Properties of known/expected mesons

Claudia Patrignani

Università and INFN, Genova
$5^{\text {th }}$ Flavour Physics and CP Violation Conference

Outline:

A personal selection of recent and new results on heavy-"heavy" mesons

- $\mathrm{D}_{\mathrm{sJ}}, \mathrm{B}_{\mathrm{sJ},}, \mathrm{B}_{\mathrm{c}}$ and of course $\mathrm{c} \overline{\mathrm{c}}$ and $\mathrm{b} \overline{\mathrm{b}}$

New measurement of $\mathrm{D}_{\mathrm{s} 1}(2536)$ mass

Study $\mathrm{D}_{\mathrm{s} 1}(2536) \rightarrow \mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}{ }^{0}$ in continuum $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{C} \overline{\mathrm{C}}$ with $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$and selecting $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$or

$$
\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{-} \pi^{+}
$$

Only charged tracks
\longrightarrow good mass resolution
Measure
$\Delta \mathrm{m}=\mathrm{M}\left(\mathrm{D}_{\mathrm{s} 1}{ }^{+}\right)-\mathrm{m}\left(\mathrm{D}^{*+}\right)-\mathrm{M}\left(\mathrm{K}_{\mathrm{s}}{ }^{0}\right)$ to reduce systematics
hep-ex/0607084

$$
\begin{gathered}
\mathrm{m}\left(\mathrm{D}_{\mathrm{s} 1}{ }^{+}\right)=(2534.85 \pm 0.02 \pm 0.40) \mathrm{MeV} / \mathrm{c}^{2} \\
\Gamma\left(\mathrm{D}_{\mathrm{s} 1}{ }^{+}\right)=(1.03 \pm 0.05 \pm 0.12) \mathrm{MeV}
\end{gathered}
$$

a factor 14 improvement in the splitting compared to previous PDG average:

$$
m\left(D_{s 1}{ }^{+}\right)-m\left(D^{*+}\right)=(524.85 \pm 0.02 \pm 0.04) \mathrm{MeV} / \mathrm{c}^{2}
$$

Absolute $D_{\text {s } 1}(2460)$ Branching Fractions

Fully reconstruct one B Partially reconstruct the other $\mathrm{B} \rightarrow \mathrm{D}\left(^{*}\right) \mathrm{X}$ Calculate X invariant mass and plot

$$
\mathscr{B}\left(B^{0} \rightarrow D^{\star+} D_{s 1}(2460)-\right)=(0.88 \pm 0.0 .2 \pm 0.14) \%
$$

combine with previous $B A B A R$ measurements of fully reconstructed $B \rightarrow D^{*+} D_{s 1}(2460)^{-}$

$$
\begin{aligned}
\mathcal{B}\left(D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{*}(2112)^{+} \pi^{0}\right) & =(56 \pm 13 \pm 9) \% \\
\mathcal{B}\left(D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{+} \gamma\right) & =(16 \pm 4 \pm 3) \% \\
\mathcal{B}\left(D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}\right) & =(4 \pm 1) \%
\end{aligned}
$$

Sum of known modes: $(76 \pm 20) \%$
(assuming $\mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right)=4.62 \pm 0.36 \pm 0.50 \%$)

$\mathrm{D}_{\mathrm{sJ}} *(2860):$ a new state!

- Looking in the $c \bar{c}$ continuum: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{+} \mathrm{X}$ and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}{ }_{\mathrm{s}} \mathrm{X}$

$c \bar{c}$ MC based on previous knowledge of c-mesons \& their Br

Phys. Rev. Lett. 97 (2006) 222001New state at $2860 \mathrm{MeV} / \mathrm{c}^{2}$!
Bump at $2690 \mathrm{MeV} / \mathrm{c}^{2}$?

$\mathrm{D}_{\mathrm{sJ}}(2700)$: another one!

$\mathrm{D}^{0} \mathrm{~K}^{+}$projection

$$
\begin{aligned}
& \mathrm{J}=0 \chi^{2} / \mathrm{ndf}=185 / 5 \\
& \mathrm{~J}=1 \chi^{2} / \mathrm{ndf}=7 / 5 \\
& \mathrm{~J}=2 \chi^{2} / \mathrm{ndf}=250 / 5
\end{aligned}
$$

R	$D_{s . J}^{+}(2700)$
$\mathrm{N}_{\text {sig }}$	182 ± 30
$\mathrm{M}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$2715 \pm 11_{-14}^{+11}$
$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$115 \pm 20_{-32}^{+36}$

$\mathrm{cs}\left(2^{3} \mathrm{~S}_{1}\right) ?$ Expected mass 2720 (potential model)
S. Godfrey and N. Isgur, Phys. Rev. D 32,189 (1985)

Chiral symmetry $1^{+}-1^{-}$doublet paired with $\mathrm{D}_{\mathrm{sJ}}(2536)$?
M. A. Nowak, M. Rho, I. Zahed, Acta Phys.Polon. B 35, 2377 2004)

more on $\mathrm{D}_{\mathrm{sJ}}(2700)$

$$
B \rightarrow D^{(*)} \bar{D}^{(*)} K
$$

(22 modes)
Summing all DK modes (8):

BaBar confirms a broad enhancement near 2.7 GeV , but is it one resonance or two? Possible low-mass structure in DK.

$\mathrm{D}_{\mathrm{sI} \text {. }}$ summary

— predicted (Godfrey-Isgur model)
-•• observed

- $\quad \mathrm{D}_{\mathrm{s} 0} *(2317)^{+}$, Apr. 2003: unexpected observation of a narrow resonance in BaBar
- $\quad \mathrm{D}_{\mathrm{s} 1}(2460)^{+}$, May 2003: CLEO, BaBar observed a new narrow resonance most of the $\mathrm{D}_{\mathrm{sl}}(2460)^{+}$branching fractions are known
- $\quad \mathrm{D}_{\mathrm{sI}} *(2860)^{+}$, Jul. 2006: new state discovered by BaBar
- $\quad \mathrm{X}(2690)^{+}$, Jul. 2006: broad enhancement seen in BaBar
- $\quad \mathrm{D}_{\mathrm{sJ}}(2700)^{+}$, Jul. 2006: new state discovered by Belle ($\quad \mathrm{X}(2690)$?)

Observation of $\mathrm{B}_{\mathrm{s} 1}$ and $\mathrm{B}_{\mathrm{s} 2}{ }^{*}$

For $\mathrm{L}=1$ expect

j_{q}	J^{P}	$B_{s}^{* *}$ state	decay mode	width
$1 / 2$	0^{+}	$B_{s 0}^{*}$	$B K$	road (S-wave)
$1 / 2$	1^{+}	$B_{s 1}$	$B^{*} K$	
$3 / 2$	1^{+}	$B_{s 1}$	$B^{*} K$	narrow (S-wave)
$3 / 2$	2^{+}	$B_{s 2}^{*}$	$B K, B^{*} K$	narrow (D-wave)

Broad

Narrow, good S/B
one state observed by OPAL, DELPHI, D0 assignment not clea ${ }^{r}$
CDF Run 2 Preliminary $\quad 1.0 \mathrm{fb}^{-1}$

CDF Run 2 Preliminary $1.0 \mathrm{fb}^{-1}$

Significance of $\mathrm{B}_{\mathrm{s} 1}>5 \sigma$
CDF Preliminary:

$$
\mathrm{N}\left(\mathrm{~B}_{\mathrm{s} 1}\right)=36.4 \pm 9.0 \text { (stat) }
$$

$$
m\left(B_{s 1}\right)=5829.41 \pm 0.21 \text { (stat) } \pm 0.14 \text { (syst) } \pm 0.6(\mathrm{PDG}) \mathrm{MeV} / \mathrm{c}^{2}
$$

$$
m\left(B_{s 2}^{*}\right)=5839.64 \pm 0.39 \text { (stat) } \pm 0.14 \text { (syst) } \pm 0.5(\mathrm{PDG}) \mathrm{MeV} / \mathrm{c}^{2}
$$

Precision B_{c} mass measurement

Reconstruct $\mathrm{B}_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$

World largest sample of fully reconstructed B_{c}

CDFII Preliminary 1.1 fb

$\mathrm{M}\left(\mathrm{B}_{\mathrm{c}}{ }^{+}\right)=6276.5 \pm 4.0($ stat $) \pm 2.7($ syst $) \mathrm{MeV} / \mathrm{c}^{2}$
start to challenge theoretical predictions...

$\psi(3770) \rightarrow$ hadrons

long standing discrepancy:

$$
\sigma_{\psi(3770)} \longleftrightarrow \sigma_{D \bar{D}}
$$

non-D $\overline{\mathrm{D}}$?
$\sigma\left(e^{+} e^{-} \rightarrow D \bar{D}\right)=6.39 \pm 0.10_{-0.08}^{+0.17} n b \quad$ PRL 95 (2005) 121801
$\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)=6.38 \pm 0.08_{-0.30}^{+0.41} n b \quad$ PRL 96 (2006) 092002
\quad upper limit on $\Delta \sigma \approx 10 \% \quad$ sum of observed non-DD $\approx 2 \%$

a) $B F(\psi(3770) \rightarrow n o n-D \bar{D})=(16.4 \pm 7.3 \pm 4.2) \%$ PRL 97 (2006) 121801

PLB 641 (2006) 145
b) $B F(\psi(3770) \rightarrow$ non $-D \bar{D})=(14.5 \pm 1.7 \pm 5.8) \%$

both compatible with CLEO

$\psi(3770)$ radiative transitions

CLEO:

Two independent analyses:

1. $\psi(3770) \rightarrow \gamma \chi_{\mathrm{cJ}}$ with \rightarrow $\chi_{\mathrm{cJ}} \rightarrow \gamma \mathrm{J} / \psi\left(\mathrm{l}^{+} \mathrm{l}^{-}\right)$
2. $\psi(3770) \rightarrow \gamma \chi_{c J}$ with $\chi_{\mathrm{cJ}} \rightarrow(2 \mathrm{~K}, 2 \mathrm{~K} 2 \pi, 4 \pi, 6 \pi)$
using $\psi(2 S)$ decays as normalization.

PRL 96, 182002 (2006).

Combining the two CLEO results

	$\psi(3770) \rightarrow \gamma \chi_{c J}$		
	$J=0$	$J=1$	$J=2$
\mathcal{B} (\%)	0.73 ± 0.09	0.29 ± 0.06	<0.09
$\Gamma(\mathrm{keV})$	172 ± 30	70 ± 17	<21
∇	y predicti		
Rosner non-relativistic	523 ± 12	73 ± 9	24 ± 4
Ding-Qin-Chao			
non-relativistic	312	95	3.6
relativistic	199	72	3.0
Eichten-Lane-Quigg			
non-relativistic	254	183	3.2
coupled-channel	225	59	3.9
Barnes-Godfrey-Swanson			
non-relativistic	403	125	4.9
relativistic	213	77	3.3

The observed radiative transition reinforce the interpretation of the $\psi(3770)$ as the $1^{3} \mathrm{D}_{1}$ level of charmonium

$\chi_{\mathrm{cl}}(1 \mathrm{P}) \rightarrow \mathrm{h}^{+} \mathrm{h}-\mathrm{h}^{0}$

PRD 75, 032002 (2007)

$\chi_{c J}(1 \mathrm{P}) \rightarrow$ hadrons (exclusive modes)

many new results from BES

large samples, PWA for substructure analysis
$\chi_{c J} \rightarrow \phi \phi, \phi K^{+} K^{-}, K^{+} K^{-} K^{+} K^{-}$
$\chi_{c J} \rightarrow \Xi^{-} \bar{\Xi}^{+}, \Lambda \bar{\Lambda} \pi^{+} \pi^{-} K_{S}^{0} K_{S}^{0} p \bar{p}$
$\chi_{c J} \rightarrow K_{S}^{0} K^{+} \pi^{-}+c . c$.
$\chi_{c J} \rightarrow \eta \pi^{+} \pi^{-}, a_{0}(890) \pi, \eta f_{2}(1270)$

PLB642,197(2006)
PRD73,052006(2006)
PRD74,072001(2006)
PRD74,072001(2006)

$\chi_{c J} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}^{+} \mathrm{K}^{-}$

```
\chi _ { \mathrm { cJ } } \rightarrow \pi ^ { + } \pi ^ { - } \pi ^ { + } \pi ^ { - } \rho \overline { p }
```

Channel	$2\left(K^{+} K^{-}\right)\left(\times 10^{-3}\right)$		$\phi K^{+} K^{-}\left(\times 10^{-3}\right)$	$\phi \phi\left(\times 10^{-3}\right)$	
	BES-H	PDG	BES-11	BES-H	PDG
$\chi_{e 0}$	$3.47 \pm 0.22 \pm 0.48$	2.3 ± 0.5	$1.02 \pm 0.22 \pm 0.15$	$0.94 \pm 0.21 \pm 0.14$	1.0 ± 0.6
$\chi_{\varepsilon 1}$	$0.68 \pm 0.13 \pm 0.10$	0.42 ± 0.19	$0.44 \pm 0.14 \pm 0.07$	-	-
$\chi_{e 2}$	$1.88 \pm 0.18 \pm 0.28$	1.8 ± 0.5	$1.46 \pm 0.21 \pm 0.22$	$1.48 \pm 0.26 \pm 0.23$	2.4 ± 0.9

Decay modes
Branching ratios

$\chi_{c 0} \rightarrow$ ヨ $^{-\Xi^{+}}$	$(5.3 \pm 2.7 \pm 0.9) \times 10^{-4}$ or $<10.3 \times 10^{-4}(90 \%$ C.L. $)$
$\chi_{c 1} \rightarrow$ ヨ $^{-}$	$<3.4 \times 10^{-4}(90 \%$ C.L. $)$
$\chi_{c 2} \rightarrow \Xi^{-} \bar{\Xi}^{+}$	$<3.7 \times 10^{-4}(90 \%$ C.L. $)$
$\chi_{c 0} \rightarrow \Lambda \bar{\Lambda} \pi^{+} \pi^{-}$	$(2.0 \pm 1.1 \pm 0.4) \times 10^{-3}(2.5 \sigma)$ or $<4.0 \times 10^{-3}(90 \%$ C.L. $)$
$\chi_{c 1} \rightarrow \Lambda \bar{\Lambda} \pi^{+} \pi^{-}$	$<1.5 \times 10^{-3}(90 \%$ C.L. $)$
$\chi_{c 2} \rightarrow \Lambda \bar{\Lambda} \pi^{+} \pi^{-}$	$(1.8 \pm 1.0 \pm 0.3) \times 10^{-3}(2.5 \sigma)$ or $<3.5 \times 10^{-3}(90 \%$ C.L. $)$
$\chi_{c 0} \rightarrow K_{S}^{0} K_{S}^{0} p \bar{p}$	$<8.8 \times 10^{-4}(90 \%$ C.L. $)$
$\chi_{c 1} \rightarrow K_{S}^{0} K_{S}^{0} p \bar{p}$	$<4.5 \times 10^{-4}(90 \%$ C.L. $)$
$\chi_{c 2} \rightarrow K_{S}^{0} K_{S}^{0} p \bar{p}$	$<7.9 \times 10^{-4}(90 \%$ C.L. $)$

```
\chicJ}->\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-}\mp@subsup{\pi}{}{+}\mp@subsup{K}{}{\pm}
    \pi}\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-}\gamma
```

Mode	$\operatorname{Br}\left(\times 10^{-3}\right)$	Br($\times 10^{-3}$)(CLEO-c)
$\chi_{c 1} \rightarrow K_{S} K^{+} \pi^{-}+$c.c.	$4.1 \pm 0.3 \pm 0.7$	$\bar{K}^{0} K^{+} \pi^{-}: 8.4 \pm 0.5 \pm 0.6 \pm 0.5$
$\chi_{c 2} \rightarrow K_{S} K^{+} \pi^{-}+$c.c.	$0.8 \pm 0.3 \pm 0.2$	$\bar{K}^{0} K^{+} \pi^{-}: 1.5 \pm 0.2 \pm 0.1 \pm 0.1$
$\chi_{c 1} \rightarrow \eta \pi \pi$	$6.1 \pm 0.8 \pm 1.0$	$5.2 \pm 0.3 \pm 0.3 \pm 0.3$
$\chi_{c 1} \rightarrow a_{0}^{+} \pi^{-} \rightarrow \eta \pi^{+} \pi^{-}$	$2.0 \pm 0.5 \pm 0.5$	
$\chi_{c 1} \rightarrow f_{2}(1270) \eta$	$2.1 \pm 0.5 \pm 0.4$	

$$
\mathrm{C}=+ \text { resonances: } \chi_{\mathrm{c} 0}(\mathrm{nP}), \chi_{\mathrm{c} 2}(\mathrm{nP}), \eta_{\mathrm{c}}(\mathrm{nS})
$$

quasi-real photons (|q2|<0.001 GeV^{2}, with no-tag condition) $\rightarrow \mathrm{p}_{\mathrm{t}}$ balance

process	$\chi_{\mathrm{c} 0} \rightarrow \mathrm{~K}_{\mathrm{s}}{ }^{0} \mathrm{~K}_{\mathrm{S}}{ }^{0}$	$\chi_{\mathrm{c} 2} \rightarrow \mathrm{~K}_{\mathrm{S}}{ }^{0} \mathrm{~K}_{\mathrm{s}}{ }^{0}$
$\Gamma_{r} B r\left(\mathrm{~K}_{\mathrm{S}}{ }^{0} \mathrm{~K}_{\mathrm{s}}{ }^{0}\right)(\mathrm{eV})$	$7.00 \pm 0.65 \pm 0.71$	$0.31 \pm 0.05 \pm 0.03$
$\operatorname{Br}\left(\mathrm{K}_{\mathrm{S}}{ }^{0} \mathrm{~K}_{\mathrm{s}}{ }^{0}\right) /$ $B r\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right)$	$0.49 \pm 0.07 \pm 0.08$	$0.70 \pm 0.21 \pm 0.12$
Consistent with I-spin ratio R$=0.5$		

Previous two-photon measurements from Belle:
$\Gamma_{r y} \times \operatorname{Br}(\chi \mathrm{cJ}(1 \mathrm{P}))(\mathrm{eV})$

$$
\begin{aligned}
& \Gamma_{\gamma} B r\left(\chi_{\mathbf{c} 0} \rightarrow \pi^{+} \pi^{-}\right)=15.1 \pm 2.1 \pm 2.3 \\
& \Gamma_{\gamma} B r\left(\chi_{\mathbf{c} 0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}\right)=14.3 \pm 1.6 \pm 2.3 \\
& \Gamma_{\gamma} B r\left(\chi_{\mathbf{c} 2} \rightarrow \pi^{+} \pi^{-}\right)=0.76 \pm 0.14 \pm 0.11 \\
& \Gamma_{\gamma} B r\left(\chi_{\mathbf{c} 2} \rightarrow \mathbf{K}^{+} \mathrm{K}^{-}\right)=0.44 \pm 0.76 \pm 0.14 \\
& \Gamma_{\gamma} B r\left(\chi_{\mathbf{c} 2} \rightarrow \gamma \mathbf{J} / \Psi\right)=114 \pm 11 \pm 9 \pm 2
\end{aligned} \quad \underset{\text { PLB 540, 33 (2002) }}{\text { (200 }}
$$

$\gamma \gamma \rightarrow \Lambda \bar{\Lambda}, \Sigma^{0} \bar{\Sigma}^{0}$

$$
\begin{gathered}
\eta_{c} \rightarrow x x \\
\Lambda \bar{\Lambda} \\
\Sigma^{0} \Sigma^{0}
\end{gathered}
$$

$$
\mathrm{N}
$$

$$
\Gamma_{\gamma} B r(x x)[e V]
$$

$$
\operatorname{Br}(x \bar{x}) \times 10^{3}
$$

$$
101.2 \pm 16.4_{-3.0}^{+1.2}
$$

$$
6.21 \pm 1.01_{-0.52}^{+0.49}
$$

$$
0.89 \pm 0.14_{-0.07-0.11}^{+0.07+0.13}
$$

$$
36.1 \pm 9.2_{-1.2}^{+0.0}
$$

$$
9.80 \pm 2.50_{-1.03}^{+0.98}
$$

$$
1.40 \pm 0.36_{-0.15-0.18}^{+0.14+0.20}
$$

$\mathrm{p} \overline{\mathrm{P}} \quad$ (PLB 621,41(2005))

$7.20 \pm 1.53 \pm 0.67$

$$
\begin{aligned}
& \operatorname{Br}(\Lambda \bar{\Lambda}) / \operatorname{Br}(p \bar{p}) \approx 0.86 \pm 0.26 \\
& \operatorname{Br}\left(\Sigma^{0} \overline{\Sigma^{0}}\right) / \operatorname{Br}(p \bar{p}) \approx 1.36 \pm 0.49
\end{aligned}
$$

somehow larger than di-quark prediction
$\operatorname{Br}(\Lambda \bar{\Lambda}) / \operatorname{Br}(p \bar{p}) \approx 0.5$
$\operatorname{Br}\left(\Sigma^{0} \overline{\Sigma^{0}}\right) / \operatorname{Br}(p \bar{p}) \approx 0.3-0.4$

Observation of a new charmonium $\mathbf{Z (3 9 3 0)}$

$\mathrm{N}(\mathrm{ev})$	$\mathbf{6 4} \pm \mathbf{1 8}$
$\mathrm{M}\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	$\mathbf{3 9 2 9} \pm 5 \pm 2$
$\Gamma[\mathrm{MeV}]$	$29 \pm 10 \pm 2$
$\Gamma_{\gamma \gamma} \times \operatorname{Br}[\mathrm{keV}]$	$\mathbf{0 . 1 8} \pm 0.05 \pm 0.03$

$\chi_{\mathrm{c} 2}(2 \mathrm{P})$ candidate $\mathrm{J}=2$ (helicity 2)

Long standing puzzle:
double bump structure of $\mathrm{M}(\pi \pi)$ distribution in $\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi \pi$ different from all other similar known di-pion transitions until recently

Over the years many different proposals:

Large final state interactions [Belanger,DeGrand,Moxhay,PR,D39,257(89);Chakravarty,Kim,Ko,PR,D50,389(94)]

- σ-meson in $\pi \pi$ system [Komada,Ishida,Ishida,PL,B508,31(01);PL,B518,47(01);Uehara Prog.Theor.Phys.109,265(03)]
-Exotic $\Upsilon \pi$ resonance [Voloshin,JTEP Lett.,37,69(83);
Belanger et al ,PR,D39,257(89); Anisovich,Bugg,Sarantsev,Zhou,PR,D51,4619(95); Guo,S
-Ad hoc constant term in amplitude [Moxhay,PR,D39,3497(89)]
Coupled channel effects [Lipkin,Thuan,PL,B206,349(88);
Zhou,Kuang,PR,D44,756(91)]
$3^{3} \mathrm{~S}_{1}-\mathrm{n}^{3} \mathrm{D}_{1}$ mixing [Chakravarty,Kim,Ko,PR,D48,1212(93)]
Relativistic corrections [Voloshin,PR,D74,054022(06)]

$$
\text { a new puzzle: } \quad \Upsilon(4 \mathrm{~S}) \rightarrow \Upsilon(2 \mathrm{~S}) \pi \pi
$$

Matrix elements in $\Upsilon(n S) \rightarrow \Upsilon(m S) \pi \pi$

Matrix element (chiral symmetry for soft pions) as sum of three terms: [Brown,Cahn

$$
M=\mathrm{A}\left(\varepsilon^{\prime} \cdot \varepsilon\right)\left(q^{2}-2 m_{\pi}^{2}\right)+\mathrm{B}\left(\varepsilon^{\prime} \cdot \varepsilon\right) E_{1} E_{2}+\mathrm{C}\left[\left(\varepsilon^{\prime} \cdot q_{1}\right)\left(\varepsilon \cdot q_{2}\right)+\left(\varepsilon^{\prime} \cdot q_{2}\right)\left(\varepsilon \cdot q_{1}\right)\right]
$$

see extra slides for definitions
depends on
$\cos \theta_{X}$ and q^{2}
couples pions to r polarization (spin-flip in ME)
$\mathrm{M}(\pi \pi)$ distribution calculated in non-relativistic QCD-inspired

$$
\mathbf{C} \approx \mathbf{0} \quad[Y a n P R, D 22,1652(80)]
$$ calculation of E1*E1 transition has form similar to the $1^{\text {st }}$ term

A » B [Voloshin,Zakharov,PRL,45,688(80); Novikov, Shifman, ZP,C8,43(81)]
Fit simultaneously the $\cos \theta_{X}$ vs $M_{\pi \pi}$ Dalitz plot of $\pi+\pi-$ and $\pi^{0} \pi^{0}$ samples all three distributions well described by chiral-symmetry matrix element with constant (complex) factors

\mathbf{C} not needed	$\|\mathbf{C} / \mathbf{A}\|$	$\|\mathrm{B} / \mathrm{A}\|$
$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mathrm{\Upsilon}(1 \mathrm{~S}) \pi \pi$	0.45 ± 0.40	2.89 ± 0.25

CLEO preliminary
$3 \mathrm{~S} \rightarrow 1 \mathrm{~S}$ anomaly explained just by large $|\mathbf{B} / \mathbf{A}|$ and non-trivial phase??

Projections

Conclusions

* many results on ordinary mesons in past years
\longrightarrow B-factories are indeed τ-charm(+ bottom) factories
> Precision measurement are now tackling long standing puzzles:

$$
\psi(3770) \rightarrow D \bar{D}, \Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi \pi, \text { "rho-pi" puzzle } \ldots
$$

No time to discuss that unfortunately...
Many new exclusive modes measured by BES and CLEO

* CLEO analyses published on $3 \mathrm{M} \psi(2 \mathrm{~S})$, they now have 29 M
* BES-III will start operation soon
* and later PANDA ...

Extra slides

D_{sj} : what we expect

Pattern of D_{sJ} decay modes

Decay Mode	Central Value			Limit		
$\mathcal{B}\left(D_{s J}^{*}(2317)^{+} \rightarrow X\right) \mathcal{B}\left(D_{s J}^{*}(2317)^{+} \rightarrow D_{s}^{+} \pi^{0}\right)$				Only mode observed		
$D_{s}^{+} \gamma$	-0.02 \pm	$0.02 \pm$	0.08	<0.14	Forbidden	
$D_{s}^{+} \pi^{0} \pi^{0}$	$0.08 \pm$	$0.06 \pm$	0.04	<0.25	Forbidden	
$D_{s}^{+} \gamma \gamma$	$0.06 \pm$	$0.04 \pm$	0.02	<0.18	Allowed	Assumes 0^{+} hypothesis
$D_{s}^{*}(2112)^{+} \gamma$	$0.00 \pm$	$0.03 \pm$	0.07	<0.16	Allowed	
$D_{s}^{+} \pi^{+} \pi^{-}$	$0.0023 \pm$	$0.0013 \pm$	0.0002	<0.0050	Forbidden	
$\mathcal{B}\left(D_{s J}(2460)^{+} \rightarrow X\right) / \mathcal{B}\left(D_{s J}(2460)^{+} \rightarrow D_{s}^{+} \pi^{0} \gamma\right)$						
$D_{s}^{+} \pi^{0}$	$-0.023 \pm$	$0.032 \pm$	0.005	<0.042	Forbidden	
$D_{s}^{+} \gamma$	$0.337 \pm$	$0.036 \pm$	0.038		Seen	
$D_{s}^{*}(2112)^{+} \pi^{0}$	$0.97 \pm$	$0.09 \pm$	0.05	>0.75	Seen	
$D_{s, J}^{*}(2317)^{+} \gamma$	$0.03 \pm$	$0.09 \pm$	0.05	<0.25		Assumes I^{+}
$D_{s}^{+} \pi^{0} \pi^{0}$	$0.13 \pm$	$0.13 \pm$	0.06	<0.68	Allowed	hypothesis
$D_{s}^{+} \gamma \gamma$	$0.08 \pm$	$0.10 \pm$	0.04	<0.33	Allowed	
$D_{s}^{*}(2112)^{+} \gamma$	$-0.02 \pm$	$0.08 \pm$	0.10	<0.24	Allowed	
$D_{s}^{+} \pi^{+} \pi^{-}$	$0.077 \pm$	$0.013 \pm$	0.008	-	Seen	

Update on $\mathrm{D}_{\mathrm{s} 0}{ }^{*}(2317)$ and $\mathrm{D}_{\mathrm{s} 1}(2460)$

- Discovered 4 years ago in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow c \bar{c}$ events

Also observed in B decays

- $\mathrm{D}_{\mathrm{s} 0} *(2317)$ and $\mathrm{D}_{\mathrm{s} 1}(2460)$ very well established and known experimentally $\sqrt{ }$ decay modes and branching fractions
\checkmark Natural $\mathbf{J}^{\mathbf{P}}: 0^{+}$for $\mathrm{D}_{\mathrm{s} 0}^{*}(2317)$ and 1^{+}for $\mathrm{D}_{\mathrm{s} 1}(2460)$
$\sqrt{ }$ Masses and widths
- Interpretation of these new states still unclear!
$>$ One possibility: identify these 2 states as the $\mathbf{0}^{+}$and $\mathbf{1}^{+} \mathrm{c} \bar{s}$ states
However strong difficulties within the potential model
$>$ Other possibilities
4 quark states? DK molecule? $\mathrm{D} \pi$ atom? Chiral symmetry?

cc̄ spectrum

cc̄ mesons in two photon reactions

Calculated with equivalent-photon approximation

Production in continuum $\mathrm{s}^{1 / 2} \leq 10.58 \mathrm{GeV}$

- Two photons production
- Double charmonium production
- Initial State radiation

Color suppressed B decays

Double charmonium production

Production in B decay s ${ }^{1 / 2} \approx 5.28 \mathrm{GeV}$
b c color suppressed transition charmonium and open-charm

Two photons production

Initial state radiation

Matrix element in di-pion transitions

Three-body decay $\Upsilon^{\prime \prime} \rightarrow \Upsilon \pi \pi$ (or $\psi^{\prime} \rightarrow \mathrm{J} / \psi \pi \pi$)

pions in these transitions are soft. Matrix element structure constrained from chiral symmetry (PCAC) in non-relativistic limit:
[Brown,Cahn PRL, 35, 1 (75)]
$M=\mathrm{A}\left(\varepsilon^{\prime} \cdot \varepsilon\right)\left(q^{2}-2 m_{\pi}{ }^{2}\right)+\mathrm{B}\left(\varepsilon^{\prime} \cdot \varepsilon\right) E_{1} E_{2}+\mathrm{C}\left[\left(\varepsilon^{\prime} \cdot q_{1}\right)\left(\varepsilon \cdot q_{2}\right)+\left(\varepsilon^{\prime} \cdot q_{2}\right)\left(\varepsilon \cdot q_{1}\right)\right]$
$\varepsilon^{\prime}, \varepsilon$ - Polarization vectors of parent and daughter Υ states
q_{1}, q_{2}-Four-vectors of pions, $\quad E_{1}, E_{2}$ - their energies in parent Υ rest frame $q^{2}=\left(q_{1}+q_{2}\right)^{2} \equiv M_{\pi \pi}{ }^{2} \quad$ A,B, C expected approximately constant (real in the chiral limit)
$|\mathbf{A}| »|\mathbf{B}|$ S-wave expected to dominate E1*E1
[Voloshin,Zakharov,PRL,45,688(80);
Novikov, Shifman, ZP,C8,43(81)]
$\psi(2 S) \rightarrow J / \psi(1 S) \pi \pi \quad$ distribution reproduced assuming $\mathrm{B}=\mathrm{C}=0$

Similar $\pi \pi$ invariant mass for $\Upsilon^{\prime \prime} \rightarrow \Upsilon^{\top} \pi \pi$

Dipion transitions in the r sector

- Something special when $\Delta \mathrm{n}=2$??

