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Stalking the Higgs
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If the SM is correct, a light Higgs boson is around the corner!

Investigate different production mechanisms and a large number of final
states to scan the whole mass range allowed at the Tevatron
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Why search for H — yy at the Tevatron?

Within the SM, small BR (~0.2%) results in very small production rate
= Compensate with much better mass resolution compared to dijet final states
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H — vy provides important additional sensitivity especially in the difficult
intermediate mass region ~130 GeV

Forerunner to similar search at the LHC
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Why search for H — yy at the Tevatron?

Beyond the SM, significant enhancements to the production rate possible:

- New particles affecting the loop-mediated Hgg or Hyy couplings
- Increased BR(H—yy) in models with modified Higgs couplings to fermions

- Fermiophobic example: suppressed couplings to all fermions

arXiv:hep-ph/0001226
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Fermiophobic models can be probed with H — yy at the Tevatron

In general, this search can probe for any narrow resonance decaying into
di-photons in a quasi-model independent way
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H — yy search at the Tevatron

Perform search as model-independent as possible
- Inclusive event selection
- Use only di-photon mass observable, look for bump in deeply falling spectrum
- Signal acceptance/sensitivity basically independent of production mechanism

For the Standard Model Higgs:

. Associated production Vector boson fusion
g Gluon fusion A q q
- ; T q 0 AR
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q w/z q q

Add ~30% more signal

Relevant aspects for this search:

- Calorimeter resolution
- Photon identification
- Background model (data driven techniques)
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CDF and DQ calorimeters

N=1.0
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RN Plug HAD i} acking system CALORIMETER
120 ol (con
21 7777772 (rl-'?r?: ;Héxg;?g;c; Coarse Hadronic
| vertex detector Electromagnetic
Central/Wall (|n|<1.2) and Plug Central (Jn|<1.1) and forward
calorimeters calorimeters
- Scintillating tile with lead as - Liquid Argon with mostly uranium as
absorber material in EM section absorber
- Coarse granularity: ~800 towers - Fine granularity: ~50K cells
- Nearly no noise
- EM resolution: - EM resolution:
0/E =13.5% / VE ® 1.5% 0/E=21% /\E @ 2.0 %
(in central) (at normal incidence)

Both calorimeters calibrated regularly with special triggered data
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Photon energy scale and resolution

D@ example: the presence of additional dead material (non-uniformly
distributed) with the Run Il upgrade leads to:

- Shower maximum in frontal CAL layers

- Significant dependence of EM response and resolution on the particle energy and
incident angle

- Different energy-loss corrections between electrons and photons

DO Run Il Preliminary
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Photon identification: basic selection

Both experiments select photons from EM
clusters with the following criteria: 0.4 Circle .__ Center of Gravity

____Jofthesaitial Cluster

High EM fraction / cluster in shower 0.2 Circle X '
maximum detector
/" FH+CH
|solated in the calorimeter
Isolated in the tracker EisoTot = | | EM
Transverse shower profile consistent - \ CPS
with EM ObjeCt 150 = / W, ‘.'_._'_,_..the interaction point
No associated track / no pattern of hits
consistent with electrons 7 ]
Differences between data and simulation Zy
calibrated using photons from radiative Z Y
decays (Z — lly) and Z — ee . ;
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Photon identification: Neural Network

DJ: Further improve photon purity with a five variable NN

Tracker isolation (pr=t%)

0.35.P9; 4.2 fb
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Events/0
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Trained using QCD yy and di-jet MC. Performance verified with Z — lly data
events - excellent agreement between data and MC

Require NN>0.1 (almost 100% efficient for photons while rejecting 50%
misidentified jets)
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Event selection

Data collected with a suite of calorimeter only triggers:
- Di-EM triggers (pt thresholds vary within 12-25 GeV)
- Single photon triggers with high pt threshold 50/70 GeV (CDF only)
- Trigger efficiency after offline selection ~100%

Require primary vertex within the acceptance of the tracking detectors

m H° MY
t N \AAAAAA~

Two photons candidates:
- In central calorimeters (away from module boundaries)
- pr>15/25 GeV (CDF /DQ)
- Myy>30/60 GeV (CDF / DQ)
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Main backgrounds

Reducible backgrounds: q e*

Electrons misidentified as photons: Z/y* — ee

Estimated using MC normalized to NNLO theoretical
cross section

Jets misidentified as photons: di-jet and y+jet L { g a
Normalization and shape estimated from data 9

Irreducible background: q ¥

Ll
(o]
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Direct QCD di-photon production

Normalization and shape estimated from data using
sideband fitting method G Y

In the CDF analysis the sum of all backgrounds is taken from an inclusive
sideband fitting method
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Di-jet / y+jet background modeling

4x4 Matrix Method:

Use efficiency of a tighter cut (NN>0.75) to 0.35.D9, 42 b
classify the events in 4 categories o 0.35 o Z->I'Ty (1 = e,n) data
S (.25
Wi Wrr Both photons fail % 02;_ ------
Wir | _ Flx Wip Leading fail, trailing passes E, 0.1 55_
Wy W,r Leading passes, trailing fails L 0 15_ &
w,, W, Both photons pass 0.055_ N s A
e VL
Solve linear equation with photon and jet 0 010203040506070809 1
efficiencies to obtain Njj+Nyj+Njy "
103;_ DQ, 4.2 fb' preliminary PEP—
age=ate8
T T .
- o —=— anti O, cut
Inverse-NN Method: i %%% X "
. S
Invert NN (0.1) cut for one photon candidate to 5 T b, 4 i
obtain enriched non-yy sample from data g 0F ﬁ‘ 4
i3
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M, (GeV)
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Di-jet / y+jet background modeling

4x4 Matrix Method: For normalization

Use efficiency of a tighter cut (NN>0.75) to 0.35.D9, 42 b
classify the events in 4 categories 0.3 o Z->I'Ty (1 = e,n) data
n -
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Direct di-photon production

Challenging to predict theoretically. Estimated from sideband fitting in data
after subtraction of the reducible backgrounds

Fitting range is [70,200] GeV, excluding the signal region, defined to be interval

mu+ 15 GeV

Choice of fitting function validated on PYTHIA reweighted to DIPHOX (NLO)
f(Md'Lem) — eXp(po ' Mgzem +p1 ' Mdzem +p2)

DO, 4.2 fb' preliminary

Events/2.5 GeV
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Systematic uncertainties

Systematic uncertainties affecting the normalization and shape of the Myy
spectrum are estimated for both signal and backgrounds

source uncertainty
luminosity 6.1%

trigger 0.1%

PDF for h — ~+ acceptance 1.7% - 2.2%
electron misidentification efficiency 19.0%
Z/~v*(ee) cross section 3.9%
photon identification efficiency 6.8%
background subtraction shape
photon energy scale shape

Systematic uncertainties have small effect of limits, final sensitivity
completely driven by statistics
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The Myy spectrum in the search region is used to derive limits, which are a
factor of ~20 above the SM expectation for my = 100 ~ 140 GeV
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Fermiophobic Higgs limits

Large enhancement to BR(H—yy) 'ED@, 42 1b" preliminary
. . e * data
(SB'IUO'?-fUS!(OIEI]' mechanllslr.n ?/bljentd S —_VH (M, =110GeV)
ignificant Higgs recoll in an S L T VBF (M, =110GeV)
VBF production 8 10° |
(<] C
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1E 7 =
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10" Similar to SM analysis, but require
large di-photon pr:
pt(yy) > 75/ 35 GeV (CDF / DQ)
10-25-';"_ — . . . . .
F e e mreciction Within Fermiophobic scenario,
e g exclude myp>106 GeV
L 2 sigmaregion
B Frvweerverrere A R TR Probing BR beyond kinematic reach
70 80 90 100 110 120 130 140 ) fLEP
Similar sensitivity My (GeV/e?) 0

for DG analysis
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Conclusions

SM Higgs:

Due to the good mass resolution for di-photons, H — yy search adds ~5%
sensitivity to Tevatron’s SM Higgs combination

- Especially important for the difficult intermediate

& - -1
. ~ > DO, 4.2 fb (a)
mass region ~130 GeV §10.25_ 50 GeV < M, < 80 GeV
C . : 2 * data
Expect main improvements from multivariate 3 ) \Y — RESBOS
. ° DA — DIPHOX
analysis S10°: ~- PYTHIA
. . . . o - PDF uncert.
- Di-photon differential cross-section measurements £ | -~ scale uncert.
at the Tevatron tell how well the theory works and 04k X
how to reweight the MC : :
: : : 3 25"
Fermiophobic Higgs: 2 2
Both Tevatron experiments have better 30 J8
agn . . . .9 .
sensitivity than any single LEP experiment § 1020 -30-20"50-60-70~80

- Next round of results likely to exceed P} (GeV)
combined LEP result

Limits on BR(H— yy) probing new territory beyond kinematic reach of LEP
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