}^{\dagger}(m_{K\pi}^{2}) \right] dm_{K\pi}^{2}$$

where

$$\mathbf{F_S} = \frac{8}{3} \frac{\tilde{J}_{1a}^c}{\Gamma_{full}'} = \frac{|A_0'^L|^2 + |A_0'^R|^2}{\Gamma_{full}'} \mathbf{Y} \qquad \mathbf{Y} = \int dm_{K\pi}^2 |BW_{K_0^*}(m_{K\pi}^2)|^2$$

Y factor included to take into account the width of scalar resonance K_0^*

A bound is obtained once we define the S - P interference integral

$$\mathbf{Z} = \int \left| BW_{K_0^*}(m_{K\pi}^2) BW_{K^*}^{\dagger}(m_{K\pi}^2) \right| dm_{K\pi}^2$$

and use the bound from the Cauchy-Schwartz inequality

$$\begin{split} \left| \int (\text{Re, Im}) \left[(A_0^{\prime L} A_j^{L*} \pm A_0^{\prime R} A_j^{R*}) BW_{K_0^*}(m_{K\pi}^2) BW_{K^*}^{\dagger}(m_{K\pi}^2) \right] dm_{K\pi}^2 \\ & \leq \mathbf{Z} \times \sqrt{[|A_0^{\prime L}|^2 + |A_0^{\prime R}|^2][|A_j^{L}|^2 + |A_j^{R}|^2]} \end{split}$$

From the definitions of F_S and F_L and P_1 one gets the following bound:

$$|\mathbf{A}_{\mathsf{S}}| \leq 2\sqrt{3}\sqrt{\mathsf{F}_{\mathsf{S}}(1-\mathsf{F}_{\mathsf{S}})\mathsf{F}_{\mathsf{L}}}\,rac{\mathsf{Z}}{\sqrt{\mathsf{X}\mathsf{Y}}}$$

the factor $(1 - F_S)$ in the bound arises due to the fact that $\mathbf{F_L}$ is defined with respect to Γ'_{K^*} rather than Γ'_{full} .

$$\begin{array}{lcl} |A_S^4| & \leq & \sqrt{\frac{3}{2}} \sqrt{F_S(1-F_S)(1-F_L) \left(\frac{1-P_1}{2}\right)} \, \frac{Z}{\sqrt{XY}} \\ |A_S^5| & \leq & 2\sqrt{\frac{3}{2}} \sqrt{F_S(1-F_S)(1-F_L) \left(\frac{1+P_1}{2}\right)} \, \frac{Z}{\sqrt{XY}} \\ |A_S^7| & \leq & 2\sqrt{\frac{3}{2}} \sqrt{F_S(1-F_S)(1-F_L) \left(\frac{1-P_1}{2}\right)} \, \frac{Z}{\sqrt{XY}} \\ |A_S^8| & \leq & \sqrt{\frac{3}{2}} \sqrt{F_S(1-F_S)(1-F_L) \left(\frac{1+P_1}{2}\right)} \, \frac{Z}{\sqrt{XY}} \end{array}$$

Coefficient	Large recoil ∞ Range	Low recoil ∞ Range	Large Recoil Finite Range	Low Recoil Finite Range
$ A_S $	0.33	0.25	0.67	0.49
$ A_S^4 $	0.05	0.10	0.11	0.19
$ A_S^5 $	0.11	0.11	0.22	0.23
$ A_S^7 $	0.11	0.19	0.22	0.38
$ A_{S}^{8} $	0.05	0.06	0.11	0.11

Table: Illustrative values of the size of the bounds for the choices of F_5 , F_L , P_1 and $\mathbf{F} = \mathbf{Z}/\sqrt{\mathbf{XY}}$

- Large-recoil: $F_S \sim 7\%$ (like $B^0 \to J/\psi K^+\pi^-$), $F_L \sim 0.7$ and $P_1 \sim 0$
- **Low-recoil**: $F_5 \sim 7\%$, $F_I \sim 0.38$ and $P_1 \sim -0.48$.

We take the maximal value for Z/\sqrt{XY} factor in two cases:

"infinite range" ightarrow integrals in the whole $m_{K\pi}$ range "finite range" \rightarrow integrals around $m_{K^*} \pm 0.1$ GeV.

This may help in estimating the **systematics** associated to S-wave.

There is a correspondence between $P_i^{(\prime)}$ and J_k (β_ℓ^2 absorbed here in $F_{L,T}$)

$$\begin{split} &(J_{2s}+\bar{J}_{2s}) = \frac{1}{4}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & (J_{2c}+\bar{J}_{2c}) = -F_{L}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \\ &J_{3}+\bar{J}_{3} = \frac{1}{2}P_{1}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & J_{3}-\bar{J}_{3} = \frac{1}{2}P_{1}^{CP}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \\ &J_{6s}+\bar{J}_{6s} = 2P_{2}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & J_{6s}-\bar{J}_{6s} = 2P_{2}^{CP}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \\ &J_{9}+\bar{J}_{9} = -P_{3}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & J_{9}-\bar{J}_{9} = -P_{3}^{CP}F_{T}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \\ &J_{4}+\bar{J}_{4} = \frac{1}{2}P_{4}'\sqrt{F_{T}F_{L}}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & J_{4}-\bar{J}_{4} = \frac{1}{2}P_{4}'^{CP}\sqrt{F_{T}F_{L}}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \\ &J_{5}+\bar{J}_{5} = P_{5}'\sqrt{F_{T}F_{L}}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & J_{5}-\bar{J}_{5} = P_{5}'^{CP}\sqrt{F_{T}F_{L}}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \\ &J_{7}-\bar{J}_{7} = -P_{6}'\sqrt{F_{T}F_{L}}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} & J_{7}-\bar{J}_{7} = -P_{6}'^{CP}\sqrt{F_{T}F_{L}}\frac{d\Gamma+d\bar{\Gamma}}{dq^{2}} \end{split}$$

where each $P_i^{(\prime)}$ and $P_i^{(\prime)CP}$ encodes the information that can be extracted *cleanly* at large-recoil inside each J_k and define the simplest possible fit besides S_i , A_i . The **brown** and **blue** pieces are strongly FF-dependent pieces.