Plan for 3rd lecture: Perturbative calculations

This lecture will focus on perturbative calculations

- 🗳 LO, NLO, NLO+MC, NNLO
- techniques, issue with divergences
- current status, sample results

Perturbative calculations rely on the idea of an order-by-order expansion in the small coupling

$$\sigma \sim A + B\alpha_s + C\alpha_s^2 + D\alpha_s^3 + \dots$$
 lo nlo nnlo nnnlo

Perturbative calculations

- Perturbative calculations = fixed order expansion in the coupling constant, or more refined expansions that include terms to all orders
- Perturbative calculations are possible because the coupling is small at high energy
- In QCD (or in a generic QFT) the coupling depends on the energy (renormalization scale)
- So changing scale the result changes. By how much? What does this dependence mean?
- Let's consider some examples

Leading order n-jet cross-section

• Consider the cross-section to produce n jets. The leading order result at scale μ result will be

$$\sigma_{\rm njets}^{\rm LO}(\mu) = \alpha_s(\mu)^n A(p_i, \epsilon_i, \ldots)$$

- Instead, choosing a scale μ ' one gets

$$\sigma_{\rm njets}^{\rm LO}(\mu') = \alpha_s(\mu')^n A(p_i, \epsilon_i, \ldots) = \alpha_s(\mu)^n \left(1 + n \, b_0 \, \alpha_s(\mu) \ln \frac{\mu^2}{\mu'^2} + \ldots\right) A(p_i, \epsilon_i, \ldots)$$

So the change of scale is a NLO effect ($\propto \alpha_s$), but this becomes more important when the number of jets increases ($\propto n$)

• Notice that at Leading Order the normalization is not under control:

$$\frac{\sigma_{\rm njets}^{\rm LO}(\mu)}{\sigma_{\rm njets}^{\rm LO}(\mu')} = \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu')}\right)^n$$

NLO n-jet cross-section

Now consider n-jet cross-section at NLO. At scale μ the result reads

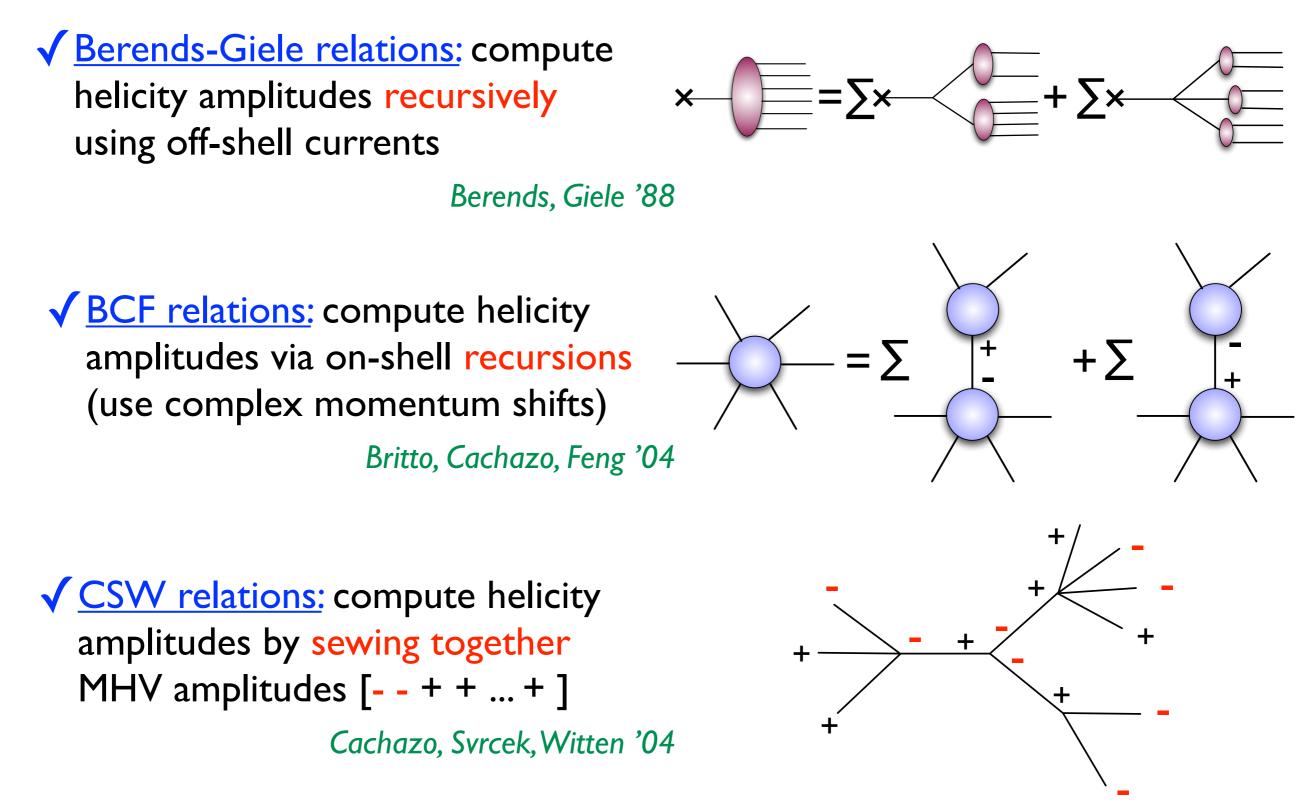
$$\sigma_{\rm njets}^{\rm NLO}(\mu) = \alpha_s(\mu)^n A(p_i, \epsilon_i, \dots) + \alpha_s(\mu)^{n+1} \left(B(p_i, \epsilon_i, \dots) - nb_0 \ln \frac{\mu^2}{Q_0^2} \right) + \dots$$

- So the NLO result compensates the LO scale dependence. The residual dependence is NNLO.
- Scale dependence and normalization start being under control only at NLO, since a compensation mechanism kicks in
- Notice also that a good scale choice automatically resums large logarithms to all orders, while a bad one spuriously introduces large logs and ruins the PT expansion
- Scale variation is conventionally used to estimate the theory uncertainty, but the validity of this procedure should not be overrated (see later)

Leading order: Feynman diagrams

Get any LO cross-section from the Lagrangian

- I. draw all Feynman diagrams
- 2. put in the explicit Feynman rules and get the amplitude
- 3. do some algebra, simplifications
- 4. square the amplitude
- 5. integrate over phase space + flux factor + sum/average over outgoing/ incoming states


Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc.

Bottlenecks

- a) number of Feynman diagrams diverges factorially
- b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Techniques beyond Feynman diagrams

Matrix element generators

Fully automated

- generation of tree level matrix elements
 - Feynman diagrams [CompHEP/CalcHEP, Madgraph/Madevent, HELAS, Sherpa, ...]
 - Helicity amplitudes + off-shell Berends-Giele recursion [ALPHA/ ALPGEN, Helac, Vecbos]
 - From twistors: on-shell recursion (BCF) / MHV vertices (CSW) (no public code)
- phase space integration
- interface to parton showers

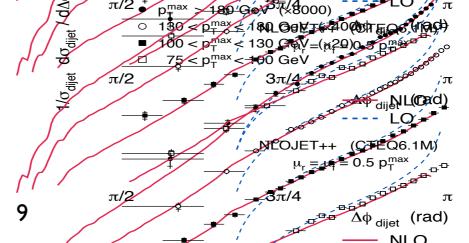
Many well tested public available codes

Benefits and drawbacks of LO

Benefits of LO:

- fastest option; often the only one
- Lest quickly new ideas with fully exclusive description
- many working, well-tested approaches
- Inighly automated, crucial to explore new ground, but no precision

Drawbacks of LO:

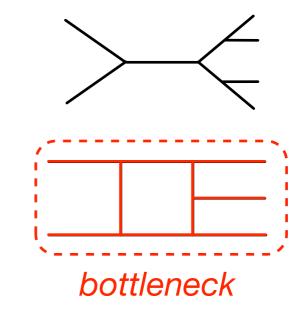

- Iarge scale dependences, reflecting large theory uncertainty
- no control on normalization
- poor control on shapes
- poor modeling of jets

<u>Example</u>: W+4 jet cross-section $\propto \alpha_s(Q)^4$ Vary $\alpha_s(Q)$ by ±10% via change of Q \Rightarrow cross-section varies by ±40%

Next-to-leading order

Benefits of next-to-leading order (NLO)

- Preduce dependence on unphysical scales DØ
 Prax > 180 GeV (×8000)
- establish normalization and shape of cross sections
- small scale dependence at LO can be very bis leading (see later), small dependence at NLO robust sign that PT is under conversion of the second se
- Interview of the second sec
- Incomparing about sectors and indirect information about sectors not directly accessible


 $130 < p_T^{max} < 180 \text{ GeV}$ (×400

🐔 GeV

Ingredients at NLO

A full N-particle NLO calculation requires:

- ✓ tree graph rates with N+1 partons
 → soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration, use e.g. dimensional regularization

set of subtraction terms to cancel divergences

We won't have time to do detailed NLO calculations, but let's look a bit more in detail at the issue of divergences/subtraction

Regularization in QCD

<u>Regularization</u>: a way to make intermediate divergent quantities meaningful

 In QCD dimensional regularization is today the standard procedure, based on the fact that d-dimensional integrals are more convergent if one reduces the number of dimensions.

$$\int \frac{d^4 l}{(2\pi)^4} \to \mu^{2\epsilon} \int \frac{d^d l}{(2\pi)^d} \,, \ d = 4 - 2\epsilon < 4$$

- N.B. to preserve the correct dimensions a mass scale μ is needed
- Divergences show up as intermediate poles $1/\epsilon$

$$\int_0^1 \frac{dx}{x} \to \int_0^1 \frac{dx}{x^{1-\epsilon}} = \frac{1}{\epsilon}$$

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... Compared to those methods, dimensional regularizatiom has the big virtue that it leaves the regularized theory Lorentz invariant, gauge invariant, unitary etc.

Renormalization schemes

<u>Renormalization</u>: a global redefinition of couplings and masses which absorbs all UV divergences. Several schemes are possible (MS, MS, OS ...).

• Take two different renormalization schemes of the QCD bare coupling as

$$\alpha_s^{\text{ren,A}} = Z^A \alpha_s^0, \quad \alpha_s^{\text{ren,B}} = Z^B \alpha_s^0$$

• Infinite parts of renormalization constants must be the same, therefore renormalized constants must be related by a finite renormalization

$$\alpha_s^{\text{ren,B}} = \alpha_s^{\text{ren,A}} (1 + c_1 \alpha_s^{\text{ren,A}} + \dots)$$

 Note that as a consequence of this, the first two coefficients of the β-function do not change under such a transformation, i.e. they are scheme independent. This it not true for higher order coefficients.

The $\overline{\text{MS}}$ scheme

- Today standard scheme is the modified minimal subtraction scheme, $\overline{\text{MS}}$
- After regularizing integrals via the dimensional regularization, poles appear always in the combination

$$\frac{1}{\epsilon} + \ln(4\pi) - \gamma_E$$

- Therefore in the MS-scheme, instead of subtracting poles minimally, one always subtracts that combination, and replaces the bare coupling with the renormalized one
- It is then standard to quote the coupling and Λ_{QCD} in this scheme, the current value is

$$206 \mathrm{MeV} < \Lambda_{\overline{\mathrm{MS}}}(5) < 231 \mathrm{MeV}$$

• Uncertainties in this quantity propagate in the QCD cross-sections

Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet definition. At NLO, two divergent integrals, but the sum is finite

$$\sigma_{\rm NLO}^J = \int_{n+1} d\sigma_{\rm R}^J + \int_n d\sigma_{\rm V}^J$$

- Since one integrates over a different number of particles in the final state, real and virtual need to be evaluated first, and combined then
- This means that one needs to find a way of removing divergences before evaluating the phase space integrals
- Two main techniques to do this
 - phase space slicing \Rightarrow obsolete because of practical/numerical issues
 - subtraction method \Rightarrow most used in recent applications

Subtraction method

• The real cross-section can be written schematically as

$$d\sigma_R^J = d\phi_{n+1} |\mathcal{M}_{n+1}|^2 F_{n+1}^J(p_1, \dots, p_{n+1})$$

where F^J is the arbitrary jet-definition

• The matrix element has a non-integrable divergence

$$|\mathcal{M}_{n+1}|^2 = \frac{1}{x}\mathcal{M}(x)$$

where x vanishes in the soft/collinear divergent region

• IR divergences in the loop integration regularized by taking D=4-2 ϵ

$$2\operatorname{Re}\{\mathcal{M}_V\cdot\mathcal{M}_0^*\}=\frac{1}{\epsilon}\mathcal{V}$$

Subtraction method

• The n-jet cross-section becomes

$$\sigma_{\rm NLO}^J = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_{n+1}^J(x) + \frac{1}{\epsilon} \mathcal{V} F_n^J$$

• Infrared safety of the jet definition implies

$$\lim_{x \to 0} F_{n+1}^J(x) = F_n^J$$

• KLN cancelation guarantees that

$$\lim_{x \to 0} \mathcal{M}(x) = \mathcal{V}$$

• One can then add and subtract the analytically computed divergent part

$$\sigma_{\rm NLO}^J = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) F_{n+1}^J(x) - \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{V}F_n^J + \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{V}F_n^J + \frac{1}{\epsilon} \mathcal{V}F_n^J$$

Subtraction method

• This can be rewritten exactly as

$$\sigma_{\rm NLO}^J = \int_0^1 \frac{dx}{x^{1+\epsilon}} \mathcal{M}(x) \left(F_1^J(x) - \mathcal{V}F_0^J \right) + \mathcal{O}(1)\mathcal{V}F_0^J$$

 \Rightarrow Now both terms are finite and can be evaluated numerically

- Subtracted cross-section must be calculated separately for each process (but mostly automated now). It must be valid everywhere in phase space
- Systematized in the seminal papers of Catani-Seymour (dipole subtraction, '96) and Frixione-Kunszt-Signer (FKS method, '96)
- Subtraction used in all recent NLO applications and public codes (Event2, Disent, MCFM, NLOjet++, ...)

Approaches to virtual (loop) part of NLO

Two complementary approaches:

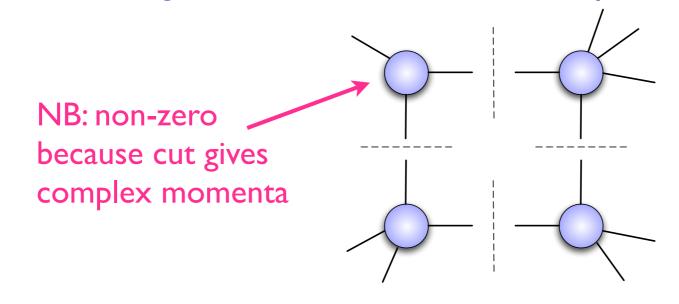
Numerical/traditional Feynman diagram methods: use robust computational methods [integration by parts, reduction techniques...], then let the computer do the work for you

Bottleneck:

factorial growth, $2 \rightarrow 4$ doable, very difficult to go beyond

Analytical approaches:

improve understanding of field theory [e.g. twistor methods, unitarity, supersymmetry, recursions ...]

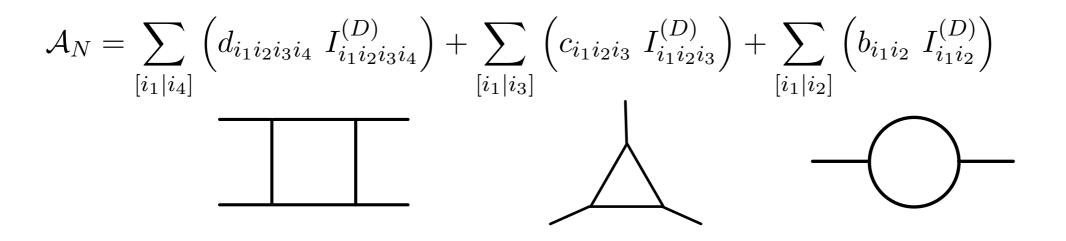

Bottleneck:

still lack of complete automation, fermions in general more difficult

Two breakthrough ideas

Aim: NLO loop integral without doing the integration

1) "... we show how to use generalized unitarity to read off the (box) coefficients. The generalized cuts we use are quadrupole cuts ..."


Britto, Cachazo, Feng '04

Quadrupole cuts: 4 on-shell conditions on 4 dimensional loop momentum) freezes the integration. But rational part of the amplitude, coming from $D=4-2\varepsilon$ not 4, computed separately

Two breakthrough ideas

Aim: NLO loop integral without doing the integration

2) The OPP method: "We show how to extract the coefficients of 4-, 3-, 2- and I-point one-loop scalar integrals...."

Ossola, Pittau, Papadopolous '06

Coefficients can be determined by solving system of equations: no loops, no twistors, just algebra!

Status of NLO

Status of NLO:

- $\boxed{10}$ 2 \rightarrow 2: all known (or easy) in SM and beyond
- $\boxed{10}$ 2 \rightarrow 3: essentially all SM processes known

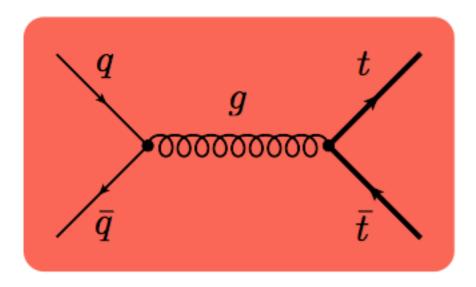
[but: often do not include decays, codes private]

- □ 2 → 4: a number of calculations performed in the last 1- or 2 years.
 Calculations done using different techniques.
- $\square 2 \rightarrow 5: only dominant corrections for one process$

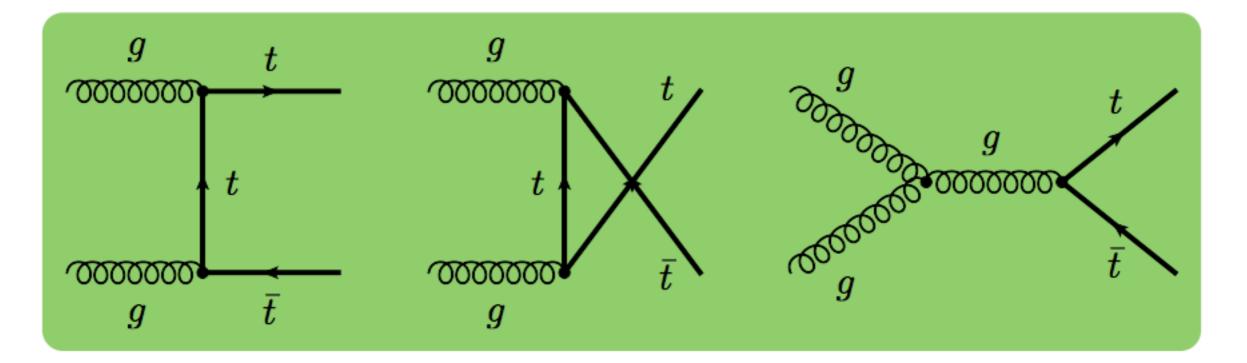
The 2005 Les Houches wish-list

Table 42: The LHC "priority" wishlist for which a NLO computation seems now feasible.

process $(V \in \{Z, W, \gamma\})$	relevant for
1. $pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
2. $pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$
3. $pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
4. $pp \rightarrow VVb\bar{b}$	$VBF \rightarrow H \rightarrow VV, t\bar{t}H$, new physics
5. $pp \rightarrow VV + 2$ jets	$VBF \rightarrow H \rightarrow VV$
6. $pp \rightarrow V + 3$ jets	various new physics signatures
7. $pp \rightarrow VVV$	SUSY trilepton


The QCD, EW & Higgs Working group report hep-ph/0604120

The 2007 update


Process	Comments	
$(V \in \{Z, W, \gamma\})$		
Calculations completed since Les Houches 2005		
1. $pp \rightarrow VV$ jet	WWjet completed by Dittmaier/Kallweit/Uwer [3]; Campbell/Ellis/Zanderighi [4] and Binoth/Karg/Kauer/Sanguinetti (in progress)	
2. $pp \rightarrow \text{Higgs+2jets}$	NLO QCD to the <i>gg</i> channel completed by Campbell/Ellis/Zanderighi [5]; NLO QCD+EW to the VBF channel	with Feynman diagrams
3. $pp \rightarrow V V V$	completed by Ciccolini/Denner/Dittmaier [6,7] ZZZ completed by Lazopoulos/Melnikov/Petriello [8] and WWZ by Hankele/Zeppenfeld [9]	J
Calculations remaining from Les Houches 2005		
4. $pp \rightarrow t\bar{t}b\bar{b}$	relevant for $t\bar{t}H$	
5. $pp \rightarrow t\bar{t}$ +2jets	relevant for $t\bar{t}H$	with Feynman diagrams or
6. $pp \rightarrow VV b\bar{b}$,	relevant for VBF $\rightarrow H \rightarrow VV, t\bar{t}H$	
7. $pp \rightarrow VV+2$ jets	relevant for VBF $\rightarrow H \rightarrow VV$	
	VBF contributions calculated by	(unitarity/onshell methods
	(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]	
8. $pp \rightarrow V$ +3jets	various new physics signatures	J
NLO calculations added to list in 2007		-
9. $pp \rightarrow b\bar{b}b\bar{b}$	Higgs and new physics signatures	
Calculations beyond NLO added in 2007		
10. $gg \to W^*W^* \mathcal{O}(\alpha^2 \alpha_s^3)$	backgrounds to Higgs	
11. NNLO $pp \rightarrow t\bar{t}$	normalization of a benchmark process	
12. NNLO to VBF and Z/γ +jet	Higgs couplings and SM benchmark	The NLO multi-leg Working
Calculations including electroweak effects		group report 0803.0494
13. NNLO QCD+NLO EW for W/Z	precision calculation of a SM benchmark	0 F F

Top-pair production

Basic production mechanisms: initiated from quarks or gluons

What is the dominant production mechanism, at the Tevatron / LHC ? [And why ?]

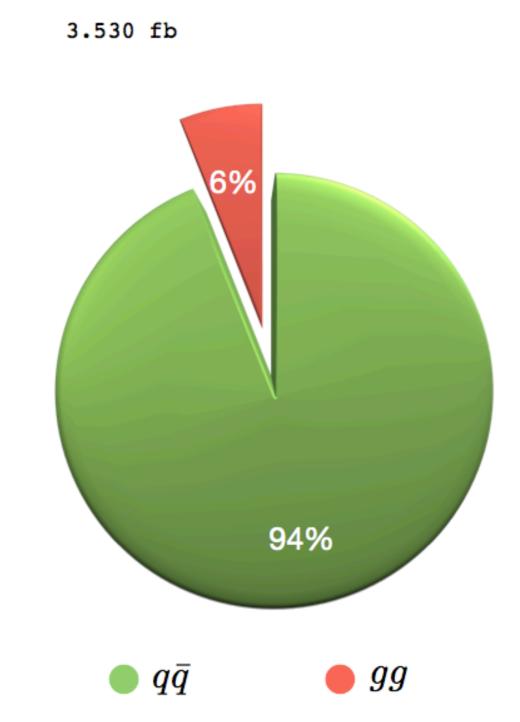
Top-pair production: Tevatron

0

0

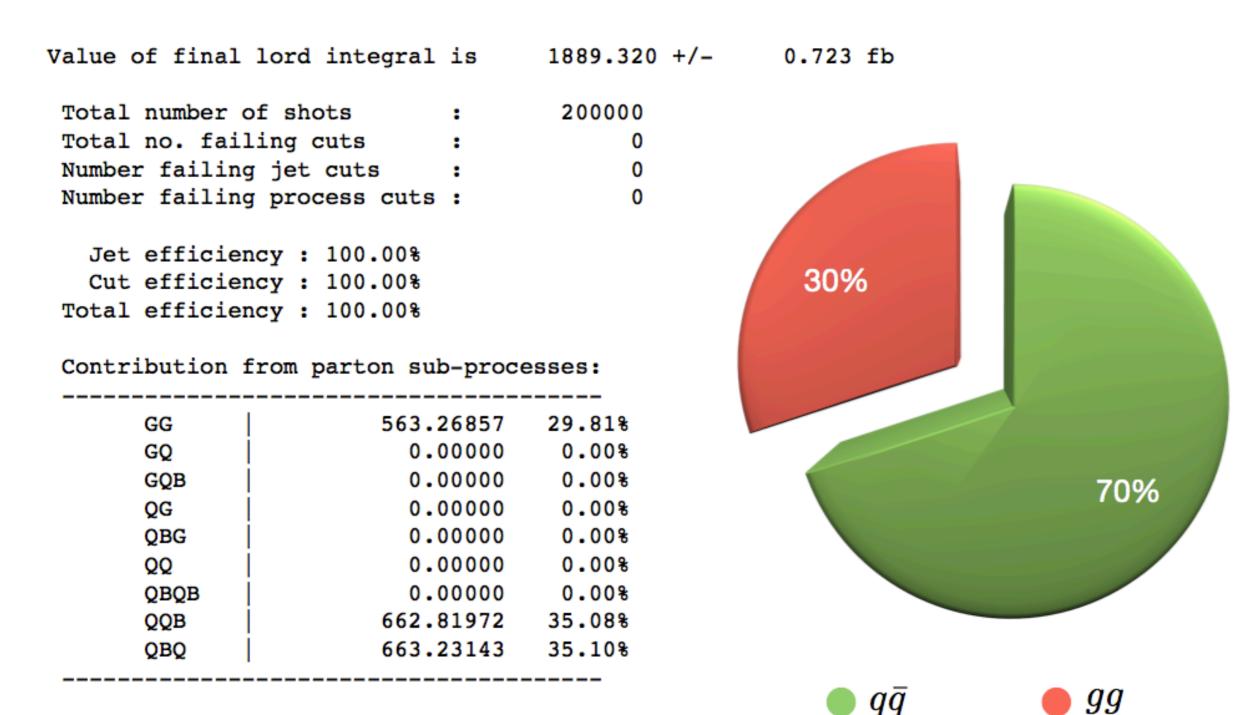
0

Running the program MCFM gives


Value of final lord integral is 9334.461 +/- 3.530 fb

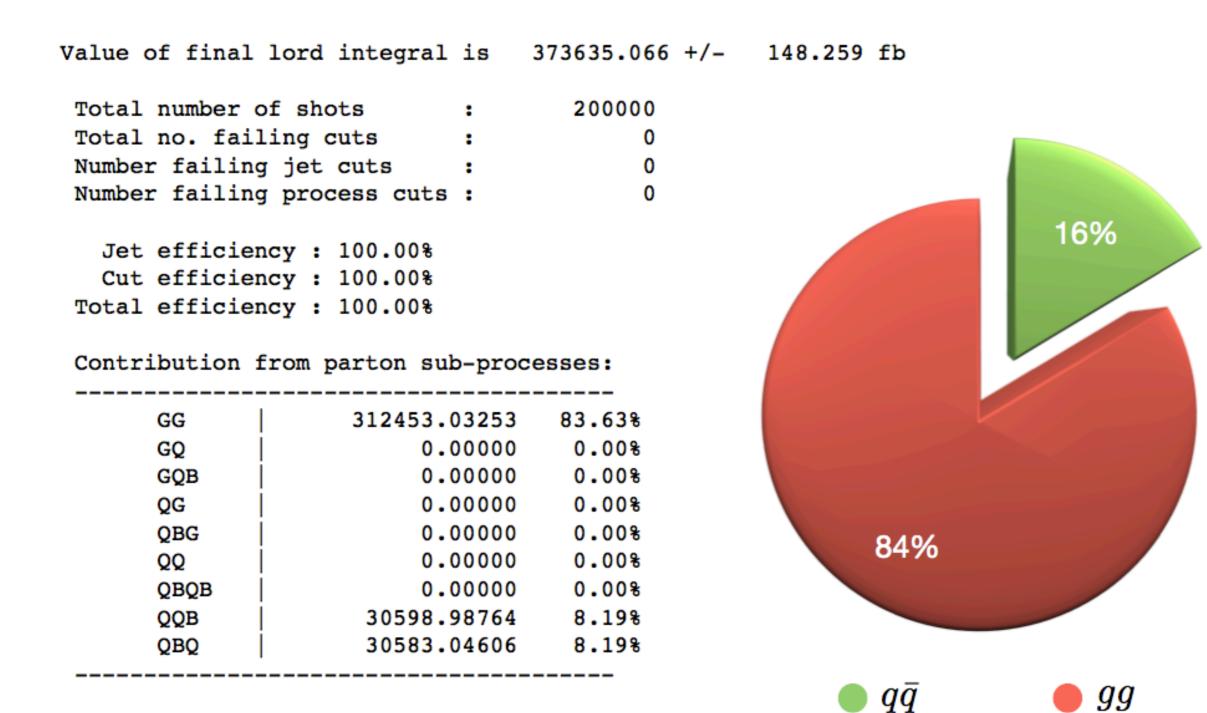
Total number of shots 200000 : Total no. failing cuts : Number failing jet cuts : Number failing process cuts :

Jet efficiency : 100.00% Cut efficiency : 100.00% Total efficiency : 100.00%


Contribution from parton sub-processes:

GG	563.36203	6.04%
GQ	0.00000	0.00%
GQB	0.00000	0.00%
QG	0.00000	0.00%
QBG	0.00000	0.00%
QQ	0.00000	0.00%
QBQB	0.00000	0.00%
QQB	8723.36136	93.45%
QBQ	47.73759	0.51%

Top-pair production: pp @ 1.96 TeV


Running the program MCFM gives

26

Top-pair production: LHC

Running the program MCFM gives

Top-asymmetry

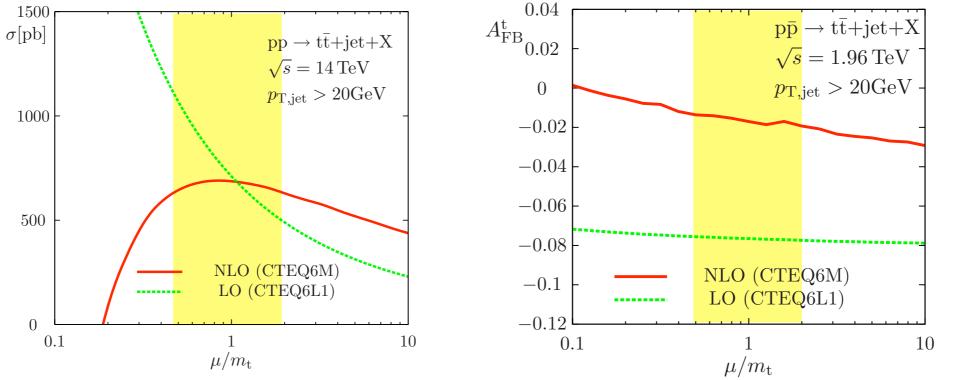
At the Tevatron, one interesting top measurement is its asymmetry

$$A_{fb} = \frac{N_{top}(\eta > 0) - N_{top}(\eta < 0)}{N_{top}(\eta > 0) + N_{top}(\eta < 0)}$$

At $O(\alpha_s^3)$ the asymmetry is non-zero, an NLO calculation gives

$$A_{fb}^{
m NLO} = 0.050 \pm 0.015$$

Kuehn et al. '99

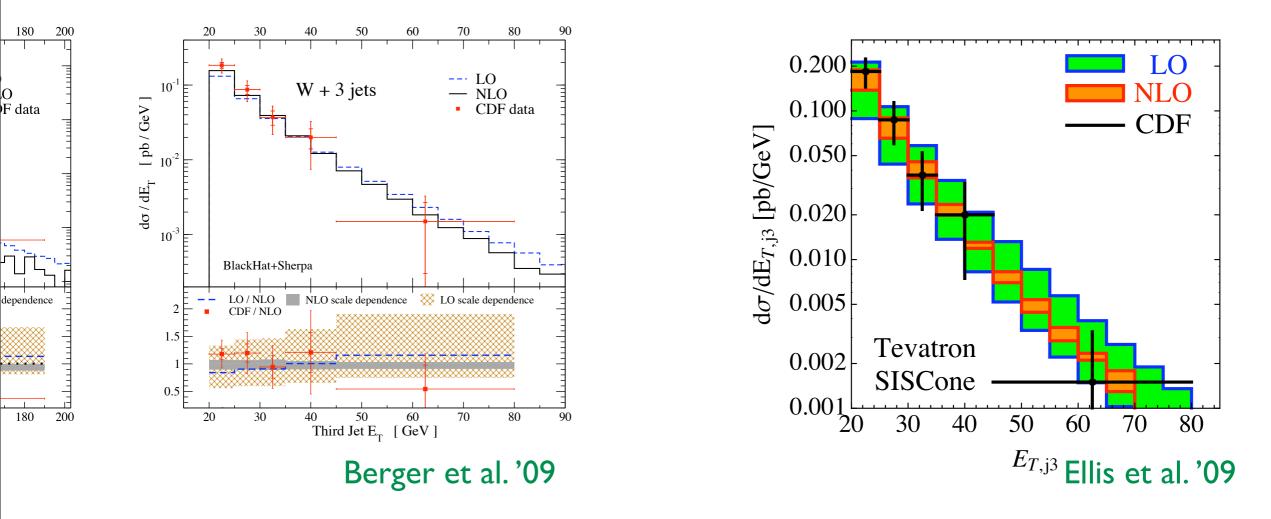

But CDF & D0 measurements give

$$A_{fb}^{exp.} = 0.193 \pm 0.065 \,(stat.) \pm 0.024 \,(syst.)$$

 \Rightarrow more than 2-sigma deviation from NLO. New physics ?

Example of NLO result: tt+ljet

Calculation done with Feynman diagrams

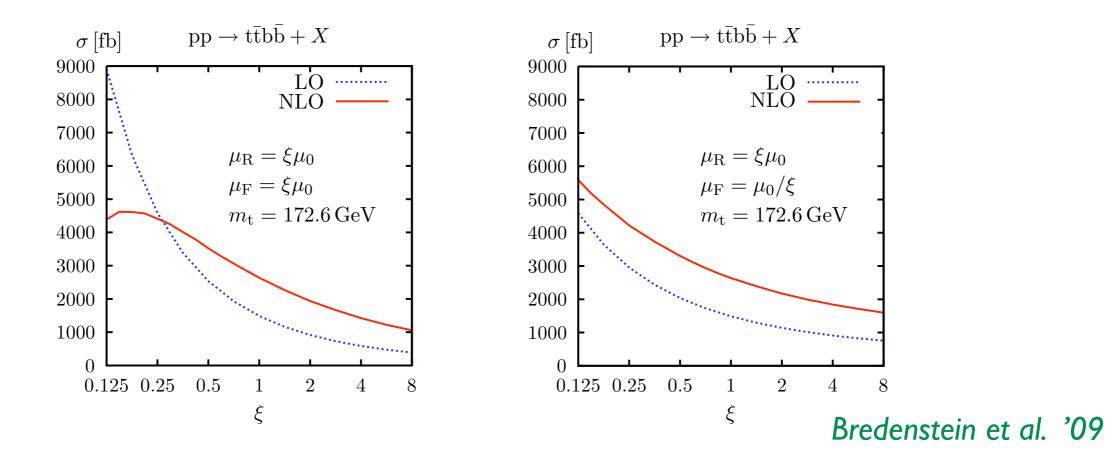


Dittmaier, Kallweit, Uwer '07-'08

- improved stability of NLO result [but no decays]
- forward-backward asymmetry at the Tevatron compatible with zero
- essential ingredient of NNLO tt production (hot topic)

W + 3jets

Measured at the Tevatron + of primary importance at the LHC: background to model- independent new physics searches using jets + MET



ⓒ Small K=1.0-1.1, reduced uncertainty: 50% (LO) → 10% (NLO)

 \bigcirc First applications of new techniques to 2 \rightarrow 4 LHC processes

$pp \rightarrow tt bb$

Measurement of ttH impossible without knowledge of pp \rightarrow tt bb at NLO (need also pp \rightarrow tt jj) + interesting per se

 \otimes Large K=1.8, large residual uncertainties: 70% (LO) \rightarrow 35% (NLO)

 $\ensuremath{\textcircled{\circ}}$ Demonstrates feasibility of Feynman diagrams calculation for 2 \rightarrow 4 LHC processes

General NLO features?

	Туріс	al scales	Tevatron K-factor		LHC K-factor			
Process	μ_0	μ_1	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$
W	m_W	$2m_W$	1.33	1.31	1.21	1.15	1.05	1.15
W+1jet	m_W	$p_T^{ m jet}$	1.42	1.20	1.43	1.21	1.32	1.42
W+2jets	m_W	$p_T^{ m jet}$	1.16	0.91	1.29	0.89	0.88	1.10
WW+jet	m_W	$2m_W$	1.19	1.37	1.26	1.33	1.40	1.42
$t\bar{t}$	m_t	$2m_t$	1.08	1.31	1.24	1.40	1.59	1.48
$t\bar{t}$ +1jet	m_t	$2m_t$	1.13	1.43	1.37	0.97	1.29	1.10
$b\overline{b}$	m_b	$2m_b$	1.20	1.21	2.10	0.98	0.84	2.51
Higgs	m_H	$p_T^{ m jet}$	2.33	_	2.33	1.72	_	2.32
Higgs via VBF	m_H	$p_T^{ m jet} \ p_T^{ m jet}$	1.07	0.97	1.07	1.23	1.34	1.09
Higgs+1jet	m_H	$p_T^{ m jet}$	2.02	_	2.13	1.47	_	1.90
Higgs+2jets	m_H	$p_T^{ m jet}$	_	_	_	1.15	_	-

 $\mathcal{K} = \frac{NLO}{LO}$

General features:


[NLO report 0803.0494]

- ► color annihilation, gluon dominated \Rightarrow large K factors ?
- extra legs in the final state \Rightarrow smaller K-factors ?

But be careful, only full calculations can really tell!

NNLO: when is NLO not good enough?

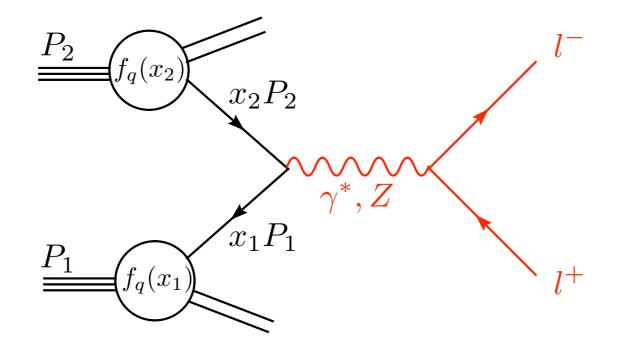
- when NLO corrections are large (NLO correction ~ LO) This may happens when
 - process involve very different scales → large logarithms of ratio of scales appear
 - new channels open up at NLO (at NLO they are effectively LO)
 - master example: Higgs production
- when high precision is needed to match small experimental error
 - W/Z hadro-production, heavy-quark hadro-production, α_s from event shapes in e^+e^- ...
- when a reliable error estimate is needed

Collider processes known at NNLO

Collider processes known at NNLO today:

(a) Drell-Yan (Z,W)

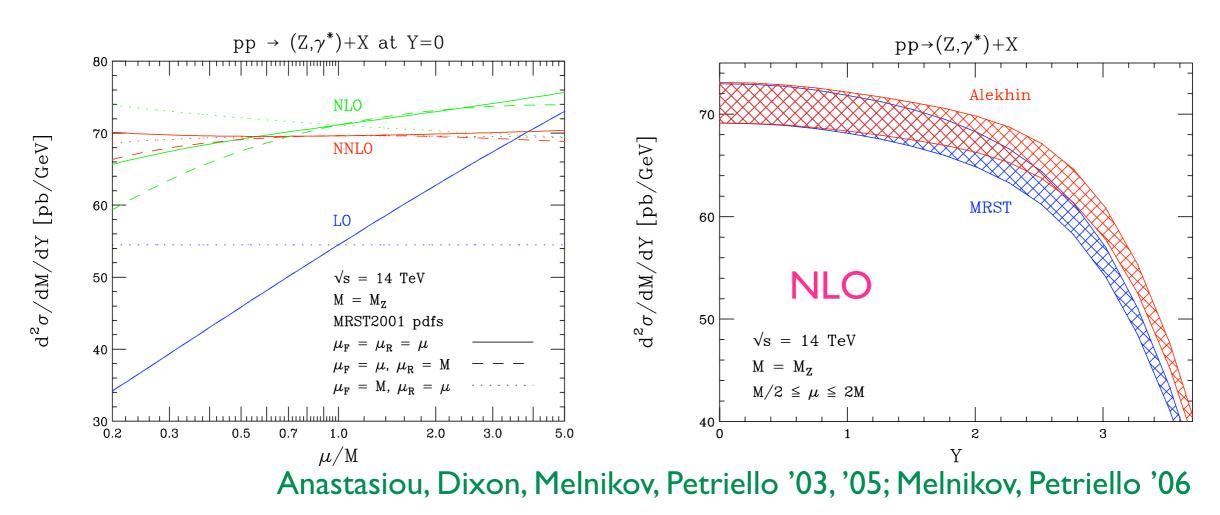
(b) Higgs


(c) 3-jets in e+e-

Drell-Yan processes

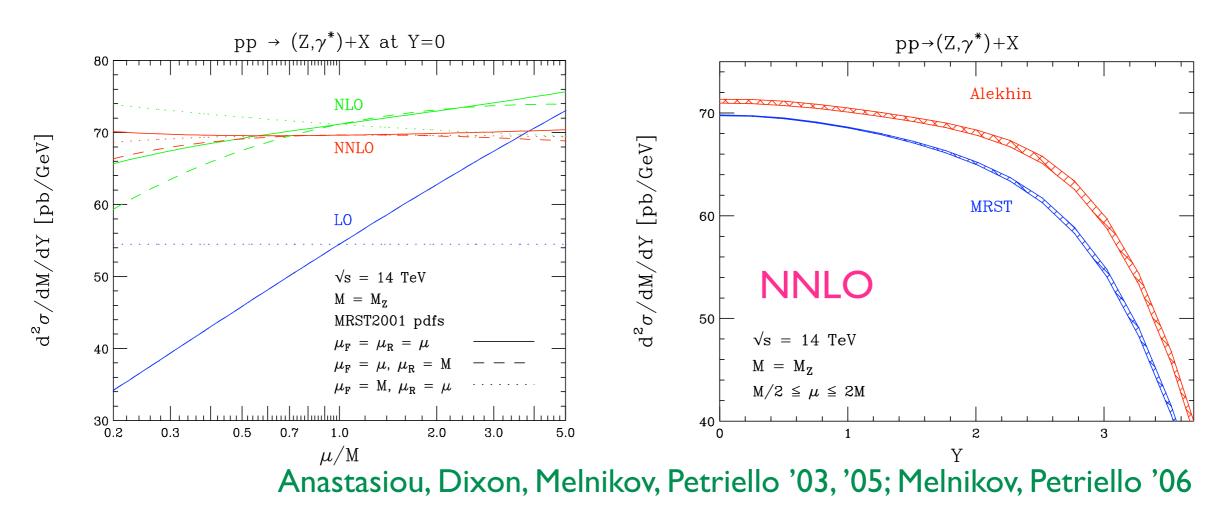
Drell-Yan processes: Z/W production (W \rightarrow Iv, Z \rightarrow I⁺I⁻)

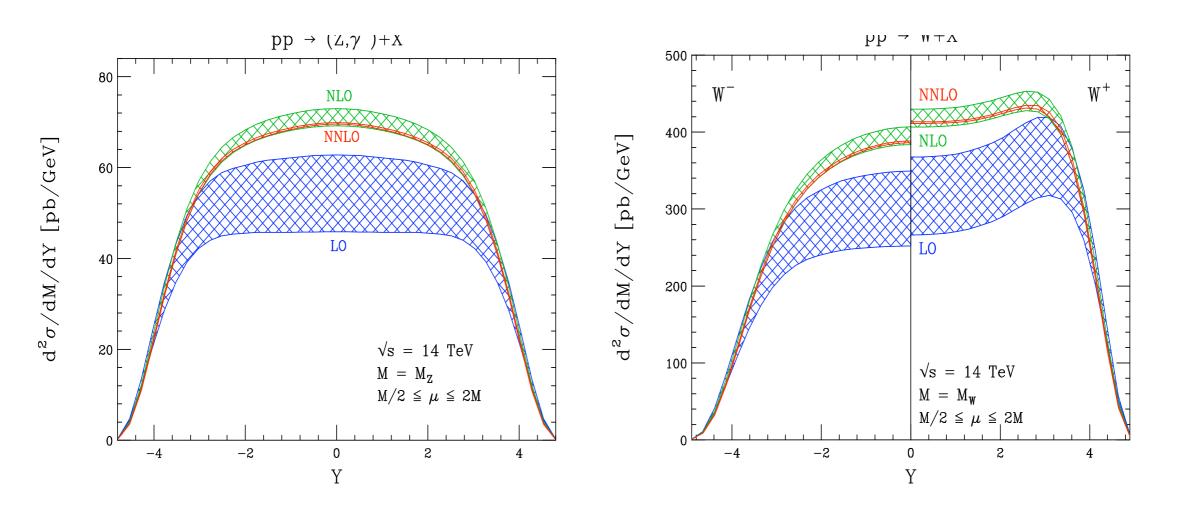
Very clean, golden-processes in QCD because


- \checkmark dominated by quarks in the initial state
- \checkmark no gluons or quarks in the final state (QCD corrections small)
- \checkmark leptons easier experimentally (clear signature)
- \Rightarrow as clean as it gets at a hadron collider

Drell-Yan

most important and precise test of the SM at the LHC
 best known process at the LHC: spin-correlations, finite-width effects, γ-Z interference, fully differential in lepton momenta

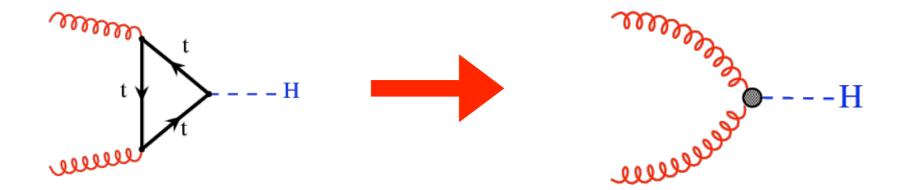

Scale stability and sensitivity to PDFs


Drell-Yan

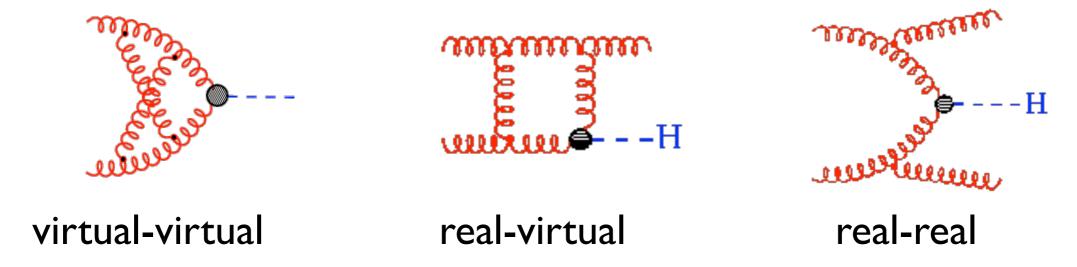
most important and precise test of the SM at the LHC
 best known process at the LHC: spin-correlations, finite-width effects, γ-Z interference, fully differential in lepton momenta

Scale stability and sensitivity to PDFs

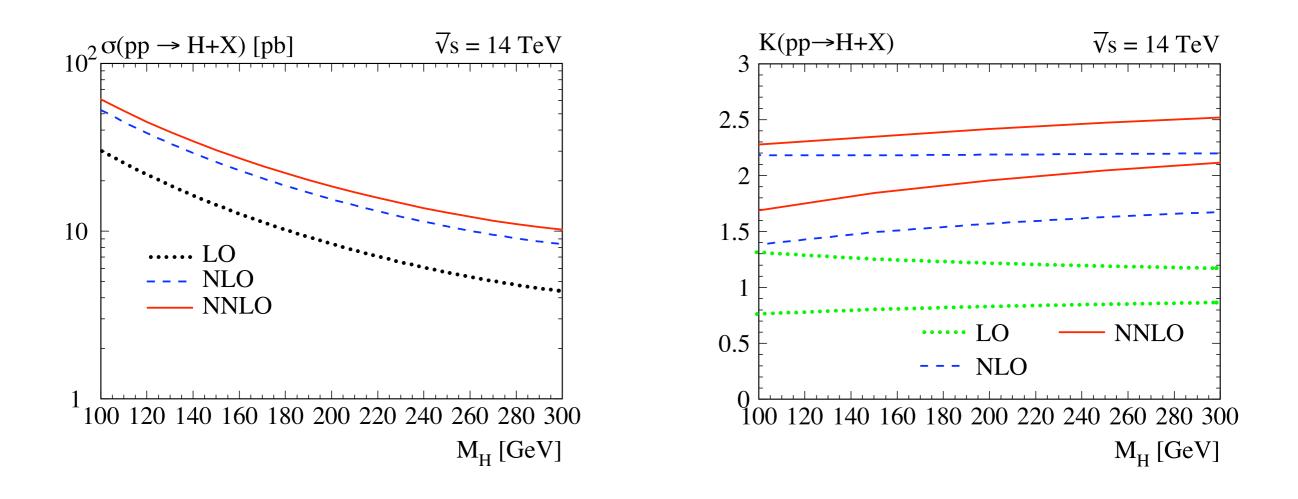
Drell-Yan: rapidity distributions



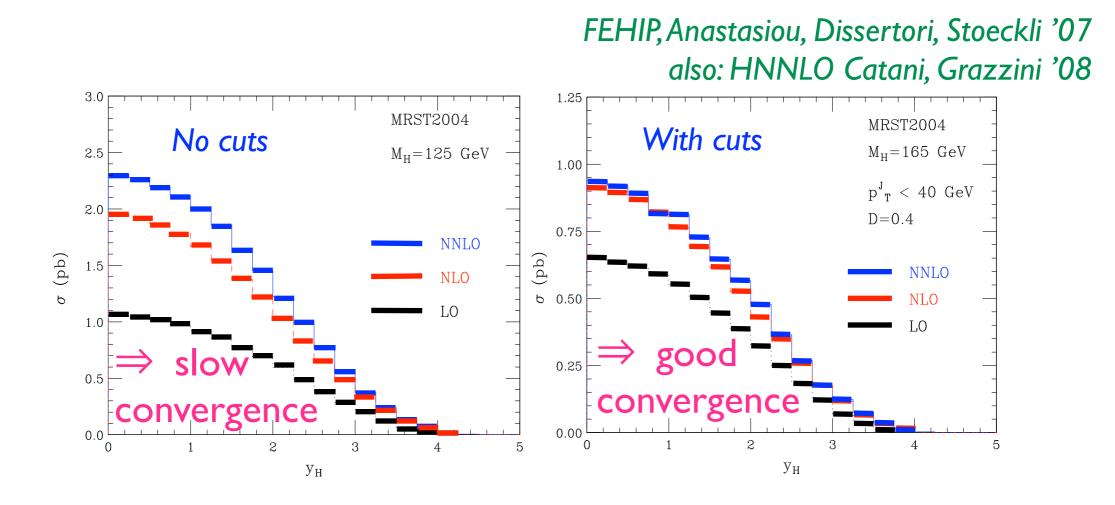
Anastasiou, Dixon, Melnikov, Petriello '03, '05; Melnikov, Petriello '06


at the LHC: perturbative accuracy of the order of 1%

Inclusive NNLO Higgs production


Inclusive Higgs production via gluon-gluon fusion in the large mt-limit:

NNLO corrections known since few years now:


Inclusive NNLO Higgs production

Kilgore, Harlander '02 Anastasiou , Melnikov '02

Exclusive NNLO Higgs production

First fully exclusive NNLO calculation of H \rightarrow WW \rightarrow 2I 2v

⇒ impact of NNLO dramatically reduced by cuts

Very important to include cuts and decays in realistic studies

NNLO 3-jets in e⁺e⁻

<u>Motivation</u>: error on α_s from jet-observables

 $\alpha_s(M_Z) = 0.121 \pm 0.001 \,(\text{exp.}) \pm 0.005 \,(\text{th.})$

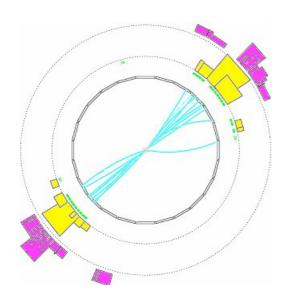
Bethke '06

dominated by theoretical uncertainty

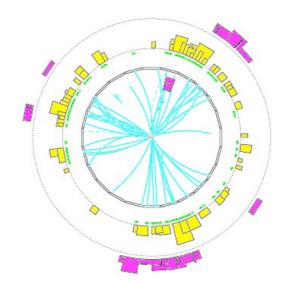
NNLO 3-jet calculation in e⁺e⁻ completed in 2007

Method: developed antenna subtraction at NNLO

<u>First application</u>: NNLO fit of α_s from event-shapes

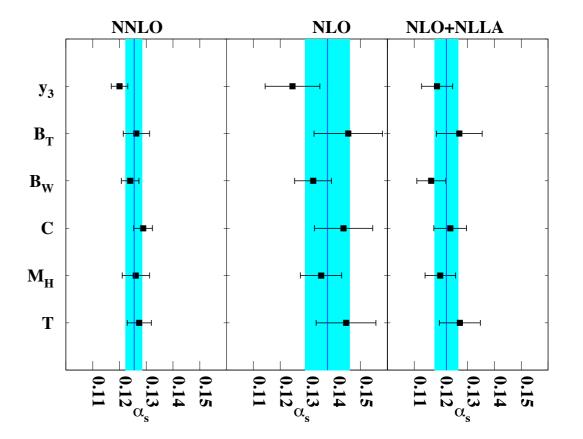

Event shapes

Event-shapes and jet-rates: infrared safe observables describing the energy and momentum flow of the final state.


Candle example in e^+e^- : The thrust

$$T = \max_{\vec{n}} \frac{\sum_{i} \vec{p_i} \cdot \vec{n}}{\sum_{i} |\vec{p_i}|}$$

Pencil-like event: $1 - T \ll 1$



Planar event: $1 - T \sim 1$

α_s from event shapes at NNLO

- scale variation reduced by a factor 2
- scatter between α_s from different
 event-shapes reduced
- better χ^2 , central value closer to world average

 $\alpha_s(M_Z^2) = 0.1240 \pm 0.0008 \,(\text{stat}) \pm 0.0010 \,(\text{exp}) \pm 0.0011 \,(\text{had}) \pm 0.0029 \,(\text{theo})$

Dissertori, Gehrmann-DeRidder, Gehrmann, Glover, Heinrich, Stenzel '07 Gehrmann, Luisoni, Stenzel '08

NNLO on the horizon

Single-jet production

- constrain gluon PDF
- matrix elements known for some time
- subtraction in progress

Top pair production

- needed for more precise m_t determination
- possibly for further constraining PDFs
- matrix elements partially known

Vector boson pair production

- study gauge structure of SM (triple gauge couplings)
- most important and irreducible background for Higgs production in intermediate mass region
- NLO corrections are large

Recap of 3rd Lecture

🗳 Leading order

- everything can be computed in principle today (practical edge: 8 particles in the final state), many public codes
- techniques: standard Feynman diagrams or recursive BG, BCF, CSW ...

Next-to-leading order

- current frontier $2 \rightarrow 4$ in the final state
- many new, promising techniques
- Next-to-next-to-leading order
 - few 2→1 processes available (Higgs, Drell-Yan)
 - 3-jets in e⁺e⁻