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QuestionsQuestions

✗ How much can CMOS pixel sensors be thinned down 
for integration?

✗  Can we provide support structures & services 
which are not “much more thick” than the sensors?

✗ Any new ideas opened by such thin sensors?

✗ How do we beneft from industry rapid technology advances?

✗ Do we have the necessary skills/equipments in our laboratories?

✗ Do integration studies bring some feedback to the design of the sensors themselves?
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The PLUME collaborationThe PLUME collaboration
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ILD vtx det. concept

The “classical” sandwich
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The PLUME collaborationThe PLUME collaboration
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PLUME-2010 designPLUME-2010 design

GoalsGoals

✗ Electrical functionality
with 6 MIMOSA 26 (see M.Winter's talk)

✗ Address the full fabrication, assembly & test chains

✗ Note: MIMOSA 26 not designed for power pulsing
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PLUME-2010 designPLUME-2010 design

bare low mass cable

module with 6 sensors

bare low mass cable

complete ladder
(2 modules)
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PLUME-2010 module assemblyPLUME-2010 module assembly

x6, manual positioning,
      vacuum fxedMIMOSA 26

50 µm thick

Controlled glue dispensing
small pressure while curing
Then wire bonding

~20 µm space bw sensors
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PLUME-2010 ladder assemblyPLUME-2010 ladder assembly
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✗ 5 equipped with 6 MIMOSA26

➔ All electrically functional

➔ 3 with 1 or 2 non-functional sensors
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PLUME-2010 simulationsPLUME-2010 simulations

Ladder model in I-DEAS

Module in the air cooling box
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PLUME-2010 simulationsPLUME-2010 simulations

Module  air cooled

→ importance of heat conductivity among sensors
for efcient cooling by air

→ importance of heat conductivity among sensors
for efcient cooling by air
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PLUME-2010 simulationsPLUME-2010 simulations

Ladder supported at both ends

→ importance of sandwich efect for stifness→ importance of sandwich efect for stifness
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PLUME-2010 electrical testsPLUME-2010 electrical tests

Scan of the discriminator thresholds with all 6 sensors switched on (5 tuned for 1% occupancy)

Temporal noise at mV level
as expected from single sensor
measurements

Temporal noise at mV level
as expected from single sensor
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Current consumption/sensor ~230 mA 
@ low threshold

Current consumption/sensor ~230 mA 
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→ Waiting for quantitative measurement of fake hit rate with threshold
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PLUME-2010 thermal testsPLUME-2010 thermal tests

IR camera thermal measurement on a single moduleIR camera thermal measurement on a single module

MIMOSA 26 internal (diode) temp. measurement on ladderMIMOSA 26 internal (diode) temp. measurement on ladder
only 1 over the 2 modules switched on
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PLUME-2010 mechanical testsPLUME-2010 mechanical tests

Functional ladder air cooled
→ Waiting for survey and vibration measurements for quantitative 
conclusion (end of September 2011)
→ Waiting for test beam at CERN-SPS with 120 GeV π (november 2011)

Functional ladder air cooled
→ Waiting for survey and vibration measurements for quantitative 
conclusion (end of September 2011)
→ Waiting for test beam at CERN-SPS with 120 GeV π (november 2011)

Surface survey of ladder with dummy sensors

With the help of Ryan Page & setup from RAL
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PLUME-2011 designPLUME-2011 design

Why is the 2010 design so thick ?Why is the 2010 design so thick ?

✗ cable width ~ 2 x sensor width

✗ metal ~ copper

✗ SiC foam (spacer) density ~ 8%
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✗ Ladder small prod. (~10) » mid-2012
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✗ average (weighted / 10 mm wide MIMOSA 26 sensitive layer)

➔ 0.502 % X0 = 2x0.069 (sensor) + 2x0.098 (fex) + 0.138 (SiC4%) + 0.030 (SMD)

New (New (PRELIMINARYPRELIMINARY) material budget) material budget

✗ transverse cross-section

➔ 0.344 % X0 = 2x0.053(sensors) + 2x0.058(fex) + 0.092(SiC4%) + 0.030(SMD)

✗ average (weighted / 10 mm wide MIMOSA 26 sensitive layer)

➔ 0.502 % X0 = 2x0.069 (sensor) + 2x0.098 (fex) + 0.138 (SiC4%) + 0.030 (SMD)

New (2011) designNew (2011) design

✗ cable width ~ sensor width + 4 mm
(wire bonds+SMD comp.)

✗ metal ~ aluminum (CERN)
     (still copper from industry)

✗ SiC foam (spacer) density ~ 4%

New (2011) designNew (2011) design

✗ cable width ~ sensor width + 4 mm
(wire bonds+SMD comp.)

✗ metal ~ aluminum (CERN)
     (still copper from industry)

✗ SiC foam (spacer) density ~ 4%



17Ultra-light pixellated systems, 2011, Sept. 8

Sensor embeddingSensor embedding

RationaleRationale

✗ Get rid of the wire bonds (less material)

✗ Provide a mechanical protection to sensors

➔ allows thinner sensors

➔ Allows more mechanical stress by evening it 

✗ Possibilities

➔ Lower material budget (average ~ cross section)

➔ Supportless

➔ cover non planar surface
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✗ Alignment of the narrow pad rings of several sensors 
over a long distance (~ladder length)

✗ Add metal layers over the embedded sensors

IMEC-CFRM processIMEC-CFRM process

✗ SERWIETE

IMEC-CFRM processIMEC-CFRM process

✗ SERWIETE

CERN processCERN process

✗ CERNWIETE

CERN processCERN process

✗ CERNWIETE

SEnsor Row Wrapped In 
Extra-Thin Envelope = SERWIETE

kapton sensor

Metal tracesconnection

profle view
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Sensor embedding: CERNSensor embedding: CERN

Idea from R. De Oliveira, W.DulinskiIdea from R. De Oliveira, W.Dulinski

✗ Embed sensor one at time

➔ Alleviate alignment difculty

➔ Allow individual testing before assembly (yield)

✗ Processing of further metal layers decoupled
from sensor embedding

QuestionsQuestions

✗ Insensitive area in-between sensors?

➔ Possibility to overlay embedded sensors
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Sensor embedding: CERNSensor embedding: CERN

StatusStatus

✗ First single sensor embedded, 

✗ Not functional because connection problem

➔ Vias under microscope investigation

➔ Used for stress test

✗ Interconnecting bus design ready

➔ 3 metal layers (guarantee impedance)

✗ Further processing this Fall
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Detail of vias on sensor pads

→ No cracks visible on the silicon,
still await electrical confrmation
→ Thermal behavior?
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SummarySummary

PLUMEPLUME

✗ A frst (functionally) successful design in 2010 to be fully validated in Nov. 2011

✗ New design in 2011 to reach material budget of  (cross sect.) O(0.03) % X0 

✗ Simulation efort to validate models to predict new designs performances

✗ “infrastructures” in place for further designs and/or other sensors

Sensor embedding (SERWIETE & CERNWIETE)Sensor embedding (SERWIETE & CERNWIETE)

✗ Quite promising, probably 1st manifestation of new integrations methods/technics 
within the reach of CMOS pixel sensors

✗ Still expecting a frst functional prototype (<2012 according to plan)

Applications ?Applications ?

✗ PLUME beam tests will be an important milestones for the ILD available in 2012
(to be compared with DEPFET-based Belle II-VXD & STAR-PXL)

✗ 6 to 8 ladders (12 x MIMOSA 26 each) will run during long beam periods in the 
framework of the FP7-AIDA project

➔ Complementary experience wrt STAR-PXL
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Additional slidesAdditional slides

✗

Additional slidesAdditional slides

✗
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Defning the spatial resolutionDefning the spatial resolution

From the residual resolutionFrom the residual resolution

✗ Fit with a single gaussian

✗ Spatial resolution = single gaussian std. deviation
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Analog sensor case:
MIMOSA 18, pitch 10 µm

Analog sensor case:
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Binary sensor case:
MIMOSA 26, pitch 18.4 µm

Binary sensor case:
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PLUME-2010 simulationsPLUME-2010 simulations

Module  air cooled
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Materials for stifener/spacerMaterials for stifener/spacer

From Joel Goldstein, Brisol U.
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Parameter space for a VXDParameter space for a VXD

M
APS developm

ent trend

MAPS
standard
domain
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