
Davide Tommasini CARE07 Annual Meeting    30 October 2007

Improved thermal removal Improved thermal removal 
from from NbNb--Ti SC cablesTi SC cables

DavideDavide TommasiniTommasini

We are modeling We are modeling steadysteady--statestate heat transfer from SC Rutherford heat transfer from SC Rutherford 
cable to an cable to an isothermalisothermal He II bath.He II bath.

We profit of previous measurements done mostly at CEAWe profit of previous measurements done mostly at CEA--SaclaySaclay on on 
different cable insulation schemes.different cable insulation schemes.

We show there is a potential for a large margin of improvement We show there is a potential for a large margin of improvement of of 
heat removal with respect to present LHC schemesheat removal with respect to present LHC schemes
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Cable insulationCable insulation
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Tb=1.9K

SSC dipole LHC dipole

NbNb--Ti Ti pourouspourous
insulationsinsulations

Insulations are Insulations are 
wrapped around wrapped around 
a steel cable a steel cable 
mockmock--up, up, 
150 mm long.150 mm long.

Conductor is Conductor is 
always wet by always wet by 
He II He II 

He II Channels He II Channels 
saturate saturate TTcc==TTλλ

SolidConduction SuperfluidConduction

Predominance:

Q (mW/cm3)

Heat transferHeat transfer

From B. Baudouy et al Cryogenics 39, 921 (1999) 
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Heat transferHeat transfer
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Elaborated from B. Baudouy et al Cryogenics 39, 921 (1999) 

For a LHC main dipole :

Inner cable perimeter ~ 12 cm

For ΔT = 150 mK ⇒ Q = 85 W/m2

⇓

Heat transfer ~ 165 mW/m per turn

IF UNIFORMELY DISTRIBUTED

~10 W/m per aperture
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Heat Transfer ModelHeat Transfer Model
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Assumptions:Assumptions:
Negligible thermal boundary resistance at the strandNegligible thermal boundary resistance at the strand--insulation interface insulation interface [3,4]
Parallel paths are decoupledParallel paths are decoupled
Conductor and He II bath are isothermalConductor and He II bath are isothermal
He II heat transfer regime is He II heat transfer regime is GorterGorter--MellinkMellink [5] (may lead to under(may lead to under--estimate estimate [6]).).
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Comparison of Equivalent Thermal Comparison of Equivalent Thermal 
Resistances in an Insulated CableResistances in an Insulated Cable
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Enhanced PorosityEnhanced Porosity
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Enhanced PorosityEnhanced Porosity
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Summary of thermal transferSummary of thermal transfer

LH
C 

di
po

le
**

SS
C 

di
po

le
**

Se
al

ed
 P

ol
yi

m
id

e
Ep

ox
y.

+f
.g

la
ss

*

Enhanced insulation



Davide Tommasini CARE07 Annual Meeting    30 October 2007

Porosity testsPorosity tests

A C

BB

Flow out (B)

Flow in (A)

Flow out (C)
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Tests Results: Radial flowTests Results: Radial flow

We show the radial flow rate versus the imposed pressure  We show the radial flow rate versus the imposed pressure  
difference (difference (ΔΔP=P=PPinletinlet –– PPoutletoutlet).).
Porosity of enhanced insulation is one order of magnitude Porosity of enhanced insulation is one order of magnitude 
larger both at 10 and at 50 larger both at 10 and at 50 MPaMPa vertical compressionvertical compression

Vertical compression: 10 MPa Vertical compression: 10-16-50 MPa



Davide Tommasini CARE07 Annual Meeting    30 October 2007

plate

Heat Transfer TestsHeat Transfer Tests

compression
Isothermal
He II bath
(external)

Heated
He II bath
(internal)

Te

Ti

=adiabatic surface

=inter-cable path
=intra-cable path

Q

plate
He II bath

Tb

=adiabatic surface

TTcc

OQQ

Courtesy of D. Richter (CERN)

compression

Under way : at Cracow University and at CERN
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SummarySummary

The present limitation of heat removal from state of the art The present limitation of heat removal from state of the art 
insulated insulated NbTiNbTi Rutherford cables at 1.9 K is about 85 W/mRutherford cables at 1.9 K is about 85 W/m2 2 , , 
corresponding to aboutcorresponding to about 165 165 mW/mmW/m for a LHC main dipole turn.for a LHC main dipole turn.

There is a large potential to increase the dimension of the There is a large potential to increase the dimension of the 
cooling channels thus moving their saturation at higher heat flucooling channels thus moving their saturation at higher heat fluxesxes

This opens new opportunities for using This opens new opportunities for using NbTiNbTi rutherfordrutherford cables in cables in 
costetacosteta structures operating at 1.9 K in presence of heat loadsstructures operating at 1.9 K in presence of heat loads
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ComingComing soonsoon
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Thermal Resistances Review Thermal Resistances Review 

Thermal boundary resistance at interfaces between different Thermal boundary resistance at interfaces between different 
materials (materials (KapitzaKapitza): ): 
We use empirical fits We use empirical fits q [W/m2] ,,T [K],

CuCu--He II: He II: q = 460(TCu
3.46 –THe

3.46),  [7][7]
KaptonKapton--He II: He II: q = 47.43(TKap

4 –THe
4), [8] verified for small [8] verified for small ΔΔT, we use it also for T, we use it also for 

epoxyepoxy
CuCu--epoxy: epoxy: q = 13002K÷36006K(TCu –TEp), [2] consistent with [3][2] consistent with [3]

Conduction in solids:Conduction in solids:
KaptonKapton: : K=4.638e-3*T.^0.5678 [8] verified for 0.5<T<5K [8] verified for 0.5<T<5K 
Epoxy+fiberglassEpoxy+fiberglass: : K = 0.6*KEp+0.4*KG10, (KEp & KG10 from [9] consistent withfrom [9] consistent with [3] [3] 
and [10])and [10])

He II thermal conductivityHe II thermal conductivity
We consider a fully developed We consider a fully developed GorterGorter--MellinkMellink regime [4] (conservative hypotheses regime [4] (conservative hypotheses 

[5])[5])
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