

CDF RESULTS on JETS and DIFFRACTION

Christina Mesropian

The Rockefeller University

Tevatron

Tevatron

Collider Run II Integrated Luminosity

Tevatron performing very well:

50 pb⁻¹ per week

experiment efficiency ~90% peak: 3.5 x 10³² cm⁻²s⁻¹

expecting 12 fb⁻¹ by end of FY11

SM Processes at the Tevatron

Contents

1. Jets

- Incl.jets
- Dijets
- ☐ Jet substructure studies

2. VB+jets

- □ W+jets
- ☐ Z+jets

3. VB+HF

- **□** W+b
- W+c
- **□** Z+b

4. Diffraction

- W and Z
- Exclusive Production talk by Erik Brucken

Inclusive Jet Cross Section

- Tests pQCD over 8 orders of magnitude
- highest $p_T > 600 \text{ GeV/c}$
- Measurement were done with 2 different clustering algorithms: Midpoint cone and k_T

Jet production —Precision regime PDF input

0.1

0.5 0.7

Jet production —Precision regime PDF input

Conclusions from Les Houches QCD 2011:

"Tevatron jet data vital to pin down high-x gluon, giving smaller low-x gluon and therefore larger α_{S} in the global fit compared to a DIS-only fit."

Jet production –Precision regime

PDF input

PDF sensitivity:

 \rightarrow compare jet cross section at fixed $x_T = 2 p_T / sqrt(s)$

Tevatron (ppbar)

>100x higher cross section @ all x_T >200x higher cross section @ x_T>0.5

LHC (pp)

- need more than 2400 fb-1 luminosity to improve Tevatron@12 fb-1
- more high-x gluon contributions
- but more steeply falling cross sect.
 at highest p_T (=larger uncertainties)

Tevatron Results will dominate high-x gluon for several years

Exclusive Dijet Production

suppression at LO of the background subprocesses(J₇=0 selection rule)

"exclusive channel" →clean signal (no underlying event)

77, 052004 (2008)

Jet Substructure Jet Mass

MOTIVATION: Mass of high-pT jets - important property, but only theor. studies:

o High mass:

QCD NLO predictions for jet mass Ellis et al, 0712.2447 Alemeida, et al. 0810.0934

Such jets form significant background

to new physics signals

Examples: high p_T tops, Higgs, neutralino ...

o Four vector sum gives (E,p_x,p_y,p_z)

Selection: > 1 jet p_T>400 GeV/c 0.1<|η|<0.7

Jet Substructure Angularity and Planar Flow

Jet substructure variables that are insensitive to soft radiation at high jet mass:

Angularity:

$$\tau_a(R, p_T) = \frac{1}{m_J} \sum_{i \in jet} \omega_i \sin^a \theta_i [1 - \cos \theta_i]^{1-a}$$

- o Emphasizes cone-edge radiation
- o For large mjet, has analytic approximation

Planar flow:

o
$$\lambda_1$$
, λ_2 are eigenvalues

$$I_{w}^{kl} = \frac{1}{m_{jet}} \sum_{i} \frac{p_{i,k}}{w_{i}} \frac{p_{i,l}}{w_{i}};$$

$$Pf \equiv \frac{4\lambda_1\lambda_2}{(\lambda_1 + \lambda_2)^2}$$

Selection: > 1 jet p_T >400 GeV/c 0.1< $|\eta|$ <0.7 anti-top requirements

V + Jets Studies

MOTIVATION:

V + Jets Processes in many cases irreducible backgrounds

in searches for new physics

- 30% 40% uncertainty in some of the processes (boson + HF)
- Need dedicate measurements on boson+jets

W+jets Production

LO diagrams for W+jet production

W Kinematic region

 $M_T^W > 30 / 40 \text{ GeV/c}^2 (\mu/e)$ $P_T^I > 20 \text{ GeV}, |\eta^1| < 1.1$

MIDPOINT jet R=0.4

Separate measurements in $W \rightarrow \mu \nu$ and $W \rightarrow e \nu$ channels

W+jets Production

W+jets

Alpgen+Pythia MC normalized to data for each Njet bin in control region M_T>20 GeV

Z/γ^* (\rightarrow ee)+Jets Production

18

CDF standard electron ID

- at least one cent. electron $E_{\tau}^{e}>25$ GeV
- $-|\eta^{e1}|<1$, $|\eta^{e2}|<1$ or $1.2<|\eta^{e2}|<2.8$
- $-66 < M_{ee} < 116 \text{ GeV/c}^2$
- No isolation requirements
 (to avoid bias at very high P_T jet)
- At least one jet MidPoint (R=0.7)
- Electrons removed before clustering

 Measurement corrected for detector effects back to the hadron level and defined in the given limited kinematic region (no extrapolation made)

$Z/\gamma^*(\rightarrow e^+e^-)+Jets$ Production

Result with 1.7/fb in Phys.Rev. Lett. 100, 102001

First Measurement of Z + ≥4 Jets

$Z/\gamma^*(\rightarrow \mu^+\mu^-)$ +Jets Production

20

Same kinematic region of Z→ee+ jets to allow combination

 $p_T>25 \text{ GeV}$ $|\eta^1|<1, |\eta^2|<1$ $66 < M_{\mu\mu}<116 \text{ GeV/c2}$

Good agreement with NLO pQCD

(MCFM) predictions including non-pQCD corrections

Z/γ^* +Jets Production

21

Data driven bckg MC bckg.

- •QCD multi-jet
- W + jet
- μ and e fakes
- \blacksquare Z + γ
- Top
- Diboson
- $\blacksquare Z \rightarrow \tau \tau$

- \sim 30 x 10³ Z + \geq 1 jet data events in 6 fb-1
- Total backgrounds between 5%-10%
- Main background is Z+γ

5% to 15% systematic uncertainties Jet Energy Scale is the dominant

Z+jet – p_T balancing

- Reduce uncertainties on meas. energy of had.jets
- ■Test QCD jet modeling
- Check quark-gluon composition

Nucl. Instrum. Methods Phys. A 622, 698

P_T-balance definition

 $<P_T(jet1)/P_{T(}Z)>$

Out-of-cone radiation

Mismodeling of large angle FSR in the MC is limiting the uncert. in hadron. jets energy

W+b-Jet Production

24

Large background for many rare analysis

Event Selection:

Leptonic W decays

18% uncertainty on the measurement: vertex modeling (8%);

b-tag effi. (6%), lumi. (6%)

 σ b-jets (W+b-jets) · BR(W \rightarrow lv) = 2.74 ± 0.27 (stat) ± 0.42(syst) pb

NLO: 1.22±0.14 pb

Alpgen: 0.78pb

W+c Production

 $\sigma_{Wc}xBr(W \rightarrow lv) = 9.8 \pm 3.2pb$ NLO: $11.0\pm 1.4(3.0)$ pb when $p_T^c > 20$ GeV/c, $|\eta^c| < 1.5$

PRL 100, 091803 (2008)

$$\sigma_{W+c} \times Br(W \to lv) = \frac{N_{measured}^{OS-SS} - N_{bkg}^{OS-SS}}{L \times A \times \varepsilon}$$

Z+b-Jet Production

Probe the less-known *b*-content of the proton

Backgrounds for SM Higgs search and SUSY

Event Selection:

both electron and muon channels Jet $E_T>20$ GeV and $|\eta|<1.5$

$$\sigma(Z+b)/\sigma(Z+jets)=2.08\pm0.33\pm0.34(\%)$$

pQCD(MCFM) 1.8(%) for $Q^2 = M_Z^2 + P_{T,Z}^2$ 2.2(%) for $Q^2 = \langle P_{T,iet}^2 \rangle$

Data and theory are in agreement but both have sizable uncertainties

Phys. Rev. D79, 052008 (2009)

Diffractive W/Z Production

Diffractive W/Z production probes the quark content of the Pomeron

• production by gluons is suppressed by a factor of α_s and can be distinguished by an associated jet

t - four-momentum
 transfer squared
 ξ- fractional momentum
 loss of pbar
 M_X - mass of system X

- CDF Run I studies used rapidity gaps method PRL 78, 2698 (1997)
 - Fraction of W events due to SD

- [1.15 0.51(stat) 0.20(syst)]%

Christina Mesropian

Diffractive W Production

Identify diffractive events using Roman Pots:

accurate event-by-event ξ measurement no gap acceptance correction needed can still calculate ξ^{cal}

$$\xi^{cal} = \sum_{towers} \frac{E_T}{\sqrt{s}} e^{-\eta}$$

In W production, the difference between ξ^{cal} and ξ^{RP} is related to missing E_T and η_v

$$\xi^{RP} - \xi^{cal} = \frac{E_T}{\sqrt{s}} e^{-\eta_v}$$

allows to determine:

neutrino and W kinematics

reconstructed diffractive W mass

Diffractive W Production

- $\xi^{cal} < \xi^{RP}$ requirement removes most events with multiple pbar-p interactions
- 50 < M_W < 120 GeV/c²
 requirement on the reconstructed
 W mass cleans up possible
 mis-reconstructed events

Fraction of diffractive W

 R_W (0.03< ξ <0.10, |t|<1)= [0.97 ±0.05(stat) ±0.10(syst)]% consistent with Run I result, extrapolated to all ξ

Diffractive Z

Fraction of diffractive Z R_z (0.03< ξ <0.10, |t|<1)= [0.85±0.20(stat) ±0.08(syst)]%

Conclusions

- Understanding of jet identification, JES, and systematics leads (in many cases) to experimental systematic uncertainties smaller than theoretical uncertainties
- Next level of measurements
 measurements of jet substructure variables
 validating phenomenological models for diffraction
- Comprehensive Tevatron V+jets/HF results provide detailed information for testing latest pQCD calculations and tuning event generators

More to come from the QCD program at the Tevatron

http://www-cdf.fnal.gov/internal/physics/qcd/qcd.html
Low x 2011 Christina Mesropian

Backup

