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Motivations

in—pixel
& CMOS pixel sensors micro-cicais
x Potentially extremely thin ~ 25 um charpscollecting

~0.027 % X,

& Questions

X How much can CMOS pixel sensors be thinned down
for integration?

x  Can we provide support structures & services
which are not "much more thick" than the sensors?

X Any new ideas opened by such thin sensors?
X How do we benefit from industry rapid technology advances?
x Do we have the necessary skills/equipments in our laboratories?

Do integration studies bring some feedback to the design of the sensors themselves?

& The PLUME R&D

x "classical" approach
x double-sided ladders
x design ILC oriented

& Sensor embedding

x Exploratory approach
x  Exploit monolithic aspect of sensors

x R&D partly supported by FP7
Hadron-Physics2-ULISI
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The PLUME collaboration

& ILC-oriented ILD vtx det. concept

x Double-sided ladders

Air cooled

Power pulsed @ T=200ms

125 mm long
Material budget goal ~ 0.3 % X

Results expected for mid-2012

0

X X X X X

& Double-sided ladders benefits

Redundancy
Alignment: faster and/or more robust
Track finding boosted by mini-vectors

—_ 0
S SO UA RS e R SRH G X©

>xX X X X

The “classical” sandwich
: 50 um sensors

R —

to servicing board ~ 1m

foam

E support
g support | Low mass flex cable |

l 1em ' 12 cm
Transversal view Longitudinal view
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gV The PLUME collaboration

* Mechanical design
Eh‘é University of stiffener, supports

BRISTOL « Stability measurements

« Modules mounting on ladders

e Simulations (FEA)
e Ladder mock-up & thermal measurement
* Power pulsing tests

e Electrical tests
 Readout & DAQ

Institut PHEiglés;ii linaire ° COO||ﬂg SyStem

URIEN

* Sensors mounting on modules

STRASBOURG e Test beam infrastructure & analysis

S UNIVERSITY OF » Low-mass cable
OXFORD

design & test
» Test beam analysis

& Synergy with

x IKF - Frankfurt, CBM group
x LBNL - Berkeley, STAR-HFT group
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PLUME-2010 design

& Goals

x  Electrical functionality
with 6 MIMOSA 26 (see M. Winter's talk)

x Address the full fabrication, assembly & test chains

x Note: MIMOSA 26 not designed for power pulsing

& Key features
X 6x MIMOSA 26 thinned down to 50 um
x Low mass cable = 140 um thick with 2x20 um copper
X Spacer = SIC foam at 8% density
x 1 ladder = 8M pixels, 10g, 0.6 % X, (cross section)
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PLUME-2010 design

bare low mass cable

module with 6 sensors

complete ladder
(2 modules)
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@@= PLUME-2010 module assembly

X6, manual positioning,

III\IWT cuum fixed

Controlled glue dispensing
small pressure while curing

\I\I\I\illl—Then wire bonding
v

~20 um space bw sensors
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PLUME-2010 ladder assembly

m I lia“dn!
support
module 1 '
«O@ ‘
~ 2 days
foam

module 2

& Modules & Ladders

~30 low mass cables produced (all copper) x 3 assembled
= 1 with dummy sensors

X
x 5equipped with 6 MIMOSA26

= All electrically functional
= 3 with 1 or 2 non-functional sensors

= 1 electrically functional

= 1 still curing
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Af“ PLUME-2010 simulations

Ladder model in I—DEAS

Fan (60x60 or 120x120) mm

Module in the air cooling box
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PLUME-2010 simulations

Module air cooled
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— Importance of heat conductivity among sensors
for efficient cooling by air
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PLUME-2010 simulations

Ladder supported at both ends

3¢ - Mod SiC foam 8% SiC foam 4% RVC
- wode in Hz in Hz in Hz

Two sensors/ 2 940 a81 453

Three sensors 9 1281 1117 674

— Importance of sandwich effect for stiffness I
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PLUME-2010 electrical tests

Scan of the discriminator thresholds with all 6 sensors switched on (5 tuned for 1% occupancy)
One {discriminator + pixel} transfer function

Bl — i Current consumption/sensor ~230 mA
DB;- The « slopeéaa determines @ |OW th reShOl d
L the noise
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— Waiting for quantitative measurement of fake hit rate with threshold
(very soon)
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PLUME-2010 thermal tests

IR camera thermal measurement on a single module

= 2 m/s air flow -

. R60°C
== 50°C
PLUME 2010 @ 1% occupancy 25°C

MIMOSA 26 internal (diode) temp. measurement on ladder
only 1 over the 2 modules switched on
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PLUME-2010 thermal tests

IR camera thermal measurement on a single module

« 2 m/s air flow -
B 60°C

B = 50°C
PLUME 2010 @ 1% occupancy 25°C

MIMOSA 26 internal (diode) temp. measurement on ladder
only 1 over the 2 modules switched on

53 L .

]
(L2) Temperature for the matrix pixel {°C) vs aig$peed (mis)

.
L

L2 sensor tamperature (*C)
I
o

0.8 1 12 14 16 1.8 2 22 24 26 28 3 32 34

average air speed (mis) [chipt side meas.]
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PLUME-2010 mechanical tests

Surface survey of ladder with dummy sensors

Plume Ladder Side B \
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With the help of Ryan Page & setup from RAL

Functional ladder air cooled
— Waiting for survey and vibration measurements for quantitative

conclusion (end of September 2011)
— Waiting for test beam at CERN-SPS with 120 GeV 1t (november 2011)
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PLUME-2011 design

& Why is the 2010 design so thick ? & New (2011) design

X Ccable width ~ 2 x sensor width X cable width ~ sensor width + 4 mm

(wire bonds+SMD comp.)
X metal ~ copper

-

x metal ~ aluminum (CERN)

x SIC foam (spacer) density ~ 8% (still copper from industry)

x SIC foam (spacer) density ~ 4%

& New (PRELIMINARY) material budget

x transverse cross-section

=2 0.344 % X0 = 2x0.053(sensors) + 2x0.058(flex) + 0.092(SiC4%) + 0.030(SMD)
x average (weighted /10 mm wide MIMOSA 26 sensitive layer)

2> 0.502 % X0 = 2x0.069 (sensor) + 2x0.098 (flex) + 0.138 (SiC4%) + 0.030 (SMD)

& Schedule

copper cable version in test

Aluminum cable version expected in Oct.
S S R L BT SRSy
First ladder in 2012-Q1

Ladder small prod. (~10) » mid-2012

>xX X X
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Sensor embedding

& Rationale SEnsor Row Wrapped In

Extra-Thin Envelope = SERWIETE

x Getrid of the wire bonds (less material)

x  Provide a mechanical protection to sensors

= allows thinner sensors

= Allows more mechanical stress by evening it

x Possibilities

=2 Lower material budget (average ~ cross section)

2 Supportless connection Metal traces

=» cover non planar surface

kapton sensor

profile view

& Difficulty & IMEC-CFRM process
x SERWIETE

1 & CERN process |
x CERNWIETE
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x Alignment of the narrow pad rings of several sensors
over a long distance (~ladder length)

x Add metal layers over the embedded sensors




Sensor embedding: CERN

& |dea from R. De Oliveira, W.Dulinski

x  Embed sensor one at time Gluing 1 sensor between two kapton

foil
= Alleviate alignment difficulty

‘I

= Allow individual testing before assembly (yield) Opening vias using lithography

x  Processing of further metal layers decoupled
from sensor embedding

& Questions

‘I

Al (5-10 pym) sputtering &

X Insensitive area in-between sensors?

"

= Possibility to overlay embedded sensors Gluing another kapton foil for further processing

6x single modules
(individually tested] &

& Material budget

x Embed sensor one at time

= Alleviate alignment difficulty

= Allow individual testing before
assembly (yield)

x  Processing of further metal layers
decoupled
from sensor embedding

Ultra-light pixellated systems, 2011, Sept. 8
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& Status

x  First single sensor embedded,

x Not functional because connection problem

= Vias under microscope investigation
= Used for stress test

X Interconnecting bus design ready
= 3 metal layers (guarantee impedance)

x  Further processing this Fall

|‘ | IN!

1 Pam] 2smier 3

— No cracks visible on the silicon,
still awalt electrical confirmation
— Thermal behavior?
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Summary

« PLUME

x A first (functionally) successful design in 2010 to be fully validated in Nov. 2011
x New design in 2011 to reach material budget of (cross sect.) 0(0.03) % X,

x Simulation effort to validate models to predict new designs performances
x "infrastructures” in place for further designs and/or other sensors

& Sensor embedding (SERWIETE & CERNWIETE)

x Quite promising, probably 1 manifestation of new integrations methods/technics
within the reach of CMOS pixel sensors

x  Still expecting a first functional prototype (<2012 according to plan)

& Applications ?

¥ PLUME beam tests will be an important milestones for the ILD available in 2012
(to be compared with DEPFET-based Belle II-VXD & STAR-PXL)

X 6 to 8 ladders (12 x MIMOSA 26 each) will run during long beam periods in the
framework of the FP7-AIDA project

= Complementary experience wrt STAR-PXL



& Additional slides

X

ILD-VXD integration, 2010 July 6
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Defining the spatial resolution

& From the residual resolution

x Fitwith a single gaussian

x  Spatial resolution = single gaussian std. deviation

Entries 8409 Entries 46612
2 Mean 0.5477 F ¥2 I ndf 215.3 /64
3500 _ Constant  377.1+53 = J \ Mean  0.03016 + 0.01849
C Mean  0.5389 +0.0160 35005 )
300" | Sigma  1.444+0.012 - J \ Sigma 3.982+0.013
= { 3000
2501 - { '
e 2500
200 - I f ‘\
- l i 2000 f \
150+ 1 1500~
1001 i 1000 / \
50F E 500 ?
:‘ sl & = L L1 L1 L
0-20 -15 -10 -5 0 5 10 15 2:) 0 =30 =20 -10 0 10 20 30
residual track-hit (u m) residual track-hit (u m)

Analog sensor case: Binary sensor case:
MIMOSA 18, pitch 10 um MIMOSA 26, pitch 18.4 um
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PLUME-2010 simulations

Module air cooled

Ultra-light pixellated systems, 2011, Sept. 8
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skl

PLUME-2010 simulations

Ultra-light pixellated systems, 2011, Sept. 8

Module air cooled
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Materials for stiffener/spacer

Material Selection Graphs
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Radiation length (cm) 102

From Joel Goldstein, Brisol U.
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Parameter space for a VXD
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