
Plan for 3rd lecture: Perturbative calculations
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This lecture will focus on perturbative calculations

LO, NLO, NLO+MC, NNLO

techniques, issue with divergences

current status, sample results 

Perturbative calculations rely on the idea of an order-by-order expansion 
in the small coupling

σ ∼ A + Bαs + Cα2
s + Dα3

s + . . .

LO NLO NNLO NNNLO



Perturbative calculations

• Perturbative calculations = fixed order expansion in the coupling 
constant, or more refined expansions that include terms to all orders

• Perturbative calculations are possible because the coupling is small at 
high energy 

• In QCD (or in a generic QFT) the coupling depends on the energy 
(renormalization scale)

• So changing scale the result changes. By how much? What does this 
dependence mean? 

• Let’s consider some examples 
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Leading order n-jet cross-section

3

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

σLO

njets(µ) = αs(µ)nA(pi, �i, . . .)

σLO
njets

(µ)
σLO

njets
(µ�)

=
�

αs(µ)
αs(µ�)

�n

• Notice that at Leading Order the normalization is not under control:

• Instead, choosing a scale µ’ one gets 

So the change of scale is a NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 

σLO

njets(µ
�) = αs(µ�)nA(pi, �i, . . .) = αs(µ)n

�
1 + n b0 αs(µ) ln

µ2

µ�2 + . . .

�
A(pi, �i, . . .)



NLO n-jet cross-section
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Now consider n-jet cross-section at NLO.  At scale µ the result reads 

• So the NLO result compensates the LO scale dependence. The residual 
dependence is NNLO.

• Notice also that a good scale choice automatically resums large 
logarithms to all orders, while a bad one spuriously introduces large logs 
and ruins the PT expansion 

• Scale dependence and normalization start being under control only 
at NLO, since a compensation mechanism kicks in  

• Scale variation is conventionally used to estimate the theory uncertainty, 
but the validity of this procedure should not be overrated (see later) 

σNLO

njets(µ) = αs(µ)nA(pi, �i, . . . ) + αs(µ)n+1

�
B(pi, �i, . . . )− nb0 ln

µ2

Q2
0

�
+ . . .



Leading order: Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Bottlenecks  

a) number of Feynman diagrams diverges factorially

b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓CSW relations: compute helicity 
amplitudes by sewing together 
MHV amplitudes [- - + + ... + ]

Cachazo, Svrcek, Witten ’04
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✓BCF relations: compute helicity 
amplitudes via on-shell recursions 
(use complex momentum shifts)

Britto, Cachazo, Feng ’04
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Matrix element generators

Fully automated

‣ generation of tree level matrix elements

- Feynman diagrams [CompHEP/CalcHEP, Madgraph/Madevent, 
HELAS, Sherpa, ... ]

- Helicity amplitudes + off-shell Berends-Giele recursion [ALPHA/
ALPGEN, Helac, Vecbos]

- From twistors: on-shell recursion (BCF) / MHV vertices (CSW) (no 
public code)  

‣ phase space integration

‣ interface to parton showers

Many well tested public available codes
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Benefits and drawbacks of LO
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fastest option; often the only one

test quickly new ideas with fully exclusive description

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision 

Benefits of LO:

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

large scale dependences, reflecting large theory uncertainty

no control on normalizaiton

poor control on shapes

poor modeling of jets

Drawbacks of LO:



Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible
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small scale dependence at LO can be very misleading (see later), small 
dependence at NLO robust sign that PT is under control 
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through loop effects get indirect information about sectors not 
directly accessible

• reduce dependence on unphysical scales 
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Benefits of next-to-leading order (NLO)

large NLO correction or large dependence at NLO robust sign 
that neglected other higher order are important
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Ingredients at NLO

set of subtraction terms to cancel divergences  set of subtraction terms to cancel divergences  

tree graph rates with N+1 partons 
➔ soft/collinear divergences 
tree graph rates with N+1 partons 
➔ soft/collinear divergences 

A full N-particle NLO calculation requires:

virtual correction to N-leg process 
➔ divergence from loop integration,
    use e.g.  dimensional regularization bottleneck

We won’t have time to do detailed NLO calculations, but let’s 
look a bit more in detail at the issue of divergences/subtraction
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Regularization in QCD
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Regularization: a way to make intermediate divergent quantities meaningful 

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... 
Compared to those methods, dimensional regularizatiom has the big virtue that it leaves 
the regularized theory Lorentz invariant, gauge invariant, unitary etc. 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

�
d4l

(2π)4
→ µ2�

�
ddl

(2π)d
, d = 4− 2� < 4

• N.B. to preserve the correct dimensions a mass scale µ is needed

• Divergences show up as intermediate poles 1/ε
� 1

0

dx

x
→

� 1

0

dx

x1−�
=

1
�



Renormalization schemes

Renormalization: a global redefinition of couplings and masses which 
absorbs all UV divergences.  Several schemes are possible (MS, MS, OS ...). 

• Take two different renormalization schemes of the QCD bare 
coupling as 

αren,A
s = ZAα0

s , αren,B
s = ZBα0

s

αren,B
s = αren,A

s (1 + c1α
ren,A
s + . . . )

• Infinite parts of renormalization constants must be the same, therefore 
renormalized constants must be related by a finite renormalization 

• Note that as a consequence of this, the first two coefficients of the  
β-function do not change under such a transformation, i.e. they are 
scheme independent. This it not true for higher order coefficients.
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The MS scheme

• Today standard scheme is the modified minimal subtraction scheme,  
MS

• After regularizing integrals via the dimensional regularization, poles 
appear always in the combination   

• Therefore in the MS-scheme, instead of subtracting poles minimally, 
one always subtracts that combination, and replaces the bare 
coupling with the renormalized one  

1
�

+ ln(4π)− γE

• It is then standard to quote the coupling and ΛQCD in this scheme, 
the current value is 

206MeV < ΛMS(5) < 231MeV

• Uncertainties in this quantity propagate in the QCD cross-sections 
13



Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet 
definition.  At NLO, two divergent integrals, but the sum is finite 

• Since one integrates over a different number of particles in the final 
state, real and virtual need to be evaluated first, and combined then 

• This means that one needs to find a way of removing divergences before 
evaluating the phase space integrals

• Two main techniques to do this
- phase space slicing ⇒ obsolete because of practical/numerical issues

- subtraction method ⇒ most used in recent applications

σJ
NLO =

�

n+1

dσJ
R +

�

n
dσJ

V
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Subtraction method

15

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

2 Re{MV · M∗
0} =

1
�
V

• IR divergences in the loop integration regularized by taking D=4-2ε 

dσJ
R = dφn+1|Mn+1|2F J

n+1(p1, . . . , pn+1)



Subtraction method
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• The n-jet cross-section becomes 

• KLN cancelation guarantees that 

lim
x→0

M(x) = V

σJ
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) +
1
�
VF J

n

• Infrared safety of the jet definition implies 

lim
x→0

F J
n+1(x) = F J

n

• One can then add and subtract the analytically computed divergent part 

σJ
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x)−
� 1

0

dx

x1+�
VF J

n +
� 1

0

dx

x1+�
VF J

n +
1
�
VF J

n



Subtraction method

• This can be rewritten exactly as 

σJ
NLO =

� 1

0

dx

x1+�
M(x)

�
F J

1 (x)− VF J
0

�
+O(1)VF J

0

⇒ Now both terms are finite and can be evaluated numerically

• Subtracted cross-section must be calculated separately for each process 
(but mostly automated now). It must be valid everywhere in phase space 

• Systematized in the seminal papers of Catani-Seymour (dipole 
subtraction, ’96) and Frixione-Kunszt-Signer (FKS method, ’96) 

• Subtraction used in all recent NLO applications and public codes 
(Event2, Disent, MCFM, NLOjet++, ... ) 
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Approaches to virtual (loop) part of NLO

Two complementary approaches:

‣ Numerical/traditional Feynman diagram methods: 
use robust computational methods [integration by parts, reduction 
techniques...], then let the computer do the work for you  

Bottleneck: 
factorial growth, 2 → 4 doable, very difficult to go beyond

‣ Analytical approaches: 
improve understanding of field theory [e.g. twistor methods, 
unitarity, supersymmetry, recursions ... ]

Bottleneck: 
still lack of complete automation, fermions in general more difficult 
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Two breakthrough ideas

Britto, Cachazo, Feng ’04

1) “... we show how to use generalized unitarity to read off the (box) 
coefficients. The generalized cuts we use are quadrupole cuts ...”

NB: non-zero 
because cut gives 
complex momenta

Aim: NLO loop integral without doing the integration

Quadrupole cuts:  4 on-shell conditions on 4 dimensional loop 
momentum) freezes the integration. But rational part of the amplitude, 
coming from D=4-2ε not 4, computed separately
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Two breakthrough ideas
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Aim: NLO loop integral without doing the integration

Ossola, Pittau, Papadopolous ’06

2) The OPP method: “We show how to extract the coefficients of 4-, 3-, 2- and 
1-point one-loop scalar integrals....”

Contents

−gµν + kµkν

k2 − m2
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∑
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AN = +
∑
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+

∑
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2
+
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−
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i1i2

6
q2
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Coefficients can be determined by solving system of equations: no 
loops, no twistors, just algebra!



Status of NLO

2 → 2: all known (or easy) in SM and beyond

2 → 3: essentially all SM processes known 

[but: often do not include decays, codes private]

2 → 4: a number of calculations performed in the last 1- or 2 years. 
Calculations done using different techniques. 

2 → 5: only dominant corrections for one process 

Status of NLO:
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The 2005 Les Houches wish-list

Table 41: Other 2 → 4 (5) calculations.

2→ 4 (5): special models, specific helicity amplitudes, special kinematics.

process references comments

N-photon helicity amplitudes [502] only specific helicity configurations

6- and 7 - gluon amplitudes [503, 504] for non-Susy Yang-Mills only specific

helicity configurations

6- gluon amplitude [505] Result for one phase space point

(only virtual corrections)

6-scalar amplitudes in the Yukawa model [506]

2-photon 4-scalar amplitudes [507] only specific helicity configurations

in the Yukawa model

some of the complex final states listed here may be limited and (at least in the early days) must be known

from NLO theory. NLO is the first order at which both the normalization and shape can be calculated

with any degree of confidence.

Table 42: The LHC “priority” wishlist for which a NLO computation seems now feasible.

process relevant for

(V ∈ {Z,W, γ})

1. pp → V V jet tt̄H , new physics
2. pp → tt̄ bb̄ tt̄H
3. pp → tt̄ + 2 jets tt̄H
4. pp → V V bb̄ VBF→ H → V V , tt̄H , new physics
5. pp → V V + 2 jets VBF→ H → V V
6. pp → V + 3 jets various new physics signatures

7. pp → V V V SUSY trilepton

• pp → VV + jet: One of the most promising channels for Higgs production in the low mass range

is through the H → WW ∗ channel, with the W’s decaying semi-leptonically. It is useful to look

both in theH → WW exclusive channel, along with theH → WW+jet channel. The calculation

of pp → WW+jet will be especially important in understanding the background to the latter.

• pp → ttbb and pp → tt + 2 jets: Both of these processes serve as background to ttH , where the
Higgs decays into a bb pair. The rate for ttjj is much greater than that for ttbb and thus, even if 3
b-tags are required, there may be a significant chance for the heavy flavor mistag of a ttjj event to
contribute to the background.

• pp → V V bb: Such a signature serves as non-resonant background to tt production as well as to
possible new physics.

• pp → VV + 2 jets: The process serves as a background to VBF production of a Higgs boson.

• pp → V + 3 jets: The process serves as background for tt production where one of the jets may not
be reconstructed, as well as for various new physics signatures involving leptons, jets and missing

transverse momentum.

172

The QCD, EW & Higgs Working group report hep-ph/0604120
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The 2007 update
Process Comments

(V ∈ {Z,W, γ})
Calculations completed since Les Houches 2005

1. pp → V V jet WW jet completed by Dittmaier/Kallweit/Uwer [3];

Campbell/Ellis/Zanderighi [4]

and Binoth/Karg/Kauer/Sanguinetti (in progress)

2. pp → Higgs+2jets NLO QCD to the gg channel
completed by Campbell/Ellis/Zanderighi [5];

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier [6, 7]

3. pp → V V V ZZZ completed by Lazopoulos/Melnikov/Petriello [8]

andWWZ by Hankele/Zeppenfeld [9]

Calculations remaining from Les Houches 2005

4. pp → tt̄ bb̄ relevant for tt̄H
5. pp → tt̄+2jets relevant for tt̄H
6. pp → V V bb̄, relevant for VBF→ H → V V , tt̄H
7. pp → V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by

(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]

8. pp → V +3jets various new physics signatures

NLO calculations added to list in 2007

9. pp → bb̄bb̄ Higgs and new physics signatures

Calculations beyond NLO added in 2007

10. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

11. NNLO pp → tt̄ normalization of a benchmark process

12. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes

5

}

The NLO multi-leg Working 
group report 0803.0494

with Feynman diagrams

23

}with Feynman diagrams or 
unitarity/onshell methods



Top-pair production

Basic production mechanisms: initiated from quarks or gluons

What is the dominant 
production mechanism, at 

the Tevatron / LHC ?
[And why ?] 
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Top-pair production: Tevatron 

Running the program MCFM gives 
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Top-pair production: pp @ 1.96 TeV 

Running the program MCFM gives 
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Top-pair production: LHC 

Running the program MCFM gives 
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Top-asymmetry 

28

At the Tevatron, one interesting top measurement is its asymmetry

Afb =
Ntop(η > 0)−Ntop(η < 0)
Ntop(η > 0) + Ntop(η < 0)

At O(αs3) the asymmetry is non-zero, an NLO calculation gives

ANLO

fb = 0.050± 0.015
Kuehn et al. ’99

But CDF & D0 measurements give  

Aexp.
fb = 0.193± 0.065 (stat.)± 0.024 (syst.)

⇒ more than 2-sigma deviation from NLO. New physics ? 



‣ improved stability of NLO result [but no decays]

4 P.Uwer
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the LHC (right) as taken from Ref. [34], with the renormalization scale (µr) and the factorization scale (µf ) set to µ.
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At LO we find an asymmetry of about −8%. The
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Example of NLO result: tt+1jet

‣ forward-backward asymmetry at the Tevatron compatible with zero

‣ essential ingredient of NNLO tt production (hot topic)

Dittmaier, Kallweit, Uwer ’07-’08

Calculation done with Feynman diagrams
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W + 3jets 
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FIG. 2: The measured cross section dσ(W → eν+ ≥ n-jets)/dEnth-jet
T

compared to NLO predictions for n = 2, 3. In the upper
panels the NLO distribution is the solid (black) histogram, and CDF data points are the (red) points, whose inner and outer
error bars denote the statistical and total uncertainties on the measurements. The LO predictions are shown as dashed (blue)
lines. The lower panels show the distribution normalized to an NLO prediction, the full one for n = 2 and the leading-color
one for n = 3, in the experimental bins (that is, averaging over several bins in the upper panel). The scale uncertainty bands
are shaded (gray) for NLO and cross-hatched (brown) for LO. In the n = 2 case, the dotted (black) line shows the ratio of the
leading-color approximation to the full-color calculation.

as CDF, replacing the /ET cut by one on the neutrino
ET , and ignoring the lepton–jet ∆R cut removed by
acceptance. We approximate the Cabibbo-Kobayashi-
Maskawa matrix by the unit matrix, express the W cou-
pling to fermions using the Standard Model parame-
ters αQED = 1/128.802 and sin2 θW = 0.230, and use
mW = 80.419 GeV and ΓW = 2.06 GeV. We use the
CTEQ6M [31] parton distribution functions (PDFs) and
an event-by-event common renormalization and factor-
ization scale, µ =

√

m2
W + p2

T (W ). To estimate the scale
dependence we choose five values in the range (1

2
, 2)×µ.

We do not include PDF uncertainties. For W + 1, 2-jet
production these uncertainties have been estimated in
ref. [2]. In general they are smaller than the scale uncer-
tainties at low ET but larger at high ET . The LO calcula-
tion uses the CTEQ6L1 PDF set. For n = 1, 2 jets, NLO
total cross sections agree with those from MCFM [30], for
various cuts. As our calculation is a parton-level one, we
do not apply corrections due to non-perturbative effects
such as induced by the underlying event or hadronization.
Such corrections are expected to be under ten percent [2].

In table I, we collect the results for the total cross
section, comparing CDF data to the NLO theoretical
predictions computed using BlackHat and SHERPA.
The columns labeled “LC NLO” and “NLO” show respec-
tively the results for our leading-color approximation to
NLO, and for the full NLO calculation. The leading-color
NLO and full NLO cross-sections for W + 1- and W + 2-

jet production agree to within three percent. We thus
expect only a small change in the results for W + 3-jet
production once the missing subleading-color contribu-
tions are incorporated.

We have also compared the ET distribution of the nth

jet in CDF data to the NLO predictions for W + 1, 2, 3-
jet production. For W + 2, 3-jets these comparisons are
shown in fig. 2, including scale-dependence bands ob-
tained as described above. For reference, we also show
the LO distributions and corresponding scale-dependence
band. (The calculations matching to parton showers [29]
used in ref. [2] make different choices for the scale varia-
tion and are not directly comparable to the parton-level
predictions shown here.) The NLO predictions match the
data very well, and uniformly in all but the highest ET

bin. The central value of the LO predictions, in contrast,
have different shapes from the data. The scale depen-
dence of the NLO predictions are substantially smaller
than of the LO ones, decreasing by about a factor of five
in the W + 3-jet case. In the W + 2-jet case, we also show
the ratio of the leading-color approximation to the full-
color result within the NLO calculation: the two results
differ by less than three percent over the entire trans-
verse energy range, considerably smaller than the scale
dependence (and experimental uncertainties).

In fig. 3, we show the distribution for the total trans-
verse energy HT , given by the scalar sum of the jet and
lepton transverse energies, HT =

∑

j Ejet
T,j + Ee

T + /ET .

Berger et al. ’09 Ellis et al. ’09

☺ Small K=1.0-1.1, reduced uncertainty: 50% (LO) → 10% (NLO)

☺ First applications of new techniques to 2 → 4 LHC processes

Measured at the Tevatron + of primary importance at the LHC: 
background to model- independent new physics searches using jets + MET 
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pp → tt bb 

Measurement of ttH impossible without knowledge of pp →tt bb at NLO
(need also pp →tt jj) + interesting per se 

☹ Large K=1.8, large residual uncertainties: 70% (LO) → 35% (NLO)

☺ Demonstrates feasibility of Feynman diagrams calculation for 
    2 → 4 LHC processes

qq+gg+qg channels
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LO and NLO scale dependence (qq+gg+qg channels)

Reduction of scale dependence for σtot

• rescaling µR,F = mt by common factor ξ ∈ [0.5, 2]

• 70% dependence at LO

• 34% dependence at NLO

Rescaling µF by 1/ξ (lower plot)

• qualitatively similar behaviour

• dominant dependence from αS(µR)4

Very large NLO correction

• LO and NLO curves do not cross around ξ = 1

• K = 1.77 at central scale

• completely different wrt qq̄ channel (K = 1.03)

• bad news: strong tt̄H-background enhancement!
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• bad news: strong tt̄H-background enhancement!

Bredenstein et al.  ’09
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General NLO features?

grows further, it may prove necessary to adopt as well new approaches and methods. At the 2007 session

of Les Houches, several such approaches were under discussion and development, primarily those based

on the general analytic structure of amplitudes. These methods include recursive techniques at both

tree and loop level; the use of (generalized) unitarity in four dimensions, and in 4 − 2ε dimensions
(the latter in the context of dimensional regularization); and automated solutions for coefficients of one-

loop integrals, which is also connected with generalized unitarity. Complex final states possess intricate

kinematic regions in which either the amplitude itself becomes singular, or a particular representation of

it becomes numerically unstable. The general identification of such regions, and methods for dealing with

potential instabilities, are also areas of active interest, which are not unrelated to the use of analyticity to

construct loop amplitudes.

Even with the rapid progress we have been seeing in the last few years, there are NLO cross sec-

tions of interest that will not be completed in a timely manner for the LHC. One question is whether

we can provide any approximations/estimates of the uncalculated NLO matrix elements based on expe-

riences with simpler calculations. Table 2 shows the K-factors (NLO/LO) tabulated for some important

processes at the Tevatron and LHC. Of course, K-factors are a simplified way of presenting the effects

of NLO corrections (depending on both scale choice and PDF used for example), but the table provides

some interesting insights. For example, it appears that processes that involve a large color annihilation

(for example gg → Higgs) tend to have large K-factors for scales typically chosen to evaluate the matrix

elements. The addition of extra legs in the final state tends to result in a smaller K-factor. For example,

the K-factor for Higgs+2jets is smaller than for Higgs+1jet, which in turn is smaller than that for inclu-

sive Higgs production. The same is true for the K-factor for W+2jet being less than that for W+1jet

and the K-factor for tt̄+1jet being less than that for tt̄. Can we generalize this to estimate that the NLO
corrections forW+3jets and tt̄+2jets will be smaller still?

Typical scales Tevatron K-factor LHCK-factor

Process µ0 µ1 K(µ0) K(µ1) K′(µ0) K(µ0) K(µ1) K′(µ0)

W mW 2mW 1.33 1.31 1.21 1.15 1.05 1.15

W+1jet mW pjet
T 1.42 1.20 1.43 1.21 1.32 1.42

W+2jets mW pjet
T 1.16 0.91 1.29 0.89 0.88 1.10

WW+jet mW 2mW 1.19 1.37 1.26 1.33 1.40 1.42

tt̄ mt 2mt 1.08 1.31 1.24 1.40 1.59 1.48

tt̄+1jet mt 2mt 1.13 1.43 1.37 0.97 1.29 1.10

bb̄ mb 2mb 1.20 1.21 2.10 0.98 0.84 2.51

Higgs mH pjet
T 2.33 – 2.33 1.72 – 2.32

Higgs via VBF mH pjet
T 1.07 0.97 1.07 1.23 1.34 1.09

Higgs+1jet mH pjet
T 2.02 – 2.13 1.47 – 1.90

Higgs+2jets mH pjet
T – – – 1.15 – –

Table 2: K-factors for various processes at the Tevatron and the LHC calculated using a selection of input parameters. In all

cases, the CTEQ6M PDF set is used at NLO.K uses the CTEQ6L1 set at leading order, whilstK′ uses the same set, CTEQ6M,

as at NLO. For most of the processes listed, jets satisfy the requirements pT > 15 GeV/c and |η| < 2.5 (5.0) at the Tevatron

(LHC). For Higgs+1,2jets, a jet cut of 40 GeV/c and |η| < 4.5 has been applied. A cut of pjet
T > 20 GeV/c has been applied

for the tt̄+jet process, and a cut of pjet
T > 50 GeV/c for WW+jet. In the W (Higgs)+2jets process the jets are separated by

∆R > 0.52, whilst the VBF calculations are performed for a Higgs boson of mass 120 GeV. In each case the value of the K-

factor is compared at two often-used scale choices, where the scale indicated is used for both renormalization and factorization

scales.

6

[NLO report 0803.0494]

‣ color annihilation, gluon dominated ⇒ large K factors ? 

‣ extra legs in the final state ⇒ smaller K-factors ? 

But be careful, only full calculations can really tell! 

General features: 

K =
NLO

LO
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NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- master example: Higgs production

when high precision is needed to match small experimental error

- W/Z hadro-production, heavy-quark hadro-production, αs from 
event shapes in e+e- ...

when a reliable error estimate is needed 
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Collider processes known at NNLO

Collider processes known at NNLO today: 

(a) Drell-Yan (Z,W)                   

(b) Higgs

(c) 3-jets in e+e- 
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Drell-Yan processes

Drell-Yan processes: Z/W production (W → lν , Z → l+l-)

Very clean, golden-processes in QCD because

✓dominated by quarks in the initial state

✓no gluons or quarks in the final state (QCD corrections small)

✓ leptons easier experimentally (clear signature) 

⇒	 as clean as it gets at a hadron collider

P1

P2

fq(x1)

fq(x2)
x2P2

x1P1

γ∗, Z

l−

l+
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  NLO

Drell-Yan 

most important and precise test of the SM at the LHC
best known process at the LHC: spin-correlations, finite-width 
effects, γ-Z interference, fully differential in lepton momenta 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06Figure 4: More general variations of the renormalization and factorization scales, for production
of an on-shell Z boson at the LHC, at central rapidity Y = 0. For each order in perturbation
theory (LO, NLO, NNLO), three curves are shown. The solid curves depict common variation of
the renormalization and factorization scales, µF = µR = µ, as used in the rest of the paper, but
extending the range of variation to M/5 < µ < 5M . The dashed curves represent variation of the
factorization scale alone, holding the renormalization scale fixed at M . The dotted curves result
from varying the renormalization scale instead, holding the factorization scale fixed at M .

sections. These corrections are the dσ(2)/dY terms defined in Eq. (4.1) (after renormal-

ization and mass factorization), convoluted with the MRST PDFs and with all partonic

channels included. We vary the scale in these terms, and normalize this variation to the

NLO cross section. We find that the NNLO corrections contribute a scale dependence

of ≈ 5% at central rapidities. When we form the complete NNLO cross section, which

requires adding these corrections to the convolution of the dσ(0)/dY and dσ(1)/dY terms

of Eq. (4.1) with NNLO PDFs, the width of this band is decreased to less than 1%. This

demonstrates a remarkable interplay between NNLO calculations and parton distribution

functions.

The small size of the NNLO corrections is partly due to large cancellations between

the various partonic channels. To illustrate this, we present in Fig. 6 the fractional contri-

butions of the various NNLO partonic corrections to the entire NNLO cross section, at Run

I of the Tevatron. We include the qg and qiqj channels (the latter includes qq and qq̄ inital

states); the gg subprocess is numerically unimportant in this process. The magnitude of

each order α2
s partonic correction, δσij , can be 7–8% of the complete NNLO cross section,
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Scale stability and sensitivity to PDFs
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Drell-Yan: rapidity distributions 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06

Gauge boson production at the LHC

Gold-plated process

Anastasiou, Dixon, Melnikov, Petriello (03)

At LHC NNLO perturbative accuracy better than 1%

⇒ could use to determine parton-parton luminosities at the LHC

Recent developments in QCD – p. 32

☛ at the LHC: perturbative accuracy of the order of 1%
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Inclusive NNLO Higgs production

Inclusive Higgs production via gluon-gluon fusion in the large mt-limit:

NNLO corrections known since few years now:

virtual-virtual real-virtual real-real
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Inclusive NNLO Higgs production

3

the soft pieces are given in Eq. (25) of Ref. [2], while the

hard pieces, σ̂(n),h
ij (to order (1 − x)1) are:
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+ L(x)

(

2379

2
− 270 ζ2

)

−
2385

4
L2(x) + 216 L3(x) +

1017

2
ζ2 +

1053

2
ζ3

+ nf

(

395

24
−

45

2
L(x) +

22

3
L2(x) −

22

3
ζ2

)]

+ . . .

}

,

(8)

σ̂(2),h
gq = σ0

{

11

27
+

29

6
ζ2 +

311

18
ζ3 +

13

81
nf

+ L(x)

[

341

18
−

50

9
ζ2 −

2

3
nf

]

+ L2(x)

(

85

36
+

1

18
nf

)

+
367

54
L3(x)

+ (1 − x)

[

−
959

18
+

433

9
L(x) −

33

2
L2(x)

+ 8 ζ2 +
4

9
nf L(x)

]

+ . . .

}

,

(9)

and

σ̂(2),h
qq̄,NS = σ̂(2),h

qq̄,S = σ̂(2),h
qq,NS = σ̂(2),h

qq,S =

σ0

{

(1 − x)

[

20

9
−

16

9
L(x) +

16

9
L2(x) −

16

9
ζ2

]

+ . . .

}

.

(10)

For the sake of brevity, we have suppressed explicitly
scale dependent terms by setting µF = µR = MH (they
can be readily reconstructed using scale invariance) and
displayed terms only to order (1 − x)1. Terms to order
(1−x)1 dominate the corrections (see Fig. (2)), but we in-
clude terms to order (1−x)16 for all sub-processes in our
numerical analysis. The labels “NS” and “S” in Eq. (10)
denote the flavor non-singlet and singlet quark contribu-
tions, respectively. The four contributions are equal only
to order (1− x)1; their expansions differ at higher orders

of (1 − x) (except that σ̂(2),h
qq̄,S = σ̂(2),h

qq,S exactly). We note
in passing that our explicit calculation confirms the value

for the coefficient c(2)
03 for the gluon-gluon subprocess de-

rived in Ref. [4].

HADRONIC RESULTS

The hadronic cross section σ is related to the partonic
cross section through a convolution with the parton dis-

tribution functions. It has been argued [10] that conver-
gence is improved by pulling out a factor of x from σ̂ij

before expanding in (1 − x). We indeed observe a more
stable behavior at low orders of (1 − x) and will adopt
this prescription in what follows. Beyond fifth order,
however, it is irrelevant which is used.

In Fig. (1), we show the cross section at LO, NLO and
NNLO. At each order, we use the corresponding MRST

parton distribution set [16] [11, 12]. The NNLO distri-
butions are based upon approximations of the three-loop
splitting functions [13]. Studies using other parton distri-
butions, including the NNLO distributions of Alekhin [14]
will be presented elsewhere.
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FIG. 1: LO (dotted), NLO (dashed) and NNLO (solid) cross
sections for Higgs production at the LHC (µF = µR = MH).
In each case, we weight the cross section by the ratio of the
LO cross section in the full theory (Mt = 175 GeV) to the LO
cross section in the effective theory (Eq. (2)).

We next look at the quality of the expansion that we
use for the evaluation of the NNLO corrections. Fig. (2)
shows the NNLO K-factor (KNNLO ≡ σNNLO/σLO) for
the LHC starting from the purely soft limit ∝ (1 − x)−1

and adding successively higher orders in the expansion in
(1− x) up to order (1− x)16. Clearly, the convergence is
very good: beyond order (1−x)1, the curves differ by less
than 1%. Observe that the purely soft contribution un-
derestimates the true result by about 10-15%, while the
next term in the expansion, ∝ (1 − x)0, overestimates it
by about 5%. Note that the approximation up to (1−x)0

is not the same as the “soft+sl”-result of Ref. [2] or
the “SVC”-result of Ref. [3], since these include only the
ln3(1 − x) terms at that order.

We next consider the renormalization scale (µR) and
factorization scale (µF ) dependence of the K-factors. At
the LHC, we observe that the µF and µR dependence has
the opposite sign. In order to arrive at a conservative
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FIG. 2: K-factor for Higgs production at the LHC. Each line
corresponds to a different order in the expansion in (1 − x).
The renormalization and factorization scales are set to MH .

estimate of the scale dependence, we display two curves
corresponding to the values (µR, µF ) = (2MH , MH/2)
and (MH/2, 2MH) (see Fig. (3)). The scale dependence
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FIG. 3: Scale dependence at the LHC. The lower curve of
each pair corresponds to µR = 2MH , µF = MH/2, the upper
to µR = MH/2, µF = 2MH . The K-factor is computed with
respect to the LO cross section at µR = µF = MH .

is reduced when going from NLO to NNLO and, in con-
trast to the results in Ref. [2], the perturbative series up
to NNLO appears to be well behaved. The reason is that
both the newly calculated contributions from hard ra-
diation and the effect of the previously unavailable set
of NNLO parton distribution functions reduce the NNLO

cross section. Detailed studies of the individual effects

will be presented in a forthcoming paper.

Fig. 4 shows the results for the Tevatron at a center-of-
mass energy of

√
s = 2 TeV. Here the dependence on µR
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FIG. 4: Scale dependence for Tevatron Run II. The lower
curve of each pair corresponds to µR = µF = 2MH , the upper
to µR = µF = MH/2.

and µF has the same sign, so we set µR = µF ≡ µ and
vary µ between MH/2 and 2MH . The K-factor is larger
than for the LHC, but the perturbative convergence and
the scale dependence are satisfactory.

CONCLUSIONS

We have computed the NNLO corrections to inclusive
Higgs production at hadron colliders. We find reasonable
perturbative convergence and reduced scale dependence.
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Exclusive NNLO Higgs production

 ⇒ impact of NNLO dramatically reduced by cuts

FEHIP, Anastasiou, Dissertori, Stoeckli ’07 
also: HNNLO Catani, Grazzini ’08

Very important to include cuts and decays in realistic studies

No cuts With cuts

⇒	 slow 
convergence

⇒	 good 
convergence

Figure 1: Bin-integrated rapidity distribution of the Higgs boson with MH = 125 GeV: results at
LO (dotted), NLO (dashed) and NNLO (solid).

When searching for the Higgs boson in the H → WW channel, a jet veto is typically required
to suppress the WW background from tt̄ production. In Fig. 2 we present the rapidity distribution
of the Higgs boson with MH = 165 GeV. In this case we apply a veto on the jets that recoil against
the Higgs boson. Jets are reconstructed by using the kT algorithm [30] with jet size D = 0.4 ¶;
each jet is required to have transverse momentum smaller than 40 GeV‖. As is known [23, 7], the
impact of higher-order corrections is reduced when a jet veto is applied. In the present case, the
impact of the NNLO corrections on the NLO total cross section is reduced from 20 to 5 %.

We finally consider the Higgs boson decay in the H → γγ channel and follow Ref. [32] to apply
cuts on the photons. For each event, we classify the photon transverse momenta according to their
minimum and maximum value, pTmin and pTmax. The photons are required to be in the central
rapidity region, |η| < 2.5, with pTmin > 35 GeV and pTmax > 40 GeV. We also require the photons
to be isolated: the hadronic (partonic) transverse energy in a cone of radius R = 0.3 along the
photon direction has to be smaller than 6 GeV. When MH = 125 GeV, by applying these cuts the
impact of the NNLO corrections on the NLO total cross section is reduced from 19% to 11%.

In Fig. 3 we plot the distributions in pTmin and pTmax for the gg → H → γγ signal. We
note that the shape of these distributions sizeably differs when going from LO to NLO and to
NNLO. The origin of these perturbative instabilities is well known [33]. Since the LO spectra
are kinematically bounded by pT ≤ MH/2, each higher-order perturbative contribution produces
(integrable) logarithmic singularities in the vicinity of that boundary. More detailed studies are

¶In our calculation up to NLO, the kT algorithm and the cone algorithm [31] are equivalent. At NNLO, the
kT algorithm is equivalent to the cone algorithm (with cone size R = D) without midpoint seeds, while the cone
algorithm with midpoint seeds would lead to (slightly) different results. The cone algorithm without midpoint seeds
would be infrared unsafe starting from N3LO.

‖At NNLO, a jet may consist of two partons. In this case, the transverse momentum of the jet is the vector
sum of the transverse momenta of the two partons.

4

Figure 2: Bin-integrated rapidity distribution of the Higgs boson with MH = 165 GeV. Final-state
jets are required to have transverse momentum smaller than 40 GeV.

necessary to assess the theoretical uncertainties of these fixed-order results and the relevance of
all-order resummed calculations. A similar comment applies to the distribution of the variable
(pTmin + pTmax)/2, which is computed, for instance, in Refs. [7, 34].

We have illustrated an extension of the subtraction formalism to compute NNLO QCD correc-
tions to the production of high-mass systems in hadron collisions. We have considered an explicit
application of our method to the NNLO computation of gg → H → γγ at the LHC, and we have
presented few selected results, including kinematical cuts on the final state. The computation
parallels the one of Ref. [7], but it is performed with a completely independent method. In the
quantitative studies that we have carried out, the two computations give results in numerical
agreement. In our approach the calculation is directly implemented in a parton level event gener-
ator. This feature makes it particularly suitable for practical applications to the computation of
distributions in the form of bin histograms. We plan to release a public version of our program in
the near future. We also plan to apply the method to other hard-scattering processes.

Acknowledgements. We would like to thank Daniel de Florian for helpful discussions and
comments.
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NNLO 3-jets in e+e-

Motivation: error on αs from jet-observables

NNLO 3-jet calculation in e+e- completed in 2007

Bethke ’06

Method: developed antenna subtraction at NNLO

First application: NNLO fit of αs from event-shapes

➥ dominated by theoretical uncertainty

αs(MZ) = 0.121± 0.001 (exp.)± 0.005 (th.)
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Event shapes

T = max
�n

�
i �pi · �n�
i |�pi|

1− T � 1 1− T ∼ 1

Candle example in e+e-:  The thrust 

Event-shapes and jet-rates: infrared safe observables describing the 
energy and momentum flow of the final state. 

Pencil-like event: Planar event:
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αs from event shapes at NNLO

Dissertori, Gehrmann-DeRidder, Gehrmann, Glover, Heinrich, Stenzel  ’07
Gehrmann, Luisoni, Stenzel ’08
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Figure 9: The measurements of the strong coupling constant  s for the six event shapes, at√
s = MZ, when using QCD predictions at di erent approximations in perturbation theory.

Once again, Fig. 6 shows that the NNLO perturbative uncertainty is reduced by about
30% compared to NLO+NLLA.

It is also remarkable that the  s values obtained from fits to di erent event shapes
with NNLO predictions are considerably more self-consistent than those found with either
NLO or NLO+NLLA expansions. Not only are the extracted values of  s more precise,
but the spread obtained from the di erent observables is smaller. This is clearly shown for
the data set at

√
s = MZ in Fig. 9. The key to this dramatic improvement is the rather

di erent size of the NNLO corrections to the various observables.

Despite these improvements our final combined result on  s(M 2
Z) still appears to be

larger than the world average [5]. We recall that the value of  s(M 2
Z) obtained from fits

with NLO+NLLA predictions is smaller than that obtained with pure NLO calculations
alone. Here we observe that when going from NLO to NNLO there is also a trend in the
direction of lower values of  s(M 2

Z).

Clearly, resummed predictions are mandatory in the two-jet region. Figures 4 and
5 clearly show the improvement achieved with NLO+NLLA predictions in the two-jet
region. Measurements of  s using NLO+NLLA approximations profit from an extended fit
range in this region. While a consistent matching of NNLLA predictions to NNLO would
require the analytic resummation of next-to-next-to-leading logarithmic terms, which are

– 17 –

‣ scale variation reduced by a factor 2

‣ scatter between αs from different 

event-shapes reduced

‣ better    , central value closer to 
world average

χ2

αs(M2
Z) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp) ± 0.0011 (had) ± 0.0029 (theo)
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NNLO on the horizon

  Single-jet production
• constrain gluon PDF 
• matrix elements known for some time
• subtraction in progress

  Top pair production
• needed for more precise mt determination
• possibly for further constraining PDFs
• matrix elements partially known

  Vector boson pair production
• study gauge structure of SM (triple gauge couplings) 
• most important and irreducible background for Higgs production 

in intermediate mass region 
• NLO corrections are large
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Recap of 3rd Lecture 

46

Leading order

• everything can be computed in principle today (practical edge: 8 
particles in the final state), many public codes

• techniques: standard Feynman diagrams or recursive BG, BCF, CSW ... 

Next-to-leading order

• current frontier 2→4 in the final state

• many new, promising techniques

Next-to-next-to-leading order 

• few 2→1 processes available (Higgs, Drell-Yan) 

• 3-jets in e+e- 


