$\mathcal{N}=6$ Chern Simons Matter Theories, M2 branes and Supergravity

Juan Maldacena

Strings 2008
Cern

Based on: Aharony, Bergman, Jafferis \& J.M. 0806.1218

Motivation

- Understand the M2 brane field theory
- Study conformal field theories in 3d with large amount of supersymmetry

Schwarz, Bagger, Lambert, Gustavsson,...

- Find simple examples of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$

WHY?

- Landscape
- Condensed matter

The theory

$U(N) \times U(N)$ gauge theory with bifundamental fields in 2+1 dimensions.
Field content

$A_{\mu}, \quad \hat{A}_{\mu}$	gauge fields	
$C_{I}, \quad \psi^{I} \quad$ in (N, \bar{N})	matter fields	
$\left(C_{I}\right)^{*}$,	$\left(\psi^{I}\right)^{*} \operatorname{in}(\bar{N}, N)$	+ complex conjugates
$=1, \ldots, 4$ is an $\operatorname{SU}(4)$ (or $\mathrm{SO}(6))$ index		

$$
\begin{gathered}
L=L_{C S}+L_{k i n}+L_{\psi^{2} C^{2}}+L_{C^{6}} \\
L_{C S}=k \int \operatorname{Tr}\left[A d A+\frac{2}{3} A^{3}\right]-k \int \operatorname{Tr}\left[\tilde{A} d \tilde{A}+\frac{2}{3} \tilde{A}^{3}\right]
\end{gathered}
$$

No kinetic term for the gauge fields, only Chern-Simons terms

Scale invariant (Chern Simons naturally scale invariant)
$\mathrm{SO}(6)=\mathrm{SU}(4)$ symmetric
6 supercharges $\quad Q_{\alpha}^{a}, \quad a=1, \cdots, 6$
$\mathrm{U}(1)_{\mathrm{b}}$ global symmetry. Related to: $\mathrm{C}^{I} \rightarrow e^{i \alpha} C^{I}$

$$
\mathrm{j}_{b}=k *_{3} \operatorname{Tr}[F+\tilde{F}] ; \quad j_{C}+j_{b}=0
$$

Why does it have $\mathcal{N}=6$ SUSY ?

- Start with the $\mathcal{N}=3$ theory with this matter content and susy Zupnik Khetselius Kao Gaiotto Yin
- In $\mathcal{N}=2$ notation the superpotential is the same as in the Klebanov Witten theory

$$
\mathrm{W}=\epsilon_{a b} \epsilon_{\dot{a} \dot{b}} \operatorname{Tr}\left[A_{a} B_{\dot{a}} A_{b} B_{\dot{b}}\right]
$$

- Has $S U(2) \times S U(2)$ symmetry that does not commute with $\mathrm{SO}(3)$ of $\mathcal{N}=3$
- Thus we have $\operatorname{SU}(4)$ R-symmetry $\rightarrow \mathcal{N}=6$

$$
\mathrm{C}^{I}=\left(A_{a}, B_{\dot{a}}^{*}\right)=\left(A_{1}, A_{2}, B_{1}^{*}, B_{2}^{*}\right)
$$

[^0]
Relation to M2 branes

- Start with a brane construction of an $\mathcal{N}=3$ $\mathrm{U}(\mathrm{N}) \mathrm{xU}(\mathrm{N})$ Yang-Mills-Chern-Simons theory with the same matter fields.
- Relate it to M2 branes probing a particular 8-dimensional manifold.
- Take the IR limit

$$
\mathrm{z}^{I} \rightarrow e^{i \frac{2 \pi}{k}} z^{I} \quad \mathrm{R}^{8} / Z_{k}
$$

singularity

- Get that $\mathrm{X}_{8} \rightarrow R^{8} / Z_{k}$

In more detail

$\mathcal{N}=4$ Yang Mills + bifundamental hyper

$\mathcal{N}=3$ Yang Mills CS + bifundamental hyper

CS: mass to fields in the vector multiplet
T-duality along the circle and lift to M-theory The 5 branes become KK monopoles in M-theory.
We get a space X_{8} which contains two intersecting KK monopoles.
These are called "Toric Hyperkahler Manifolds".
Gauntlett, Gibbons, Papadopulos, Townsend

IR limit

$\mathcal{N}=6$ conformal CS matter theory

singularity
M2 branes at the
singularity.
Locally the space preserves more susy.

- Coupling constant $\sim 1 / k$
- $k \rightarrow \infty$ is the weak coupling limit
- There is a ' H Hooft limit, $\mathrm{N} \rightarrow \infty, \lambda=\mathrm{N} / \mathrm{k}$ fixed.
- Field theory Moduli space: $\operatorname{Sym}\left(\mathrm{R}^{8} / Z_{k}\right)^{N}$
- Same as N M2 branes probing R^{8} / Z_{k}
- For $\mathrm{k}=1,2$ it is $\mathrm{SO}(8)$ invariant and the theory should have $N=8$ susy.
- For $\mathrm{N}=2$ and gauge group $\mathrm{SU}(2) \times \mathrm{SU}(2)$ the theory has $\mathcal{N}=8$ and it coincides with the Bagger-Lambert-Gustavsson theory

Gravity dual

$\mathrm{AdS}_{4} \times S^{7} / Z_{k} \quad \mathrm{~N}$ units of flux of F_{4} k large
$\mathrm{AdS}_{4} \times C P^{3}$

$$
\frac{R^{2}}{l_{s}^{2}} \sim \lambda^{1 / 2} \sim \sqrt{\frac{N}{k}}
$$

N units of flux of F_{4}
k units of flux of F_{2} on CP ${ }^{1}$ in CP ${ }^{3}$

Nilsson Pope

Weakly coupled string theory.
We can vary the ' t Hooft coupling between the perturbative gauge theory regime ($\lambda \ll 1$) and the gravity regime ($\lambda \gg 1$).

Thermal free energy

$$
\beta F \sim N^{3 / 2} k^{1 / 2} V_{2} T^{2} \sim N^{2} \frac{1}{\lambda^{1 / 2}} V_{2} T^{2}
$$

Like the $3 / 4$ of $\mathcal{N}=4$ SYM

Spectrum of operators

$\operatorname{Tr}\left[C C^{*} C C^{*} \ldots\right]$
$\operatorname{Tr}\left[A_{a} B_{b} A_{c} B_{d} \cdots\right]$

Operators with 't Hooft operators.

- S^{2} Magnetic flux on this two-sphere

1 unit of magnetic flux $\rightarrow k$ units of baryon charge. Insert also $\mathrm{k} \mathrm{C}^{\prime}$ fields

Borokhov Kapustin Wu

$$
\mathrm{O} \sim T_{1} C^{k} \quad \text { Carry } \mathrm{U}(1)_{b} \text { charge }
$$

$$
\begin{array}{cl}
& \begin{array}{l}
\text { Kaluza Klein modes on } \\
\mathrm{S}^{7} \text { with no momentum along } \\
\text { the } 11^{\text {th }} \text { direction. }
\end{array} \\
\operatorname{Tr}\left[C C^{*} C C^{*} \cdots\right] \\
\operatorname{Tr}\left[A_{a} B_{b} A_{c} B_{d} \cdots\right] & \begin{array}{l}
\text { Ordinary string states in the } \\
\text { IIA description. }
\end{array}
\end{array}
$$

Modes with momentum in the $11^{\text {th }}$ direction.
$\mathrm{O} \sim T_{1} C^{k}$
DO branes in the IIA description

$\mathrm{k}=1,2$

Extra symmetries.
Look at the scalars in the current supermultiplet.
$\operatorname{Tr}\left[C^{I}\left(C^{J}\right)^{*}\right] \quad$ Ordinary SU(4)

$$
\begin{array}{cl}
T_{2,1} C^{(I} C^{J)} & \text { Dimension } 1 \text { fields } \rightarrow \text { dimension } 2 \\
\text { (Only for k=1,2) } & \text { currents } \rightarrow \text { Conserved currents }
\end{array} \text { Witten }
$$

For k=1 $T C^{I} \quad \begin{aligned} & \text { dimension } 1 / 2 \rightarrow \text { free field } \\ & \text { center of mass motion }\end{aligned}$

Analogy:

Compact boson in 2d at a specific radius $\rightarrow \mathrm{SU}(2)^{2}$ symmetry.

Integrability?

- Is this another example of an integrable gauge/string theory?

$$
\begin{array}{cc}
\frac{A d S_{5} \times S^{5}}{} & \underline{A d S_{4} \times C P^{3}} \\
\operatorname{Tr}\left[Z^{J}\right] & \operatorname{Tr}\left[\left(A_{1} B_{1}\right)^{J}\right] \\
S U(2 \mid 2)^{2} & S U(2 \mid 2) \times U(1) \\
\epsilon=\sqrt{1+\lambda \sin ^{2} \frac{p}{2}} & \epsilon=\sqrt{1+h(\lambda) \sin ^{2}}
\end{array}
$$

Nishioka, Takayanagi, Minahan, Zarembo, Gaiotto, Gombi, Yin, Arutyunov Frolov Stefanski Fre Grassi D'Auria Trigiante Astolfi Giangreco Grignani Harmark Orselli Puletti Chen Wu McLoughlin Roiban Alday Bykov KrishnanAhn, Nepomechie Bak Rey

Generalizations

$-U(N)_{k} \times U(M)_{-k} \quad N>M$

Aharony
Bergman
Jafferis
Discrete Wilson lines of C_{3} field (Torsion F_{4} flux)
Theory does not exist if $\mathrm{N}-\mathrm{M}>\mathrm{k}$
$-\mathrm{O}(2 \mathrm{~N})_{2 \mathrm{k}} \times \mathrm{USp}(2 \mathrm{~N})_{-\mathrm{k}}$
$\mathcal{N}=5$ susy .
Extra orbifold in M-theory D_{k}
Orientifold of IIA theory

- Massive deformations

Gomis, Rodriguez-Gomez, Van Raamsdonk, Verlinde.

Interesting set of vacua M2 \rightarrow M5 on S^{3}
M2 ending on M5

- More general quivers

Hosomichi, (Lee) ${ }^{3}$, Park
Jefferis, Tomasiello. Martelli, Sparks.
Hanany, Zaffaroni.

- Squashed S^{7}

Ooguri, Park

- Flows to deformed S^{7} with $\mathrm{SU}(3)$ symmetry (add 't Hooft operator) Ahn, Benna Klebanov Klose Smedback
- Non susy

Conclusions

- Presented an $\mathcal{N}=6$ conformal Chern Simons Matter theory
- Has a discrete parameter, k, that allows us to go to weak coupling.
- At strong coupling, $k=1,2$, the theory has enhanced symmetry
- There is an interesting (and possibly integrable) 't Hooft limit

Future

- Understand better the 't Hooft operators. Develop techniques for seeing and exploiting the appearance of symmetries at strong coupling.
- Integrability?
- More general AdS_{4} vacua.
- Condensed matter applications ?

[^0]: Benna Klebanov Klose Smedback. Bandres, Epstein, Schwarz. Schnabl, Tachikawa.

