

<u>CP violation in the B system</u>

Flavor Physics and CP Violation, May 22, 2012

Main motivation...

- Overconstrain the CKM matrix: measure fundamental parameters, constrain new physics effects
- Measure the 4 free paremeters in various ways:
 - CP conserving $\{|V_{us}|, |V_{cb}|, |V_{td}|, |V_{ub}|\}$
 - CP violating $\{\epsilon_{K}, \phi_{s}, \beta, \gamma\}$
 - Tree level $\{\ldots,\ldots,|V_{ub}|,\gamma\}$
 - Loop level $\{\ldots, \ldots, |V_{td}|, \beta\}$

$sin 2\beta$ in $(c \overline{c})K^0$...

$772 \times 10^{6} B\overline{B} pairs$ [PRL 108 (2012) 171802, arXiv:1201.4643]

La raison d'être of the B factories

 $\sin 2\beta$

3

, D*D*K

₽

1

ρ

0.4

0.2

0

-0.2 -0.2 -0.2

0.2

0

0.4

0.6

0.8

what is the source of CP violation? the Kobayashi-Maskawa phase is the source

<u>β in other modes</u>

see G.Marchiori's talk

increasing tree diagram amplitude

increasing sensitivity to new physics

possible new sources of CPV ?

<u>Update of $B^0 \rightarrow D^+ D^-$ mode</u>

 $772 \times 10^6 \text{ B} \overline{\text{B}} \text{ pairs}$ [arXiv:1203.6647]

SM prediction: $S = -\sin 2\beta$ and $A \approx 0$ [Z.Z Xing, PRD61, 014010 (1999)]

$$B^{0} \to D^{+} D^{-} \to (K^{-} \pi^{+} \pi^{+})(K^{+} \pi^{-} \pi^{-})$$

 $\to (K^{-} \pi^{+} \pi^{+})(K^{0}_{S} \pi^{-})$

[> \times 2 signal yield compared to previous analysis (535 MBB)]

Signal events = 269 ± 21 Br(B⁰ \rightarrow D⁺D⁻) = (2.12 \pm 0.16 \pm 0.18) \times 10⁻⁴

<u>Update of $B^0 \rightarrow D^+ D^- mode$ </u>

 $772 \times 10^6 \text{ B}\overline{\text{B}}$ pairs [arXiv:1203.6647]

D⁺ **D**⁻ **S**_{CP} vs C_{CP}

SM prediction: $S = -\sin 2\beta$ and $A \approx 0$ [Z.Z Xing, PRD61, 014010 (1999)]

$$B^{0} \to D^{+}D^{-} \to (K^{-}\pi^{+}\pi^{+})(K^{+}\pi^{-}\pi^{-}) \\ \to (K^{-}\pi^{+}\pi^{+})(K^{0}_{S}\pi^{-})$$

 $[> \times 2$ signal yield compared to previous analysis (535 MBB)]

C_{CP}

Signal events = 269 ± 21 $Br(B^0 \rightarrow D^+ D^-) = (2.12 \pm 0.16 \pm 0.18) \times 10^{-4}$

<u>Update of $B^0 \rightarrow D^{*+}D^{*-}$ mode</u>

 $772 \times 10^6 \, B \, \overline{B} \, pairs$

[preliminary]

Final state is a mixture of CP eigenstates

B decay channels:

$$\begin{array}{l} -B \rightarrow D^{*+}D^{*-} \rightarrow (D^{0}\pi^{+})(\overline{D^{0}}\pi^{-}) \\ -B \rightarrow D^{*+}D^{*-} \rightarrow (D^{+}\pi^{0})(\overline{D^{0}}\pi^{-}) \end{array}$$

D decay channels:

$$\begin{array}{ll} D^{+} \to K^{-} \pi^{+} \pi^{+}, & D^{+} \to K_{S} \pi^{+}, \\ D^{+} \to K_{S} \pi^{+} \pi^{0}, & D^{+} \to K^{-} K^{+} \pi^{+}, \\ D^{0} \to K^{-} \pi^{+}, & D^{0} \to K^{-} \pi^{+} \pi^{0}, \\ D^{0} \to K^{-} \pi^{+} \pi^{+} \pi^{-}, & D^{0} \to K_{S} \pi^{+} \pi^{-}, \\ D^{0} \to K^{-} K^{+} \end{array}$$

Signal events = 1225 ± 59

 $Br(B^{0} \to D^{*+}D^{*-}) = (7.82 \pm 0.38 \pm 0.60) \times 10^{-4}$ $[PDG: (8.2 \pm 0.9) \times 10^{-4}]$

[take full advantage of the reprocessing of Belle data]

<u>S and A in $b \rightarrow c \overline{c} d$ modes</u>

	$\sin(2\beta^{\text{eff}}) \equiv$	≡ sin(2	$(\phi_1^{eff}) \stackrel{HFAG}{\overset{Moriond 2012}{\overset{PRELIMINARY}{\overset{PRELIMINARY}{\overset{MORION}{\overset{R}{\overset{P}}{\overset{P}}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}}{\overset{P}{\overset{P}}}{\overset{P}}}}}}}}}}$		$C_f = -A$	f HFAG
b→ccs	World Average HFAG (Moriond 2012)		0.68 ± 0.02		BaBar PRL 101 (2008) 021805	$-0.20 \pm 0.19 \pm 0.03$
الا بى ⁰	BaBar PRL 101 (2 008) 021801	2	$-1.23 \pm 0.21 \pm 0.04$	J/ψ π ⁰	Belle PRD 77 (2008) 071101(R)	-0.08 ± 0.16 ± 0.05
	Belle PRD 77 (2008) 071 ¹ 101		$0.65 \pm 0.21 \pm 0.05$		Average HFAG correlated a <mark>verage</mark>	-0.10 ± 0.13
	Average HFAG correlated average	e 6	0.93 ± 0.15		BaBar PRD 79, 0320 <mark>02 (20</mark> 09)	$-0.07 \pm 0.23 \pm 0.03$
-D + D	BaBar PRD 79, 032002 (2009)	012	$0.65 \pm 0.36 \pm 0.05$	_D + D	Belle arXiv:1203.6647	-0.43 ± 0.16 ± 0.05
	Belle arXiv:1203.6647	IFAG ond 2	$1.06^{+0.14}_{-0.21} \pm 0.08$		Average	-0.31 ± 0.14
	Average HFAG correlated average	e <mark>1 io</mark>	0.98 ± 0.17		BaBar PRD 79, 032002 (2009)	$0.05 \pm 0.09 \pm 0.02$
	BaBar PRD 79, 032002 (2009)	012	$0.71 \pm 0.16 \pm 0.03$	D*+ D*	Belle EPS 2011 preliminary	$-0.15 \pm 0.08 \pm 0.02$
1 D+	Belle EPS 2011 preliminary		$0.79 \pm 0.13 \pm 0.03$		Average HFAG correlated average	-0.06 ± 0.06
	Average HFAG correlated average		0.77 ± 0.10	-1.4 -1.2	-1 -0.8 -0.6 -0.4 -0.2 0 0.2	0.4 0.6 0.8 1 1.2 1.4
-1	0	1	2			

good agreement with $b \rightarrow c \overline{c} s$ modes result $S = -\sin 2\beta$, A = 0

α determination

 $A(B^0 \rightarrow \pi^+ \pi^-) = T^{+-} e^{i\gamma} + P$

$$\begin{split} \mathbf{A}(t) &= & \mathbf{S}_{\pi^{+}\pi^{-}} \sin(\Delta m t) + \mathbf{A}_{\pi^{+}\pi^{-}} \cos(\Delta m t) \\ &= & \sqrt{1 - \mathbf{A}_{\pi^{+}\pi^{-}}^{2}} \sin 2\alpha_{\text{eff}} \sin(\Delta m t) + \mathbf{A}_{\pi^{+}\pi^{-}} \cos(\Delta m t) \end{split}$$

from time dependent CP, we can measure α^{eff} , but we want α ! $S_{\pi^{+}\pi^{-}} = \sin 2\alpha + 2r \cos \delta \sin(\beta + \alpha) \cos 2\alpha + O(r^{2})$ r = |P|/|T|

 $\rightarrow\,$ additional inputs required to determine the penguin pollution

α determination with isospin analysis

[Gronau-London, PRL65, 3381 (1990)]

$$\begin{array}{l} A_{+.} = A(B^{0} \rightarrow \pi^{+} \pi^{-}) = e^{-i\alpha} T^{+-} + P \\ \sqrt{2} A_{00} = \sqrt{2} A(B^{0} \rightarrow \pi^{0} \pi^{0}) = e^{-i\alpha} T^{00} + P \\ \sqrt{2} A_{+0} = \sqrt{2} A(B^{+} \rightarrow \pi^{+} \pi^{0}) = e^{-i\alpha} (T^{00} + T^{+-}) \\ A_{+.} + \sqrt{2} A_{00} = \sqrt{2} A_{+0} \\ \overline{A}_{+.} + \sqrt{2} \overline{A}_{00} = \sqrt{2} \overline{A}_{+0} \\ ^{\circ} \text{ neglecting EWP } \Rightarrow A_{+0} \text{ pure tree} \\ |A_{+0}| = |\overline{A}_{+0}| \\ \end{array}$$

Isospin breaking (d and u charges different, $m_u \neq m_d$)
 π−η−η' and ρ−ω mixing [J.Zupan, hep-ph/0701004]

α can be resolved up to an 8-fold ambiguity ($\alpha \in [0, \pi]$)

<u>Combined</u> $(\pi\pi, \rho\pi, \rho\rho)$ measurements for α determination

dominated by the $B{\rightarrow}\rho\rho$ measurements (though flat isospin triangles)

$(\pi\pi, \rho\rho)$ measurements related to α determination

coming important updates from Belle: $\mathbf{B} \rightarrow \rho^+ \rho^0$, $\rho^0 \rho^0$, $\pi^0 \pi^0 \dots$

 $B \rightarrow a_1^{\pm} \pi^{\mp}$, $a_1^{\pm} \rightarrow (\pi^+ \pi^-) \pi^{\pm}$

 $772 \times 10^6 \, B \, \overline{B} \, pairs$

[NEW]

Signal extracted from a 4D (ΔE , F, $m_{3\pi}$, $H_{3\pi}$) fit

 $N_s = 1445 \pm 101$ events

 $Br(B^{0} \rightarrow a_{1}^{\pm}(1260)\pi^{\mp}) \times Br(a_{1}^{\pm}(1260) \rightarrow \pi^{+}\pi^{-}\pi^{\pm}) = (11.1 \pm 1.0(stat) \pm 1.4(syst)) \times 10^{-6}$

[M.Gronau and J.Zupan, PRD 73 (2006) 057502]

 N_{+}^{Fit} - N_{-}^{Fit}/N_{+}^{Fit} + N_{-}^{Fit}

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

 $^{\circ}$ Theoretically pristine $B \rightarrow DK$ approach

 \circ Access γ via interference between $B^- \to D^0 K^- and \, B^- \to \overline{D}^0 K^-$

relative magnitude of suppressed amplitude is $r_{\scriptscriptstyle B}$

$$r_{\rm B} = \frac{|A_{\rm suppressed}|}{|A_{\rm favoured}|} \sim \frac{|V_{\rm ub}V_{\rm cs}^*|}{|V_{\rm cb}V_{\rm us}^*|} \times [\text{color supp}] = 0.1 - 0.2$$

relative weak phase is γ , relative strong phase is δ_{B}

<u>measurements from $B^{\pm} \rightarrow DK^{\pm}$ </u>

- Reconstruct D in final states accessible to both D^0 and \overline{D}^0
 - D = D_{CP}, CP eigenstates as $K^+ K^-$, $\pi^+ \pi^-$, $K_s \pi^0$ **GLW method** (Gronau-London-Wyler)
 - D = D_{sup}, Doubly-Cabbibo suppressed decays as K π **ADS method** (Atwood-Dunietz-Soni)
 - Three-body decays as $D \rightarrow K_s \pi^+ \pi^-$, $K_s K^+ K^-$ **GGSZ** (**Dalitz**) **method** (**Giri-Grossman-Soffer-Zupan**)
 - Largest effects due to 0

- charm mixing
 - charm CP violation
 - charm CP violation
 - negligible
 Y.Grossman, A.Soffer, J.Zupan [PRD 72, 031501 (2005)]

- **Different B decays** (**DK**, **D**^{*}**K**, **DK**^{*})
 - different hadronic factors $(\mathbf{r}_{B}, \delta_{B})$ for each

CPV significance is 3.5 standard deviations (model-dependent error will limit viability of this approach) Binned Dalitz method: avoid the modeling error by ''optimal'' binning of the Dalitz plot [choice of bins guided by model, but extraction of γ is not biased by this choice]

minimize χ^2 in fit to all bins for each mode

Expected number of $B^{\pm} \rightarrow DK^{\pm}$ events in bin *i* is:

$$N_{i}^{\pm} = h \left\{ K_{i} + r_{B}^{2} K_{-i} + 2\sqrt{K_{i} K_{-i}} (x_{\pm} c_{i} + y_{\pm} s_{i}) \right\}$$

 K_i is the # of events in bin i from a flavour-tagged sample $(D^{*\pm} \to D \, \pi^{\pm})$

 c_i and s_i contain information about the strong-phase difference in bin *i*

(use CLEO data for $\psi(3770) \rightarrow D^0 \overline{D}^0$ here; can be measured by BES-III too)

Binned Dalitz method result in $B \rightarrow DK$

arXiv:1204.6561, submitted to PRD $\chi^2/$ ndf 33.31 / 15 50 Prob 0.004247 V(B⁺)-N(B 40 30 BELLE $\mathbf{20}$ -10 -20 -30 -40 -50 2 8 Bin 8 Bin -8 2 6 6 -2 o O $\gamma = (77.3 + 15.1)_{-14.9} \pm 4.1 \pm 4.3)^{\circ}$ $r_{\rm B} = 0.145 \pm 0.030 \pm 0.010 \pm 0.011$ $\delta_{\rm B} = (129.9 \pm 15.0 \pm 3.8 \pm 4.7)^{\circ}$

> uncertainty in c_i , s_i from CLEO data size (can be reduced using future BES-III data)

772M $B\overline{B}$

Number of events

120

100

80

60

40

>

GLW with $D_{CP}^{(*)}K$

D decays to CP eigenstates

> Amplitude triangle:

$$\begin{split} & \sqrt{2}A(B^+ \rightarrow D_{CP+}K^+) & A(B^+ \rightarrow D^0K^+) \\ & \sqrt{2}A(B^- \rightarrow D_{CP+}K^-) & A(B^- \rightarrow D^0K^+) \\ & A(B^- \rightarrow D^0K^-) & A(B^- \rightarrow D^0K^-) \\ & A(B^- \rightarrow D^0K^-) & A(B^- \rightarrow D^0K^-) \\ & Magnitude of one side \\ & is ~0.1 of the others \\ & while relative magnitude of the others help ϕ_3 constraint. \\ & R_{CP\pm} \equiv \frac{Br(B^- \rightarrow D_{CP\pm}K^-) + Br(B^+ \rightarrow D_{CP\pm}K^+)}{Br(B^- \rightarrow D^0K^+)} \\ & A_{CP\pm} \equiv \frac{Br(B^- \rightarrow D_{CP\pm}K^-) - Br(B^+ \rightarrow D_{CP\pm}K^+)}{Br(B^- \rightarrow D_{CP\pm}K^-) + Br(B^+ \rightarrow D_{CP\pm}K^+)} \\ & Relation between \left(A_{CP+}, A_{CP-}, R_{CP+}, R_{CP-}\right) and \left(\gamma, r_B, \delta_B\right) \\ & A_{CP+} = \frac{2r_B sin \delta_B sin \gamma}{1 + r_B^2 + 2r_B cos \delta_B cos \gamma} \\ & A_{CP+} = \frac{-2r_B sin \delta_B sin \gamma}{1 + r_B^2 - 2r_B cos \delta_B cos \gamma} \\ & R_{CP+} = 1 + r_B^2 + 2r_B cos \delta_B cos \gamma \\ & \Rightarrow look for R_{CP\pm} \neq 1 and A_{CP\pm} \neq 0 \\ \Rightarrow & \neq CP, \neq sign of asymmetry \end{split}$$

large asymmetry !!

opposite asymmetry !!

<u>GLW Results</u>

Preliminary (LP 2011)

 $\begin{aligned} R_{CP+} &= 1.03 \pm 0.07 \pm 0.03 \\ R_{CP-} &= 1.13 \pm 0.09 \pm 0.05 \\ A_{CP+} &= +0.29 \pm 0.06 \pm 0.02 \\ A_{CP-} &= -0.12 \pm 0.06 \pm 0.01 \end{aligned} \qquad CP \text{-odd observables} \\ \end{aligned}$

 $(systematics \ dominated \ by \ peaking \ background \ , \ double \ ratio \ approximation)$

<u>ADS method</u>: γ via the interference in rare $B^- \rightarrow [K^+ \pi^-]_D K^-$ decays rate and asymmetry (relative to the common decay):

ADS results

First evidence for the ADS mode $B^- \rightarrow [K^+ \pi^-]_{D^*} K^-$

study both modes: $D^* \rightarrow D\pi^0$, $D\gamma$:

Preliminary LP 2011

 $\left[K^{\pm}\pi^{\mp}\right]_{D\pi^{0}}K^{\mp}$ $\left[K^{\pm}\pi^{\mp}\right]_{D\nu}K^{\mp}$ 16⋶ Signal seen 12 14 with a significance of 3.5σ 10 Events / 10 MeV Events / 10 MeV 12 for $D^* \rightarrow D\gamma$ mode 10 **Ratio to favored mode:** $R_{D_{\pi^0}} = (1.0^{+0.8}_{-0.7}(stat)^{+0.1}_{-0.2}(syst)) \times 10^{-2}$ -0.1 0.1 0.2 0.3 -0.1 0.1 0.2 0.3 0 $\Delta E (GeV)$ ΔE (GeV) $\mathbf{R}_{Dy} = (\mathbf{3.6}^{+1.4}_{-1.2}(\text{stat}) \pm \mathbf{0.2}(\text{syst})) \times \mathbf{10}^{-2}$ $B \rightarrow D\pi$ $B \rightarrow DK$ 35 18 BB 30 continuum 25 asymmetry: Events / 1 - vents / 12 20 10F $A_{D_{\pi^0}} = 0.4^{+1.1}_{-0.7}(stat)^{+0.2}_{-0.1}(syst)$ 15 10F $A_{Dy} = -0.51^{+0.33}_{-0.29}(stat) \pm 0.08(syst)$ 10 -10 10 15 15 NB' NB'

<u>Combined measurements for γ from all methods</u>

http://ckmfitter.in2p3.fr/

$\underline{D^{(*)}K^{(*)\pm}}$ measurements related to γ determination

Coming relevant updates from Belle: GLW D^*K , GGSZ $D(K_s KK)K...$

Search for $B^0 \rightarrow DK^{*0}$, $D \rightarrow K^-\pi^+$

772M BB arXiv:1205.0422

 $R_{DK^{*0}} = \frac{\Gamma(B^{0} \to [K^{-} \pi^{+}]_{D} K^{+} \pi^{-})}{\Gamma(B^{0} \to [K^{+} \pi^{-}]_{D} K^{+} \pi^{-})} = r_{S}^{2} + r_{D}^{2} + 2 k r_{S} r_{D} \cos(\delta_{S} + \delta_{D}) \cos\gamma$

Measuring direct CPV with B \rightarrow K\pi

$$\mathbf{A}_{\rm CP} \equiv \frac{\Gamma(\overline{\mathbf{B}} \to \overline{\mathbf{f}}) - \Gamma(\mathbf{B} \to \mathbf{f})}{\Gamma(\overline{\mathbf{B}} \to \overline{\mathbf{f}}) + \Gamma(\mathbf{B} \to \mathbf{f})} \propto \sin \Delta \phi \sin \Delta \delta$$

Diagrams identical except for spectator quark ? \Rightarrow strong and weak phases are the same, A_{CP} should be the same ?

<u> $B \rightarrow K\pi$ measurements at B-factories...</u>

Measuring direct CPV

''Model independent'' sum rule for all four modes:
[Gronau, PLB 627, 82 (2005), Atwood & Soni, PRD 58, 036005 (1998)]

$$\mathbf{A}_{CP}(\mathbf{K}^{+}\pi^{-}) + \mathbf{A}_{CP}(\mathbf{K}^{0}\pi^{+})\frac{\mathbf{Br}(\mathbf{K}^{0}\pi^{+})}{\mathbf{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathbf{\tau}_{0}}{\mathbf{\tau}_{+}} = \mathbf{A}_{CP}(\mathbf{K}^{+}\pi^{0})\frac{2\mathbf{Br}(\mathbf{K}^{+}\pi^{0})}{\mathbf{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathbf{\tau}_{0}}{\mathbf{\tau}_{+}} + \mathbf{A}_{CP}(\mathbf{K}^{0}\pi^{0})\frac{2\mathbf{Br}(\mathbf{K}^{0}\pi^{0})}{\mathbf{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathbf{T}_{0}}{\mathbf{T}_{+}}$$

Measuring direct CPV

''Model independent'' sum rule for all four modes:
[Gronau, PLB 627, 82 (2005), Atwood & Soni, PRD 58, 036005 (1998)]

$$\mathbf{A}_{CP}(\mathbf{K}^{+}\pi^{-}) + \mathbf{A}_{CP}(\mathbf{K}^{0}\pi^{+})\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{+})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathbf{A}_{CP}(\mathbf{K}^{+}\pi^{0})\frac{2\,\mathrm{Br}(\mathbf{K}^{+}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathbf{A}_{CP}(\mathbf{K}^{0}\pi^{0})\frac{2\,\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{0})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{-})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{-})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{-})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{0}\pi^{-})}{\mathrm{Br}(\mathbf{K}^{+}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{-}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{-}\pi^{-})}\frac{\mathrm{Br}(\mathbf{K}^{$$

B factory at 50 ab^{-1} , with today's central values:

⇒ ideal for a super B-factory...

Summary

• B-factories have provided (most of) the current picture:

• still few interesting updates in the pipeline (especially on α and γ) – new Belle result shown today on $B \rightarrow a_1^{\pm} \pi^{\mp}$

 $\circ~B\text{-}factories \rightarrow LHCb$, Super B-factories

Backup slides

Measuring the CP parameters S and A

 $\frac{dP_{sig}}{dt}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B}(1 + q(S \sin(\Delta m_d \Delta t) + A \cos(\Delta m_d \Delta t)))$

 $sin 2\,\beta \ in \ (c\,\overline{c}) \ K^{(*)0}$

Events / 2 MeV/c²

5.2

Raw Asymmetry Events / (0.4 ps

200

0.4

0.2

300

200 L

100

0.4 0.2

-0.2 -0.4

Events / (0.4 ps

Raw Asymmetry

Some examples to illustrate ϕ_2 extraction

 $B^- \to D^{(*)}(K_{S}\pi\pi)K^-$ Dalitz , $\Delta\,E$ and $M^{}_{bc}$ projections

 $|\cos\theta_{\rm thr}| < 0.8$ and F > -0.7

PRD 81, 112002 (2010) $657 \times 10^{6} B\overline{B}$ pairs

$B \rightarrow Dh$, $D \rightarrow K \pi \ \rightarrow \ R_{D_{\rm fav}}$

$$\begin{split} N_{\eta, KID>0.6}^{DK} &= \frac{1}{2} \left(1 - \eta A^{DK} \right) N_{tot}^{D\pi} R_{K/\pi} \epsilon \\ N_{\eta, KID<0.6}^{DK} &= \frac{1}{2} \left(1 - \eta A^{DK} \right) N_{tot}^{D\pi} R_{K/\pi} \left(1 - \epsilon \right) \\ N_{\eta, KID>0.6}^{D\pi} &= \frac{1}{2} \left(1 - \eta A^{D\pi} \right) N_{tot}^{D\pi} \kappa \\ N_{\eta, KID<0.6}^{D\pi} &= \frac{1}{2} \left(1 - \eta A^{D\pi} \right) N_{tot}^{D\pi} \left(1 - \kappa \right) \end{split}$$

	kaon fake	kaon eff	pion eff	pion fake	
	$(1-\epsilon)$	ε	$(1-\kappa)$	κ	
MC	14.70 ± 0.06	85.41 ± 0.06	95.42 ± 0.03	4.47 ± 0.03	⇐
data	15.86 ± 0.40	84.32 ± 0.39	92.13 ± 0.46	7.94 ± 0.31	

Table 5: Efficiency and fake rate (in %) for kaon and pion, for data and MC. ϵ will be fixed in the fit but κ will be floated (see text for further explanations). These numbers are obtained after properly weighting the values provided by PID group for SVD1 and SVD2.

$$\Rightarrow \kappa = (4.58 \pm 0.10)\%$$
 in the MC fit

 $\Rightarrow R_{D_{fav}} = (7.32 \pm 0.16)\%, A(DK) = (1.4 \pm 2.0)\%$

.

Difference of charges in D hemisphere and opposite hemisphere.

Angle between thrust axes of B decay and remainder. No full correlation to LR(KSFW). Decay angle of $D \rightarrow k\pi$.

0.2

0.15

Flavor tagging Info. by MDLH. (NB possible.)

0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0 4 -2 0 2 4

Product of charge of B and sum of charges for K not used in B reconstruction.

Yields for the ADS mode $B^- \rightarrow [K^+\pi^-]_D K^-$ from 772 million $B\overline{B}$ events **PRL 106, 231803 (2011)**

Fit ΔE and NB distributions together to extract signal

56.0^{+15.1}_{-14.2} events

 $\mathbf{R}_{\mathrm{DK}} = (\mathbf{1.63}_{-0.41}^{+0.44} + \mathbf{0.07}_{-0.13}) \times \mathbf{10}^{-2}$ $\mathbf{A}_{\mathrm{DK}} = -\mathbf{0.39}_{-0.28}^{+0.26} + \mathbf{0.04}_{-0.03}$

First evidence obtained with a significance of 4.1σ (including syst.)

Sensitivity to y

sensitivity to γ/ϕ_3 varies across the Dalitz plot $\gamma = 75^{\circ}$, $\delta = 180^{\circ}$, $r_{\rm B} = 0.125$ $w=1/(d^2L/d\chi^2)$ **GLW** like m² (GeV⁴/c⁺) Interference of BABA R 45 $B^- \rightarrow D^0 K^-$, $D^0 \rightarrow K^0_S \rho^0$ ргейтатагу 40 with $B^- \rightarrow \overline{D}^0 K^-$, $\overline{D}^0 \rightarrow K^0_s \rho^0$ DCS $K^*(1^2 4 30)$ 30 25 1.5 ADS like 20 Interference of 1 15 $B^- \rightarrow D^0 K^-$, $D^0 \rightarrow K^{*+} \pi^-$ DCS K^{*}(892) 10 with 0.5 $B^- \rightarrow \overline{D}^0 K^-$, $\overline{D}^0 \rightarrow K^{*+} \pi^-$ 5 0 ١û $m_{+}^{2.5}$ (GeV²/ 0.5 1.5 2 0

$\underbrace{ \gamma \ measurements \ from \ B^{\pm} \rightarrow DK^{\pm} }_{Dalitz \ B \rightarrow D(K_{S}\pi\pi)K} \ from \ B^{\pm} \rightarrow DK^{\pm} \ r_{\scriptscriptstyle B} \ dependence$

experimental inputs:

$$\begin{aligned} \mathbf{x}_{\pm} &= \mathbf{r}_{\mathrm{B}} \cos(\delta_{\mathrm{B}} \pm \gamma) \\ \mathbf{y}_{\pm} &= \mathbf{r}_{\mathrm{B}} \sin(\delta_{\mathrm{B}} \pm \gamma) \end{aligned}$$

uncertainty on γ scales as $1/r_B$!

<u>New inputs (Winter 2012)</u> ← LHCb

