\mathcal{N} =6 Chern Simons Matter Theories, M2 branes and Supergravity

Juan Maldacena

Strings 2008 Cern

Based on: Aharony, Bergman, Jafferis & J.M. 0806.1218

Motivation

- Understand the M2 brane field theory
- Study conformal field theories in 3d with large amount of supersymmetry

Schwarz, Bagger, Lambert, Gustavsson,...

Find simple examples of AdS₄/CFT₃

<u>WHY?</u>

- Landscape
- Condensed matter

$$L = L_{CS} + L_{kin} + L_{\psi^2 C^2} + L_{C^6}$$
$$L_{CS} = k \int Tr[AdA + \frac{2}{3}A^3] - k \int Tr[\tilde{A}d\tilde{A} + \frac{2}{3}\tilde{A}^3]$$

No kinetic term for the gauge fields, only Chern-Simons terms

Scale invariant (Chern Simons naturally scale invariant)

SO(6) = SU(4) symmetric

6 supercharges Q^a_{α} , $a=1,\cdots,6$

U(1)_b global symmetry. Related to: $C^I \rightarrow e^{i\alpha}C^I$ $j_b = k *_3 Tr[F + \tilde{F}]; \quad j_C + j_b = 0$

Why does it have $\mathcal{N}=6$ SUSY ?

 Start with the *N*=3 theory with this matter content and SUSY
Zupnik Khetselius Kao Gaiotto Yin *N*=4 : Gaiotto Witten (Lin & JM)

 In *N*=2 notation the superpotential is the same as in the Klebanov Witten theory

 $\mathbf{W} = \epsilon_{ab} \epsilon_{\dot{a}\dot{b}} Tr[A_a B_{\dot{a}} A_b B_{\dot{b}}]$

- Has SU(2) x SU(2) symmetry that does not commute with SO(3) of *N*=3
- Thus we have SU(4) R-symmetry → 𝒴=6

$$C^{I} = (A_{a}, B_{\dot{a}}^{*}) = (A_{1}, A_{2}, B_{1}^{*}, B_{2}^{*})$$

Benna Klebanov Klose Smedback. Bandres, Epstein, Schwarz. Schnabl, Tachikawa.

Relation to M2 branes

- Start with a brane construction of an *N*=3 U(N)xU(N) Yang-Mills-Chern-Simons theory with the same matter fields.
- Relate it to M2 branes probing a particular 8-dimensional manifold.

+ bifundamental hyper

(1,k) 5 brane rotated $\mathcal{N}=3$ Yang Mills CS + bifundamental hyper

CS: mass to fields in the vector multiplet

T-duality along the circle and lift to M-theory The 5 branes become KK monopoles in M-theory. We get a space X₈ which contains two intersecting KK monopoles. These are called "Toric Hyperkahler Manifolds". Gauntlett, Gibbons, Papadopulos, Townsend

(1,0) 5 brane

- Coupling constant ~ 1/k
- k→ ∞ is the weak coupling limit
- There is a 't Hooft limit, N $\rightarrow \infty$, λ =N/k fixed.
- Field theory Moduli space: Sym $(\mathbb{R}^8/Z_k)^N$
- Same as N M2 branes probing R^8/Z_k
- For k=1,2 it is SO(8) invariant and the theory should have N=8 susy.
- For N=2 and gauge group SU(2)xSU(2) the theory has N=8 and it coincides with the Bagger-Lambert-Gustavsson theory

We can vary the 't Hooft coupling between the perturbative gauge theory regime ($\lambda \ll 1$) and the gravity regime ($\lambda \gg 1$).

Thermal free energy

Like the $\frac{3}{4}$ of $\mathcal{N}=4$ SYM

Spectrum of operators

```
Tr[CC^*CC^*\cdots]Tr[A_aB_bA_cB_d\cdots]
```

Operators with 't Hooft operators.

•) S^2 Magnetic flux on this two-sphere

1 unit of magnetic flux \rightarrow k units of baryon charge. Insert also k C^I fields

Borokhov Kapustin Wu

 ${\rm O} \sim T_1 C^k$ Carry U(1)_b charge

 $Tr[CC^*CC^*\cdots]$ $Tr[A_aB_bA_cB_d\cdots]$

Kaluza Klein modes on
 S^7 with no momentum along
the 11th direction.

Ordinary string states in the IIA description.

Modes with momentum in the 11th direction.

 $O \sim T_1 C^k$

D0 branes in the IIA description

Generalizations

 $- U(N)_{k} \times U(M)_{-k}$ N >M

Discrete Wilson lines of C₃ field (Torsion F_4 flux)

Bergman **Jafferis**

Aharony

 $C_3 = \frac{N-M}{k} d\varphi J_2$ Theory does not exist if N-M > k

- O(2N)_{2k} x USp(2N)_{-k}

 $\mathcal{N}=5$ susy. Extra orbifold in M-theory D_k Orientifold of IIA theory

Conclusions

- Presented an *N*=6 conformal Chern Simons Matter theory
- Has a discrete parameter, k, that allows us to go to weak coupling.
- At strong coupling, k=1,2, the theory has enhanced symmetry
- There is an interesting (and possibly integrable) 't Hooft limit

Future

- Understand better the 't Hooft operators. Develop techniques for seeing and exploiting the appearance of symmetries at strong coupling.
- Integrability?
- More general AdS₄ vacua.
- · Condensed matter applications ?