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Myths and Legends

Myths: that lattice QCD can ...

.. only study hadronic ground states with precision
@ ... not study states with high spin
Q...

@ ... not compute scattering properties

not determine isoscalar mesons (with precision)

@ where do these myths come from?
@ can we address them?



Origins of the myths

@ Difficulties stem mostly from restrictions with
standard techniques used in numerical simulations,
particularly those to study quarks.

@ Physics focus of LQCD has long been matrix
elements and new approaches were needed for
precision spectroscopy of high-spin states and
exotics.

Are there solutions?

@ New methods are debunking the myths
@ Can study excited and high-spin states reliably

@ Isoscalar mesons now almost as precise as
isovectors!

@ Many groups have results on scattering &
resonances (light sector).



Outline

@ Spectroscopy from Lattice QCD
e Methods: old and new
@ Heavy quarks and lattice QCD
@ Recentresults (NF=3,2,2+1,2+1+1)
e charm and bottom states below threshold
e above threshold
@ Future work: what to expect & outstanding
challenges



Lattice regularisation

@ Lattice provides a non-perturbative, gauge-
invariant regulator for QCD

@ Quarks live on sites Quark fields
. . /onsites

@ Gluons live on links

@ a - lattice spacing —

@ a~0.1fm onlinks

@ Nielson-Ninomiya theorem: chirally symmetric
quarks are missing, but can discretise quarks by
trading-off some symmetry

@ Wick rotation, t —iT, 5 — S

@ Enables importance sampling ie Monte Carlo

@ Lose direct access to dynamical properties of the
theory like decay widths.

@ Finite V: path-integral is ordinary (but large).
Predictions from the QCD lagrangian by Monte
Carlo



The current landscape

C. Hoelbling, Lattice 2010 arXiv:1102.0410
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@ Dynamical simulations with N, =2 or2 +1
@ Large volumes, L > 3fm = O(1%) on my.
@ Light quark masses, now close to or at my.



Spectroscopy



Spectroscopy in lattice QCD

@ Energies of colourless QCD states can be extracted
from two-point functions in Euclidean time

C(t) = (0] o(t)®'(0) |0)

@ Euclidean time: o(t) = eftde1t so C(t) = (d|e~H|D).
Insert a complete set of energy eigenstate and:

oo}

C(t) =Y [(olk)[2e~5t

k=0

@ limi_o C(t) = Ze~Fot, so if observe large-t fall-off,
then energy of ground-state is measured.

Euclidean metric very useful for spectroscopy; it pro-
vides a way of isolating and examining low-lying states J




Excited states

@ Excited-state energies can be measured by
correlating between operators in a bigger set,

{®1,Py,...,Pn}

Cyi(t) = (0] ®(t)97(0) 0)

@ Solve generalised eigenvalue problem:
C(t1) v=AC(to) v

for different to and t;  [Liischer & Wolff, C. Michael]
@ Then |im(t1_t0)_,oo Ap = e—En(ti—to)

@ Method constructs optimal ground-state creation
operator, then builds orthogonal states.

Excited states accessed if basis of creation operators is
used and the matrix of correlators can be computed




Spectroscopy - making measurements

€ e—=—* o ¢ are bilinears with path-ordered
products of quark and anti-quark fields;

° different offsets, paths and spin
contractions give different projections
into lattice symmetry channels.

@ Design ops with good overlap onto states of interest

@ Good idea to smooth fields spatially before
measuring: smearing
Distillation [from Hadron Spectrum Collab.]

@ Reduce the size of space of fields (on a time-slice)
preserving important features.

o All elements of the (reduced) quark propagator can
be computed: allows for many operators,
disconnected diagrams, multi-hadron operators.

@ With stochastic methods to improve volume scaling.



Spectroscopy

The spectroscopy of “single-particle” states:
As well as control of usual lattice systematics
(@ = 0,L = o0, mg ~ my) requires methods for

@ statistical precision at % percent level
@ reliable spin identification
@ heavy quark methods for charm and bottom



Spectroscopy

The spectroscopy of “single-particle” states:
As well as control of usual lattice systematics
(@ = 0,L = o0, mg ~ myg) requires methods for
@ statistical precision at percent level
e to include multi-hadrons and study resonances

@ reliable spin identification
® heavy quark methods for charm and bottom



statistical precision at percent level

@ “distillation” (0905.2160) - a new approach to
simulating correlators. Particularly good for
spectroscopy.

@ enables precision determination of disconnected
diagrams, crucial for isoscalar spectroscopy and
multi-hadron operators.

LA A

@ large bases of interpolating operators now feasible,
for better determination of excited states



Spectroscopy

The spectroscopy of “single-particle” states:
As well as control of usual lattice systematics
(@ = 0,L — o, mg ~ mg) requires methods for
°
@ reliable spin identification

e understanding symmetries and connection between
lattice and continuum
e designing operators with overlap onto JP€ of interest.

@ heavy quark methods for charm and bottom



Spin on the lattice

@ Lattice breaks O(3) — Op

@ Lattice states classified by quantum
letter, R € {A1,A2,E, T1,T2}.

@ Continuum: subduce O(3) irreps
— Op. J > 1 split over irreps

@ Look for degeneracies. Problem:
spin-4 has same pattern as
Ovle?2.

@ Better spin assignment by constructing operators
from lattice representation of covariant derivative.

@ Start in continuum with operator of definite J,
subduce into Op and replace derivatives with lattice
equivalent. Measure (0|®|/P¢) and look for
remnants of continuum symmetries.

Remnants of continuum spin found on the lattice if we
build operators more carefully and can measure their
correlators



Reliable spin identification - overlaps
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Spectroscopy

The spectroscopy of “single-particle” states:
As well as control of usual lattice systematics
(@ = 0,L = o0, mg ~ my) requires methods for
°
°

@ heavy quark methods for charm and bottom



Heavy quarks in lattice qcd

O(amg) are significant for charm and large for bottom

Relativistic actions

@ Isotropic (as = a¢):

needs very fine lattices. | NI E

Working well for charm
! @ NRQCD: m¢ not heavy
extended to (nearly) enough? Good for

bottom bottomonium.

[arXiv:1010.3848]. .
. . ) @ Fermilab: works well for
/AN () 75 Ehlk charm and bottom.

reduce relevant
temporal armg errors.
Works well for charm.

Convergence through Universality: O(amg) can be
controlled and methods agree.



Results



Results
Precision spectroscopy of
low-lying states



FNAL+MILC: 0912.2701

Results: charmonium below threshold
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Results: bottomonium below threshold

FNAL+MILC: 0912.2701
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Results
Spectroscopy above
threshold



Results: charmonium above threshold

Bali et al: 1108.6147 Mohler et al: UnpUb”ShEd
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@ light my, multiple a
@ still preliminary but using variational analysis

@ spin identification for excited/high-spin/exotics not
robust?



Charmonium from the Hadron Spectrum 2012
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@ my ~ 400MeV; single a (on anisotropic lattice)

@ using distillation, variation, spin id via overlaps:
resolve all statesup to /=4

@ error on S waves ~ 1 MeV: error on 1=+ ~ 15 MeV



the hyper-fine splitting in S waves

HFS and O(a) effects
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@ assign ~ 40MeV discretistion error



Results: charm hybrids

Exotic and non-exotic hybrids
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@ the lightest hybrid supermulitplet; excited
supermultiplet

@ pattern as in light sector (Dudek 1106.5515)

@ model implications - appears to disagree with
flux-tube models



Results: bottomonium above threshold

Lewis+Woloshyn (nrqcd):
HPQCD (nrqcd): 1112.2590 1204.4675
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Summary and Prospects

Spectroscopy

@ Technology for LQCD spectroscopy dramatically
improved: precision determinations of excited
states, exotics with reliable spin identification.

@ Charm more mature than bottom.
@ Bottomonium spectrum underway by HadSpec.

@ Many questions remain:

e are there intrinsic excitations of gluons in hadrons?
e can we understand the states above open
thresholds?

Resonances

@ scattering and resonances: Early results from Bali
for charm (0911.1238).

@ Can we move beyond the elastic region?

|

Expect a lot more progress in the next 5 years.



