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Two most important observables
o “Large” collective flow
@ Jet quenching
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Other important observables

o Constituent quark scaling
Ratios of particle abundances
Sequential melting of heavy quarkonia
Strangeness enhancement
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(]

RHIC and LHC comparison

(]

LHC heavy-ion highlights
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Take-home message
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Fascinating area of research

@ At the interface of particle physics & high-energy nuclear physics
@ Draws heavily from QCD: pert as well as non-pert

@ Overlaps with thermal field theory, relativistic fluid dynamics, kinetic
or transport theory, quantum collision theory, apart from statistical
mechanics & thermodynamics

@ QGP at high T & vanishing ug is of cosmological interest
@ QGP at low T & large g is of astrophysical interest

@ Black hole - fluid dynamics connection: String theory
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The science of the “small” — the elementary particle physics —

is deeply intertwined with

the science of the “large” — cosmology — the study of the origin and
evolution of the universe.
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The Big Bang and The Little Bang
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Phase Diagram of Water
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QGP Definition

Quark-Gluon Plasma (QGP): This is defined as a (locally) thermally
equilibrated state of matter in which quarks and gluons are deconfined
from hadrons, so that they propagate over nuclear, rather than merely
nucleonic, volumes.

Two essential ingredients:

1. Degrees of freedom should be quarks and gluons
2. Matter should have attained (local) thermal equilibrium
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@ Big idea: To map out (quantitatively) QCD phase diagram.

@ Theoretical tools: Lattice QCD, phenomenological models, effective
theories.

@ Experimental tools: Relativistic heavy-ion collisions:

SPS (CERN), RHIC (BNL), LHC (CERN). Upcoming lower-energy
facilities: FAIR (GSI) & NICA (JINR).
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Lattice QCD result for EOS
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Ultrarelativistic Heavy-lon Collisions
General Philosophy

@ Collision of two nuclei or two CGC plates

@ Deposition of kinetic energy & formation of glasma
@ Liberation of partons from glasma

@ (Near) thermalization of partons: Formation of QGP
@ Hydrodynamic expansion, cooling, dilution

@ Hadronization — Kinetic theoretical expansion

@ Chemical freezeout: inelastic processes stop

@ Kinetic freezeout: elastic scatterings stop

@ Detection of particles — Extraction of QGP properties

Rajeev S. Bhalerao Relativistic Heavy-lon Collisions Slide 13 of 50



Standard Model of URHICs

Initial state: Glauber model or Colour-Glass Condensate
Intermediate evolution: Rel. second-order hydrodynamics
End evolution: Rel. transport theory leading to a freeze-out

Final state: Detailed measurements (single-particle inclusive,
two-particle correlations, etc.) are available.

Aim: To achieve a quantitative understanding of the properties of
quark-gluon plasma (QGP), e.g., its EOS, Transport coeffs.

Major problems: Correct initial-state model? Event-by-event fluctuations
in the initial state.
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Two most important observables in rhics

(1) Elliptic flow and (2) Jet quenching.

Observation of a “large” elliptic flow led to the claim of formation of an
almost perfect fluid — strongly coupled QGP (sQGP) — at RHIC = (local)
equilibration of matter.

A natural explanation of the observed jet quenching is in terms of a dense
& coloured (hence partonic, not hadronic) medium.

Recall the definition of QGP.
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Meaning of “the most perfect fluid”
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Non-central Collision & Reaction Plane

Beam or longitudinal direction: z, Impact parameter vector: x,
Reaction plane: xz, Transverse or azimuthal plane: xy.
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Non-central Collision & Anisotropic Flow

® O
Triple differential invariant distribution of particles emitted in |f)

Ed3N _ d*N
d3p prdprdyde
d®N 1 St
= —— |1+ 2vycosn(¢p — WR) || 1
prdprdy 2 | T2 (6= vF) (1)

where y: rapidity, ¢: measured w.r.t. the reaction plane.
vi: Directed Flow, v»: Elliptic Flow.

Fluctuations = Eq. (1) needs generalization. Later.
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Why “Directed Flow" 7

L L L
1 0.5 0 0.5 1

Polar plot r =1+ 2v; cos ¢ for a small (a few %) v;.
Appears shifted in one direction. Hence Directed Flow.
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Why “Elliptic Flow" ?

Polar plot r =14 2v; cos 2¢ for a small (a few %) vs.
Looks like an ellipse. Hence Elliptic Flow.
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Importance of the anisotropic or azimuthal flow

@ Sensitive to the early history of the collision because of the
self-quenching expansion.

@ Signature of pressure at early times, or

@ Measure of the degree of thermalization of the quark-gluon matter
formed in rhics — (central issue).

@ Observation of a “large” elliptic flow at RHIC led to the claim of

formation of an almost perfect fluid.
Strongly coupled QGP = (local) equilibration of matter.
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“Large” Elliptic Flow — Success of Ideal Hydro

Vs, = 200GeV ¥7Au + ¥7Au at RHIC
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Minimum-bias data, Oldenberg (STAR), nucl-ex/0412001.
Solid lines: Huovinen et al. (2001, -04), EoS-Q. Mass ordering.
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Jet Quenching

e Jet quenching is seen in inclusive
single-particle spectra and in
dihadron correlations.

e Direct jet reconstruction is
possible but very difficult at RHIC,
relatively easy at LHC.

Rajeev S. Bhalerao Relativistic Heavy-lon Collisions Slide 23 of 50



Jet Quenching (single-particle inclusive yield)
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Jet Quenching (dihadron angular correlations)
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Jet Quenching (dihadron angular correlations)
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Jet Quenching at CMS — Unbalanced-dijet event

e (CMS/ | cMS Experiment at LHC, CERN
w ‘ ~—_ // Data recorded: Sun Nov 14 19:31:39 2010 CEST
T [Z_/\| Run/Event: 151076 / 1328520
an Lumi section: 249

Leading jet .
pr:205.1 GeVic T
{ |

Subleading jet
pr:70.0 GeV/c

Pb-Pb, /syny = 2.76 TeV. Summed Et in e.m. and hadron calorimeters.
[nucl-ex/1102.1957]
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Various pr regimes and corresponding observables

o Low-pr regime: 0 < pr < 1.5 GeV/c
Collective flows

o Medium-pt regime: 1.5 < pr <5 GeV/c
Constituent quark scaling

o High-pr regime: pr > 5 GeV/c
Jet quenching
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Constituent Quark Scaling
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Flow is developed at the quark level.

Hadronization occurs by quark recombination or coalescence.
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Other important observables

@ Ratios of particle abundances: constrain models of particle
production.

@ Strangeness enhancement: (1) Although ms > m, 4, production of
s,5 becomes easy at T > m; (2) Large gluon density in QGP helps
g& — s5 (3) Mass of the lightest strange hadron > ms. Hence mass
threshold for strangeness production is much higher in the hadron
scenario than in the QGP scenario.

@ Sequential melting of heavy quarkonia: Colour Debye screening of
attraction between @ and @ in QGP.
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Fluid Dynamics / Hydrodynamics — what, where, why

@ Kinetic/Transport Theory: Microscopic theory.

@ Fluid Dynamics: Effective theory that describes the slow,
long-wavelength motion of a fluid close to equilibrium.

@ A set of coupled partial differential equations for n, ¢, P, u”,
dissipative fluxes. In addition: transport coefficients & relaxation
times also occur.

@ Powerful technique: Given initial conditions & EoS, hydro predicts
evolution of the matter.

@ Limitation: applicable at or near (local) thermodynamic equilibrium
only.

@ Applications in cosmology, astrophysics, physics of high-energy
heavy-ion collisions, ...
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Hydrodynamics in HE Heavy-lon Collisions

@ Calc. of charge multiplicity, pr spectra of hadrons, anisotropic flows
Vv, and femtoscopic radii.

@ Also calc. of jet quenching, J/1 melting, thermal v, £2, etc.

@ Thus hydro plays a central role in modeling rhics.
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Coarse-Graining of the Boltzmann equation

Boltzmann Equation

(Coarse| Graining)

Hydrodynamics
| | |
Nonrelativistic Relativistic
| | | | | |
|deal Nonided |deal Nonidedl
Perfect Imperfect ‘ |

Nondissipative Dissipative

2: Currently under intense investigation
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Zeroth-, First-, Second-Order Hydrodynamics

@ The theory is formulated as an order-by-order expansion in gradients
of hydrodynamic velocity u*.

@ Zeroth order: Ideal hydrodynamics.

@ First order: Relativistic Navier-Stokes theory — parabolic equation —
acausal behaviour — rectified in second-order Israel-Stewart theory.

@ Second order: Israel-Stewart
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Traditional Hydrodynamic Calculations

T P
® ©

@ Shaded area: overlap of two (smooth) Woods-Saxon distributions.
@ Initial energy (or entropy) density €(x, y): Smooth.

@ Single-particle spectra, directed & elliptic flows are calculated
assuming smooth initial conditions.

@ vi(y) = —vi(—y). Hence v; vanishes at mid-rapidity.
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However, the reality is not so simple.

Initial geometry is not smooth.

Why?
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Event-to-event fluctuations in nucleon positions

Basic idea: Collision time-scale is so short that each
incoming nucleus sees nucleons in the other nucleus in a
frozen configuration.

Fluctuations in N positions (and hence in NN collision
points) result in fluctuations in the shape & orientation of
the overlap zone.
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Event-to-event fluctuations in nucleon positions

“Snapshot” of nucleon positions at the instant of collision. Due to
event-to-event fluctuations, the overlap zone could be shifted & tilted
w.r.t. the (x,y) frame. x’y’: principal axes of inertia.
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Fluctuating Initial Geometry & “New" Flows

Ellipse

— elliptic flow va(p7,y)

Triangle
— triangular flow v3(pr,y)
~ RajeevS. Bhalerao
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Fluctuating Initial Geometry & “New"” Flows

Systematic harmonic decomposition of the initial geometry

|
\
-
T
- |
\
\
|

Dipole asymmetry Triangularity

— dipolar flow vi(p7,y) — triangular flow v3(pr,y)
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Ridge and Shoulder

R(An, Ag): Inclusive two-particle correlation function

PHOBOS preliminary

-5 b(\

pp, 200 GeV Central Au-Au, 200 GeV
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Ridge and Shoulder

CMS Preliminary
PbPb \[sy = 2.76 TeV

35-40%

1 N
Ntn’gdAn dA(I)
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Ridge and Shoulder — Explanation

cos(2A¢)

1.5 |- =

15 a
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Ridge and Shoulder — Explanation

cos(2A¢) + 0.25 cos(3A¢)

1.5 |- =

15 a
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Ridge and Shoulder — Explanation

cos(2A¢) + 0.55 cos(3A¢)

1.5 |- .

15 a
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“Old” and “New" flows

@ Unlike the “old” directed flow vq, the “new” v; arises due to
fluctuations in the initial geometry, does not vanish at mid-rapidity,
and is predicted to have no correlation with the reaction plane.

@ Triangular flow makes a significant contribution to the “ridge” and

“shoulder” .

@ Evidence for the “new” v; has been seen in the first harmonic,
(cos Ag) of the dihadron correlations at STAR @ RHIC.

@ All this provides a strong support to hydrodynamics as the
appropriate effective theory for rhics.
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Various Planes

@ Reaction Plane: xz plane: Plane determined by the impact parameter
vector and the beam axis.

@ Participant Plane: x’z plane, where x’y’ are the principal axes of
inertia. (Defn can be generalized to arbitrary n)

@ Event Plane: Estimate of the PP, obtained using the final-state
momentum distribution (Qz plane):

Qcos\IJ:Z:W,-cosqb,-7 Qsin\IJ:ZW,-sin(;S,-.

(Defn can be generalized to arbitrary n)
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Non-central Collision & Anisotropic Flow

Thus each harmonic n may have its own reference angle in the transverse
plane. Hence the generalized distribution of particles emitted in |f) is

dN N -
7 = <1+21:2vncosn(¢—wn)> .
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Recent Hydrodynamic Calculations

@ Initial energy density: inhomogeneous and fluctuating from event to
event. Not smooth.

@ Hydrodynamics with smooth initial conditions — Hydrodynamics with
fluctuating initial conditions. Event-by-event hydrodynamics

@ Instead of averaging over initial conditions and then applying hydro,
apply hydro first and then average over all outputs.
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Comparison of RHIC & LHC heavy-ion collision expts

RHIC (Au-Au) | LHC (Pb-Pb) | Increase
VSnn (GeV) 200 2760 14
AN/ (M=) 3.76 8.4 2.2
€BjTi (GeV/fm2) 16/3 16 3
cg; (GeV/fm3) 10 30 3
T (MeV) 360 470 30%
Vi, (fm?) 2500 5000 2
Lifetime (fm) 8.4 10.6 30%
Vlow 0.6 0.66 10%
< pT >n 0.36 0.45 25%
Diffl. vo(p1) unchanged
pr-integrated v, 30%

Hotter, Larger, Longer-Lasting
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