

Performance Comparison of Multi- and "Many"-Core Batch Nodes

Manfred Alef

STEINBUCH CENTRE FOR COMPUTING

Background

- No significant speed-up of single CPU cores since several years
- Servers with multi- and more-core CPUs are providing improved system performance:
 - Until 2005: single-core,
 - 2006 2007: dual-core,
 - 2008 2009: quad-core,
 - 2010: quad-core with Symmetric Multiprocessing (Hyperthreading) feature,
 - **2011**: 12-core, 2 or more CPU sockets (\rightarrow up to 48 cores per system)
- Cheap servers with 4 CPU sockets are on the market

Background

Worker nodes at GridKa (since 2006):

Vendor	CPU *	MHz	L2+L3 Cache (MB) per CPU	Cores	Sockets	Total Cores	
AMD	270	2000	0.5+0	2	2	4	ed
Intel	5148	2333	4	2	2	4	retired
Intel	5160	3000	4	2	2	4	
Intel	E5345	2333	8+0	4	2	8	
Intel	L5420	2500	12+0	4	2	8	
Intel	[⋿] 5430	2666	12+0	4	2	8	
Intel	E5520	2266	1+8	4 + HT	2	8	
AMD	6168	1900	6+12	12	2	24	
AMD	6174	2200	6+12	12	4	48	

* In this presentation, the TDP indicator will be omitted, i.e. "5430" is either an "E5430" or a "L5430" chip.

Background

- Worker nodes at GridKa:
 - Hardware details:
 - 2 CPU sockets
 - AMD 6174 box: 4 sockets
 - 2 GB RAM per core
 - Intel 5160: 1.5 GB RAM per core
 - Intel 5520: 3 GB RAM per core (12 job slots → 2 GB RAM per job slot)
 - AMD 6168: 3 GB RAM (IO cache)
 - 30 GB local disk scratch space per job slot
 - At least 1 disk drive per 8 job slots

HS06 Scores, Batch Throughput, and More

- What is the performance for realistic applications such as HEP experiments codes? Does it scale with the number of cores?
- To check for possible bottlenecks, e.g. access to local disks or network performance, we have compared
 - HS06 scores,
 - batch throughput,
 - Ganglia monitoring plots,
 - *ps* and *top* output.

General Remarks on CPU Benchmarking

- Scoring of hardware
- Benchmark result should scale with real life applications
- Performance of an application depends on a lot of facts:
 - CPU
 - Clock cycle
 - Architecture
 - Cache size (L2, L3)
 - Memory throughput
 - File access
 - Local disk(s)
 - Remote fileserver(s)
 - Network performance

Application A1 may run faster on machine M1 while A2 is faster on M2

General Remarks on CPU Benchmarking

HEP benchmarking:

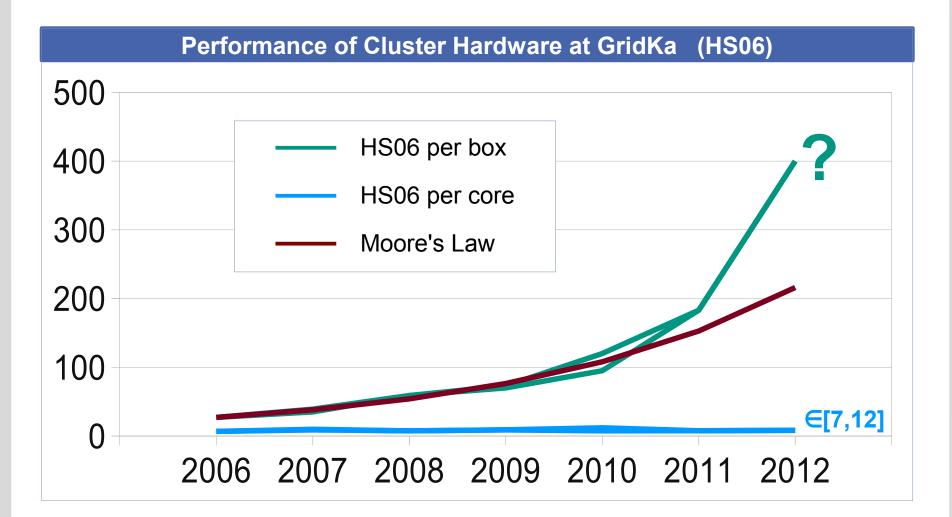
- HS06 is based on industry standard benchmark suite SPEC¹ CPU2006 ...
 - CPU2006: 12 integer and 17 floating-point applications
- Implus benchmarking HowTo provided by HEPiX Benchmarking WG²
 - All_cpp subset of CPU2006:
 3 integer and 4 floating-point applications
 - Operating system: the same one which is used at a site
 - Compiler: GNU Compiler Collection (GCC) 4.x
 - Flags (provided by LCG Architects Forum mandatory!):
 - -02 -pthread -fPIC -m32
 - 1 simultaneous benchmark run per core
 - HS06 score of the system is the sum of the geometric means of the 7 individual runs per core
- 1 SPEC is a registered trademark of the Standard Performance Evaluation Corporation

Michele Michelotto, Manfred Alef, Alejandro Iribarren, Helge Meinhard, Peter Wegner, Martin Bly, Gabriele Benelli,
 Franco Brasolin, Hubert Degaudenzi, Alessandro De Salvo, Ian Gable, Andreas Hirstius, Peter Hristov:
 A Comparison of HEP code with SPEC benchmarks on multi-core worker nodes. CHEP 2009, Journal of Physics 219 (2010)

HS06 Benchmarking

Benchmark results demonstrate significant speed-up of modern cluster hardware.

Example – Compute fabric at GridKa

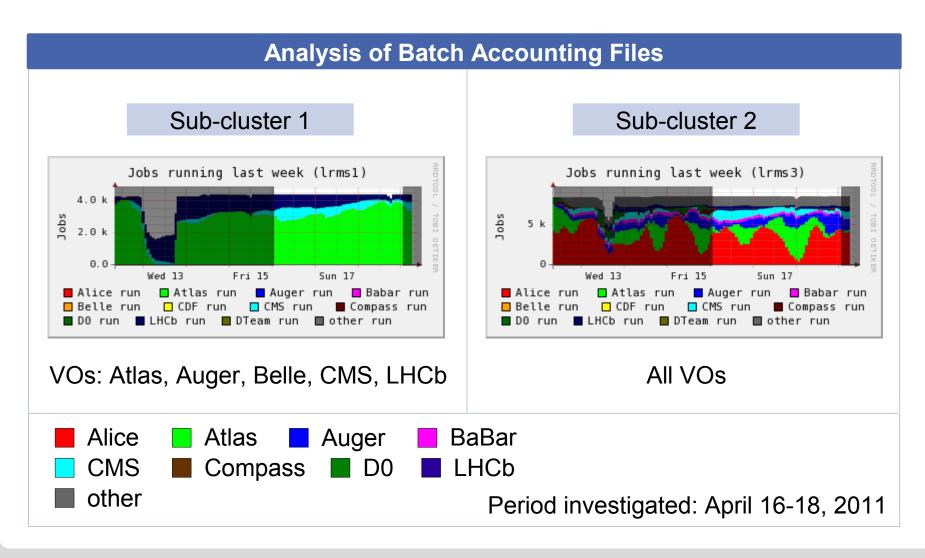

HS06 Benchmarking

Vendor	CPU	MHz	Cores	Sockets	Runs	In Commission	HS06
AMD	270	2000	2	2	4	2006 2010	27
Intel	5148	2333	2	2	4	2007 2011	35
Intel	5160	3000	2	2	4	2007	39
Intel	5345	2333	4	2	8	2008	59
Intel	5420	2500	4	2	8	2009	70
Intel	5430	2666	4	2	8	2009	73
Intel	5520	2266	4 HT off 4 HT on	2	8 16	2010	95 120
AMD	6168	1900	12	2	24	2011	183
AMD	6174	2200	12	4	48	2011	400

HS06 Benchmarking

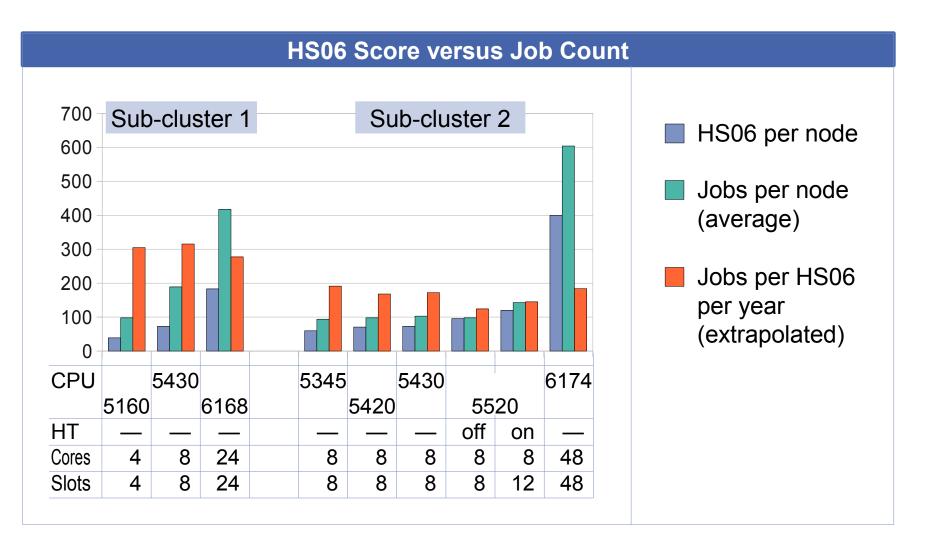
Vendor	CPU	MHz	Cores	Sockets	Runs	In Commission	HS06
AMD	270	2000	2	2	4	2006 2010	27
Intel	5148	2333	2	2	4	2007 2011	35
Intel	5160	3000	2	2	Л	2007	39
Intel	5345	2333	4	Performance issues (insufficient memory bandwith)!			59
Intel	5420	2500	4				70
Intel	5430	2666	4	2	8	2009	73
Intel	5520	2266	4 HT off	2	8	2010	95
			4 HT on		16		120
AMD	6168	1900	12	2	24	2011	183
AMD	6174	2200	12	4	48	2011	400

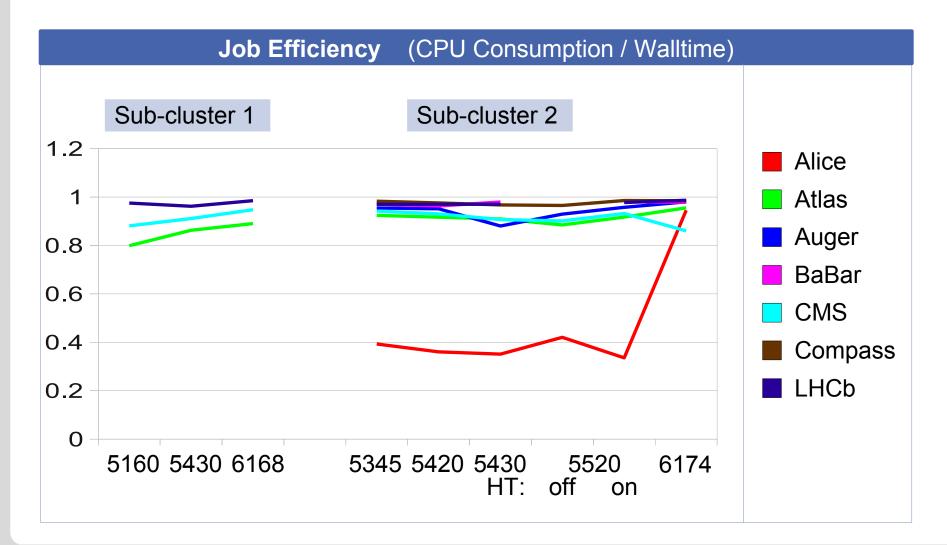
- How does the number of jobs (per time interval) scale with the HS06 score?
 - Note that the number of jobs running on a particular system is a rough indicator of the performance because some jobs check for the remaining wallclock time and fill up the time slot provided by the batch queue.
 - There are currently no scaling factors configured in the batch system at GridKa.
 - Therefore the jobs-per-HS06 scores may vary similar to the HS06-per-job-slot performance of the host.
- Analysis of PBS accounting records from 16 to 18 April 2011
 - Data processed using Excel sheets

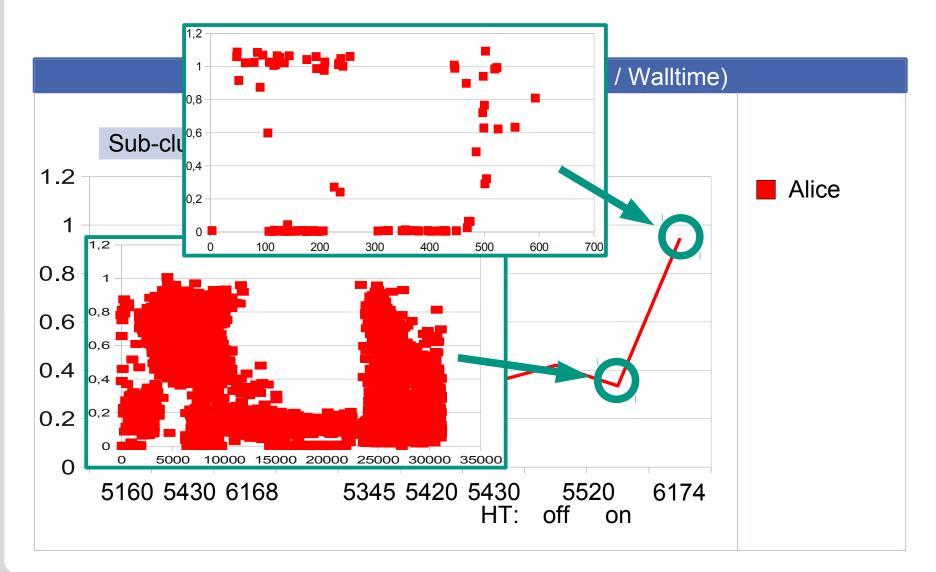

GridKa WNs are split into 2 PBS sub-clusters

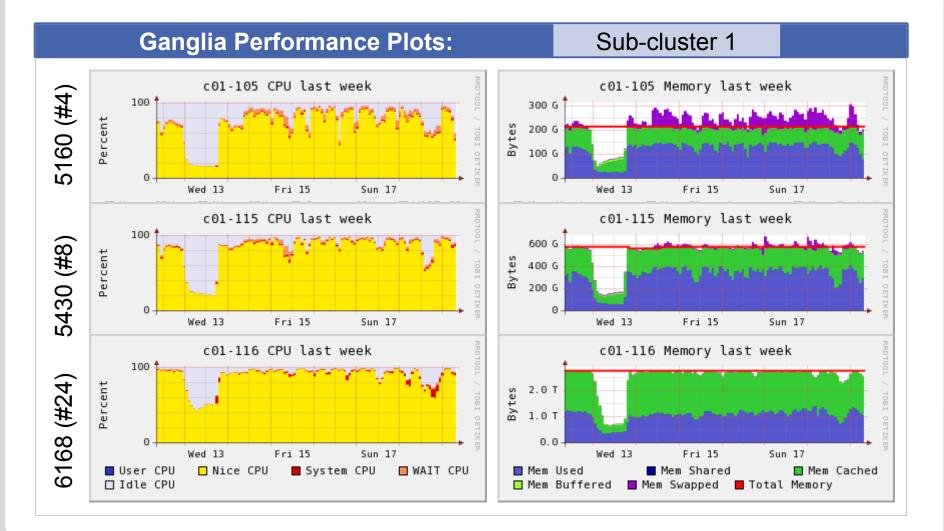
- Heterogenous hardware in both clusters
- Restricted VO access in sub-cluster 1

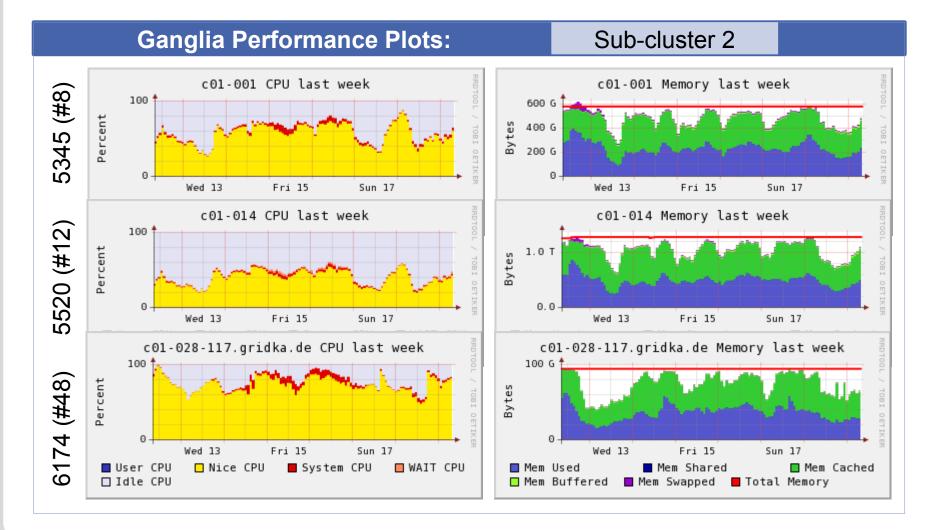
Sub-Cluster	Worker Nodes	Quantity	VOs
1	Intel 5160 Intel 5430 AMD 6168	37 nodes 181 nodes 116 nodes	Atlas, Auger, Belle, CMS, LHCb
2	Intel 5345 Intel 5420 Intel 5430 Intel 5520 HT off Intel 5520 HT on AMD 6174	338 nodes 350 nodes 33 nodes 1 node 218 nodes 1 node	All VOs











Manfred Alef: Performance Comparison of Multi and Many-Core Batch Nodes HEPiX Spring 2011

Ganglia and Local Performance Monitoring

Ganglia and Local Performance Monitoring

Local Performance Monitoring: 'top' and 'ps' Output

Most time-consuming processes running on the 48-core node (AMD 6174)

[alef@c01-028-117 ~]\$ uptime ; ps -uroot sort -k3 -r head					
14:04:13 up 34	days, 22:09, 2 users, load average: 43.54, 43.44, 43.33				
PID TTY	TIME CMD				
6894 ?	<mark>03:30:31 kjournald</mark>				
10171 ?	<mark>01:36:30 pbs_mom _</mark>				
14208 ?	00:19:00 pdflush				
10993 ?	00:14:22 pdflush				
8132 ?	00:07:54 rpciod/47				
5428 ?	00:07:16 nfsiod				
8560 ?	00:05:31 snmpd				
8131 ?	00:05:24 rpciod/46				
8130 ?	00:04:39 rpciod/45				
[alef@c01-028-1	17 ~]\$				

Conclusions

- New batch workers are coming with more and more CPU cores.
- The performance level per core has been frozen at around 10 HS06.
- Boxes with up to 4x12=48 cores are on the market.
- Performance investigations have not found any real show-stoppers:
 - HS06 scores scale well with the number of CPU cores per system.
 - Number of jobs started on particular nodes scale with HS06 performance.
 - Performance monitoring tools, like Ganglia plots or local system commands, don't show serious bottlenecks.

