DIRECT OBSERVATION OF TIME REVERSAL VIOLATION

P. Villanueva-Pérez IFIC – Universitat de València-CSIC

Representing the BaBar Collaboration at

FPCP 2012

University of Science and Technology of China, Hefei, AnHui (China) 21st-25th May

Outline

- Introduction
 - TRV in stable and unstable system
 - Foundations of the analysis
- Analysis Procedure
 - Data sample
 - Signal description and fitting strategy
 - Systematic and results
- Summary and interpretation
 - Contours
 - Significance and asymmetries
- Conclusions

Time Reversal Violation (TRV)

• Time Reversal in stable systems

- A non-zero value of a T-odd observable in a stationary state,
 e.g, dipole moment of an elementary particle or an atom.
- ➤ In an oscillation a difference in the probability of a→b from b→a at a given time, e.g., $\nu_e \rightarrow \nu_\mu \text{ vs. } \nu_\mu \rightarrow \nu_e$ experiment proposed for the neutrino factories with muon storage ring.
- Time Reversal in unstable systems
 - 1. Reversal of motion $(t \rightarrow -t)$.
 - 2. $|in \rightarrow |out \rightarrow exchange.$

Odd effects t

CPT

mechanisms

discard

- Decay
- Mixing
- Mixing×Decay

<u>T violation</u> mechanisms

- Mixing
- Mixing×Decay

FPCP 12

TRV in unstable systems

- There are no exchanges $t \leftrightarrow -t$ and $|in \rangle \leftrightarrow |out \rangle$.
- Assumes CPT invariance and $\Delta \Gamma = 0$.

3

We cannot distinguish CP and T.

Not a DIRECT observation of TRV

Foundations of the analysis

- Ingredients:
 - EPR entanglement produced by the decay of the $\Upsilon(4S)$.

$$|i\rangle = 1/\sqrt{2}[B^{0}(t_{1})\bar{B}^{0}(t_{2}) - \bar{B}^{0}(t_{1})B^{0}(t_{2})] = 1/\sqrt{2}[B_{+}(t_{1})B_{-}(t_{2}) - B_{-}(t_{1})B_{+}(t_{2})]$$

• Quantum Mechanics.

$$\Delta \tau = t_Y - t_X > 0$$

Reference: Physical Process (X,Y): Reconstructed Final States

 B_+ projected by

J/ψK_L]/ψK_~

Reference (X, Y)	T-Transformed (X, Y)	
$B^0 \rightarrow B_+$ (I ⁻ , J/ ψ K _L)	$B_+ \rightarrow B^0 (J/\psi K_S, I^+)$	
$B^0 \rightarrow B$ (I ⁻ , J/ ψ K _S)	$B_{-} \rightarrow B^{0} (J/\psi \ K_{L}, \ I^{+})$	
$\overline{B}{}^{0} \rightarrow B_{+}$ (I ⁺ , J/ ψ K _L)	$B_+ \rightarrow \overline{B}^0 (J/\psi K_S, I^-)$	
$\overline{B}{}^{0} \rightarrow B_{-}$ (I ⁺ , J/ ψ K _S)	$B_{-} \rightarrow \overline{B}^{0} (J/\psi \ K_{L}, \ I^{-})$	

I⁺ and I⁻ project over the *B* flavor, i.e., B^0 and \overline{B}^0 respectively

Foundations of the analysis

Foundations of the analysis

ANALYSIS PROCEDURE

BaBar detector

General purpose detector in e⁺e⁻ environment: precision tracking, photon/electron detection, particle ID, muon/K_L identification. Very stable over the 9 years of operation

٠

Data Set

Backgrounds and B characterization

- Veto significant/potentially dangerous B decay backgrounds
 - Depends strongly on B decay channel under study
- Suppress continuum $e^+e^- \rightarrow q\bar{q}$ (q=u,d,s,c) background using
 - Angular distribution: B flight direction
 - Event shape variables:
 - Background: "jetty"
 - Signal: almost at rest

- Characterize B candidates using
 - Beam constrained mass: $m_{ES} = \sqrt{E_{beam}^{*2} |\vec{p_B}|^2}$
 - B mesons produced almost at rest $E^* = E^*$

$$E_B^* = E_{\text{beam}}^* \qquad p_B^* \sim 300 \,\text{MeV}/c$$

- Resolution ~3 MeV dominated by beam energy spread
- Energy difference: $\Delta E = E_B^* E_{beam}^*$
 - Energy of B candidate almost equal to half beam energy
 - Resolution ~10-50 MeV depends on neutrals in final state
- Select best B candidates (based on invariant masses of daughter particles)

$c\bar{c}K_S$ and $J/\psi K_L$ samples composition

Signal model description

Assumes CPT and $\Delta \Gamma = 0$

Fitting strategy

- From the B_{flav} sample we extract the time resolution parameters and the wrong flavor ID fractions which are exported to the CP ($c\bar{c}K_S$, $J/\psi K_L$) sample.
- Perform simultaneous UML fit to B^0 , \overline{B}^0 , $c\overline{c}K_S$, and $J/\psi K_L$ for $\Delta t > 0$ and $\Delta t < 0$ events.
- Normalize PDF simultaneously for B^0 , \overline{B}^0 and $\Delta t > 0$ and $\Delta t < 0$ and independently for $c \overline{c} K_S$, $J/\psi K_L$.
- Obtain the 8 sets of S, C parameters, and from these, define T, CP and CPT violating parameters ΔS , ΔC .

$(\Delta S^{\pm}, \Delta C^{\pm})$ parameters

(S^{\pm}, C^{\pm}) - $(\Delta S^{\pm}, \Delta C^{\pm})$ parameters: approx. expected values

$(\Delta S^{\pm}, \Delta C^{\pm})$ parameters

Param.	Expected Value	Param.	Expected Value	
$S^+_{B0,KS}$	0.7	$C^+_{B0,KS}$	0.	
$S^{-}_{B0,KS}$	-0.7	C ⁻ _{B0,KS}	0.	
ΔS^+_{T}	-1.4	ΔC^{+}_{T}	0.	
ΔS_{T}^{-}	1.4	ΔC^{-}_{T}	0.	
ΔS^+_{CP}	-1.4	ΔC^+_{CP}	0.	
ΔS^{-}_{CP}	1.4	ΔC^{-}_{CP}	0.	
ΔS^+_{CPT}	0.	ΔC^+_{CPT}	0.	
ΔS^{-}_{CPT}	0.	ΔC^{-}_{CPT}	0.	

E.g. T is violated:

If $\Delta S^+_T \neq 0$, $\Delta S^-_T \neq 0 \rightarrow T$ is violated in the interference

If $\Delta C^+_T \neq 0$, $\Delta C^-_T \neq 0 \rightarrow T$ is violated in the decay

Complete results

Systematic uncertainties

Systematic source	ΔS _T ⁺	ΔS _T -
misID flavour	0.019	0.019
Δt resolution function	0.02	0.05
Outlier's scale factor	0.012	-0.013
m _{ES} parameters	0.012	0.0018
ΔE parameters	0.017	0.017
K _L systematics	0.03	0.03
Differences between B_{CP} and B_{flav}	0.02	0.02
Background effects	0.03	0.04
Uncertainty on fit bias from MC	0.010	0.08
Detector and vertexing effects.	0.011	0.04
$\Delta\Gamma \neq 0$ effects	0.004	0.003
External physics parameters	0.005	0.006
Normalization effects	0.012	0.009
Total Systematics	0.06	0.11

Interpretation of the results

Interpretation of the results

Significance of T violation

- 1. We obtain the likelihood value of the fit to S, C for the 8 independent samples (Standard Fit).
- 2. We repeat the fit, reassembling the parameters for T-conjugated processes, to forbid T violation.
- 3. Significance of T violation evaluated from the difference of the likelihood values.
- 4. Raw asymmetries and fit projections can be now plotted in the standard way.

$$T \text{ invariance}$$

$$\Delta S_T^+ = 0$$

$$\Delta S_T^- = 0$$

$$\Delta S_{CP}^+ = \Delta S_{CPT}^+$$

$$\Delta S_{CP}^- = \Delta S_{CPT}^-$$

$$\Delta C_T^+ = 0$$

$$\Delta C_T^- = 0$$

$$\Delta C_{CP}^+ = \Delta C_{CPT}^+$$

$$\Delta C_{CP}^- = \Delta C_{CPT}^-$$

$$\Delta \chi^{2} = -2(\ln L_{No_{T}} - \ln L)$$
$$\Delta \nu = 8$$

- 5. CP, and CPT significance is evaluated similarly.
- 6. Using Gaussian approximation, we evaluate the change of likelihood in 1σ systematic variation.

$$m_j^2 = -2[\ln L(q_j, o_j) - \ln L(p_0)] / s_{stat, j}^2$$

7. We take the max $\{m_j^2\}$ and we devide our significace (s^2) by $(1 + \max\{m_j^2\})$

Asymmetries

• Example of asymmetry building for T-Violation:

 $H^{\pm}_{\alpha,\beta}(\Delta t)$ is the intensity for each sample with $\Delta t > 0$ and all experimental effects.

$$A_{T}(\Delta t) \equiv \frac{H_{l^{-},K_{L}}^{-}(\Delta t) - H_{K_{S},l^{+}}^{+}(\Delta t)}{H_{l^{-},K_{L}}^{-}(\Delta t) + H_{K_{S},l^{+}}^{+}(\Delta t)} \approx \frac{\Delta C_{T}^{+}}{2} \cos \Delta m \Delta t + \frac{\Delta S_{T}^{+}}{2} \sin \Delta m \Delta t$$

Where:
$$H_{\alpha,\beta}^{\pm}(\Delta t) = H_{\alpha,\beta}(\pm \Delta t) H(\Delta t)$$
 Assuming no experimental effects

Conclusions

- We have measured T-violating parameters in the time evolution of neutral-B mesons.
- These parameters have been measured:
 - <u>Directly</u>: without exp. connection to CP and CPT.
 - <u>Genuinely</u>: exchanging *in-states* and *out-states*.
- We observe a large deviation of T invariance at 14σ level.
- Our result is consistent with CP-violating measurements assuming CPT invariance.
- This constitutes the <u>first direct observation of Time</u> <u>Reversal Violation</u>, in any system.

(S[±], C[±]) parameters and CP asymmetries

(S[±], C[±]) parameters and CPT asymmetries

FPCP 12

P, Villanueva-Pérez IFIC-Valencia

T raw asymmetries (CP Data Sample)

P, Villanueva-Pérez IFIC-Valencia 26

