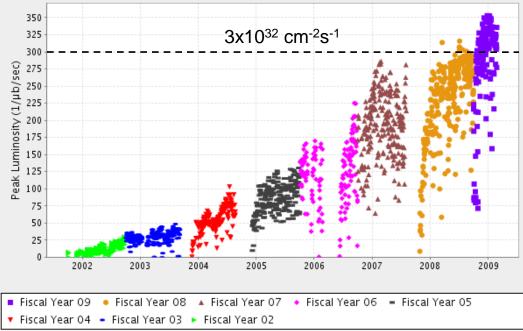
CERN Theory Institute "From the LHC to Future Colliders", Feb 9-27, 2009

Recent Results and Prospects from the Tevatron

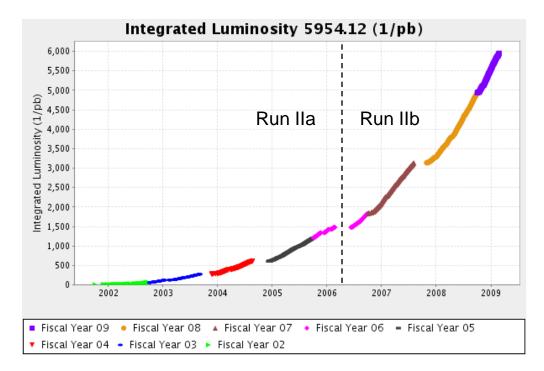


Aurelio Juste Fermi National Accelerator Laboratory

For the CDF and DØ Collaborations

	1992-1996	2001-2006	2006-?
	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 × 36
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6×10 ³⁰	1x10 ³²	2.8 ×10 ³²
∫ Ldt (pb⁻¹/week)	3	15-20	50-60
Bunch crossing (ns)	3500	396	396
Interactions/crossing	2.5	2.5	7.0

Peak Luminosity (1/µb/sec) Max: 352.8 Most Recent: 335.7

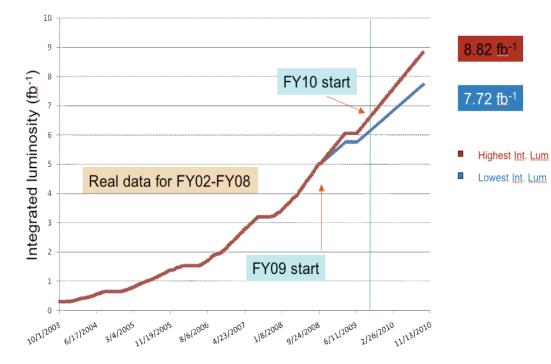

Current status:

 Typical instantaneous luminosity: >3.0x10³² cm⁻²s⁻¹

Record inst. lum.: 3.6x10³² cm⁻²s⁻¹

- Integrated lum./week: ~60-70 pb⁻¹
 - → equiv. Run I dataset in 2 weeks

	1992-1996	2001-2006	2006-?
	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 × 36
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6×10 ³⁰	1x10 ³²	2.8 ×10 ³²
∫ Ldt (pb⁻¹/week)	3	15-20	50-60
Bunch crossing (ns)	3500	396	396
Interactions/crossing	2.5	2.5	7.0

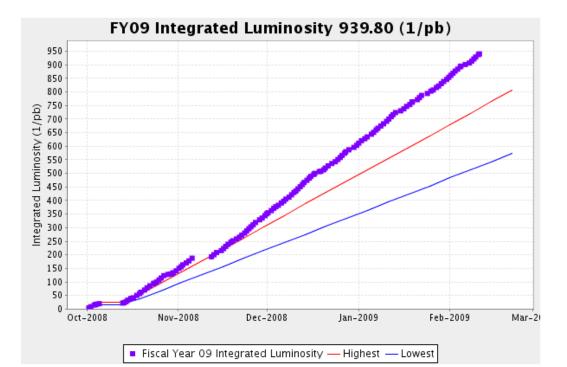

Current status:

Typical instantaneous luminosity:
 >3.0x10³² cm⁻²s⁻¹

Record inst. lum.: 3.6x10³² cm⁻²s⁻¹

- Integrated lum./week: ~60-70 pb⁻¹
- Delivered ~6 fb⁻¹

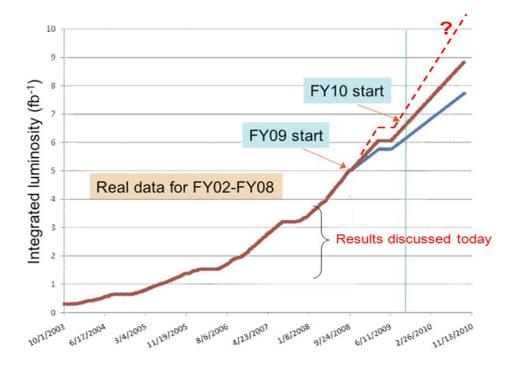
	1992-1996	2001-2006	2006-?
	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 × 36
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6 ×10 ³⁰	1x10 ³²	2.8 ×10 ³²
∫ Ldt (pb⁻¹/week)	3	15-20	50-60
Bunch crossing (ns)	3500	396	396
Interactions/crossing	2.5	2.5	7.0



Plans:

- Shutdown: Jun 15 Aug 23, 2009
- Planning to run in 2010.
- Project ~7.7-8.8 fb⁻¹ by end of FY10...

	1992-1996	2001-2006	2006-?
	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 × 36
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6×10 ³⁰	1x10 ³²	2.8 ×10 ³²
∫ Ldt (pb⁻¹/week)	3	15-20	50-60
Bunch crossing (ns)	3500	396	396
Interactions/crossing	2.5	2.5	7.0

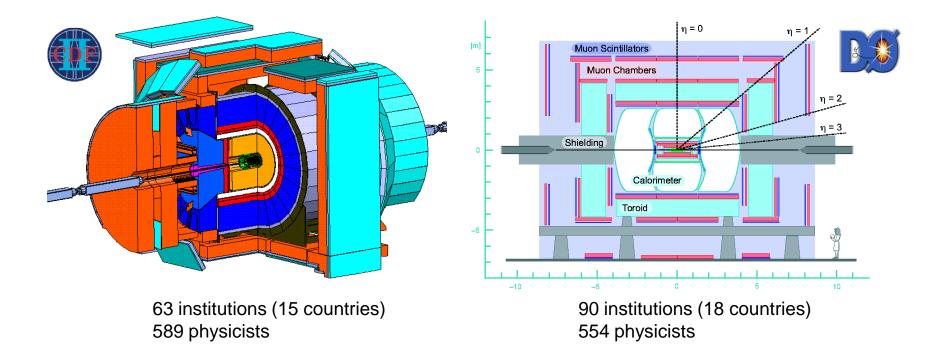


Plans:

•

- Shutdown: Jun 15 Aug 23, 2009
- Planning to run in 2010.
 - Project ~7.7-8.8 fb⁻¹ by end of FY10... ...but in end of FY08 and beginning of FY09 better slope than "Highest Lum" projection!

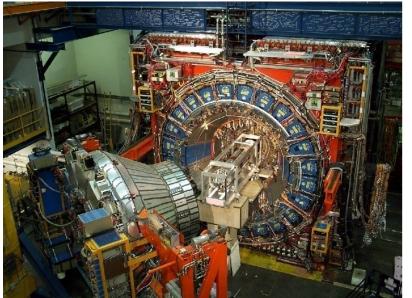
	1992-1996	2001-2006	2006-?
	Run I	Run IIa	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 × 36
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6×10 ³⁰	1x10 ³²	2.8 ×10 ³²
∫ Ldt (pb⁻¹/week)	3	15-20	50-60
Bunch crossing (ns)	3500	396	396
Interactions/crossing	2.5	2.5	7.0



Plans:

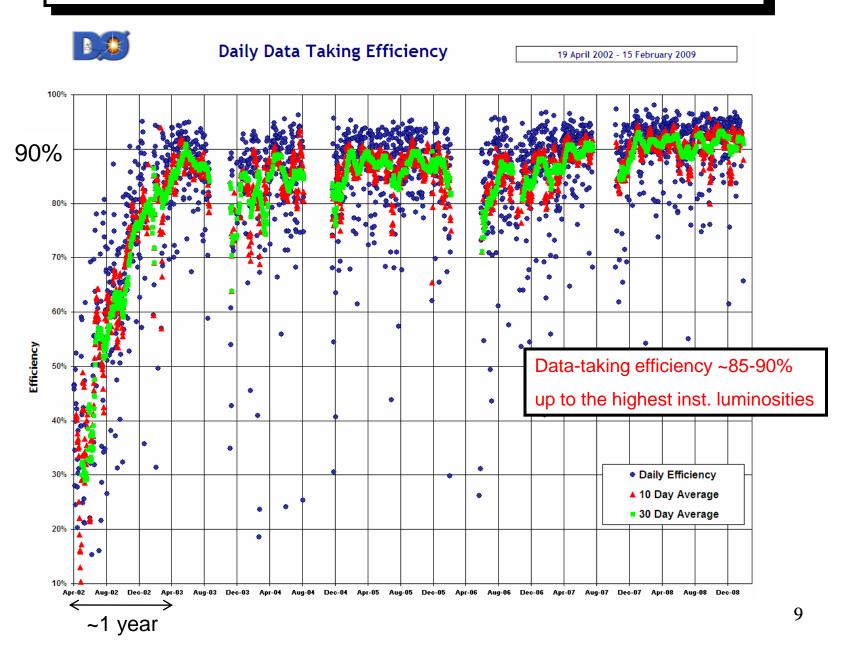
- Shutdown: Jun 15 Aug 23, 2009
- Planning to run in 2010.
- Recently started discussions on 2011 running.
- My personal expectation:
 - By LP2009: ~7.0 fb⁻¹ deliv.
 → results with ≥5 fb⁻¹
 - By end of FY10: ~10 fb⁻¹ deliv.
 - By end of FY11: ~13 fb⁻¹ deliv.
 - → results with ~10 fb⁻¹

CDF and DØ Detectors



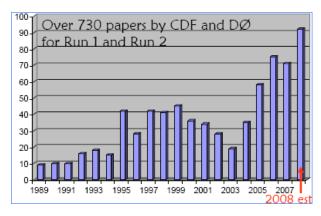
- Multipurpose detectors:
 - Central tracking system embedded in a solenoidal magnetic field:
 - Silicon vertex detector
 - Tracking chamber(CDF)/fiber tracker(DØ)
 - Preshowers
 - Electromagnetic and hadronic calorimeters
 - Muon system

CDF and DØ Detectors

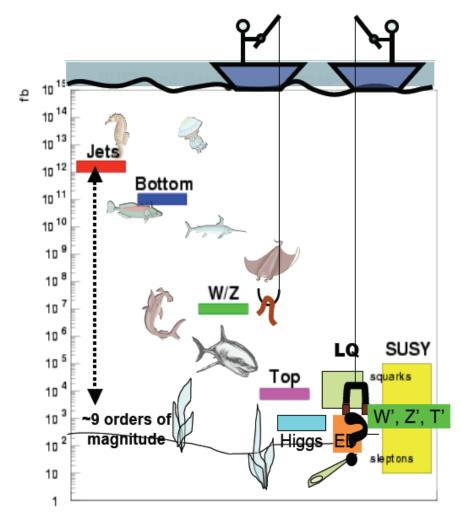


- Multipurpose detectors:
 - Central tracking system embedded in a solenoidal magnetic field:
 - Silicon vertex detector
 - Tracking chamber(CDF)/fiber tracker(DØ)
 - Preshowers
 - Electromagnetic and hadronic calorimeters
 - Muon system

Executive summary:

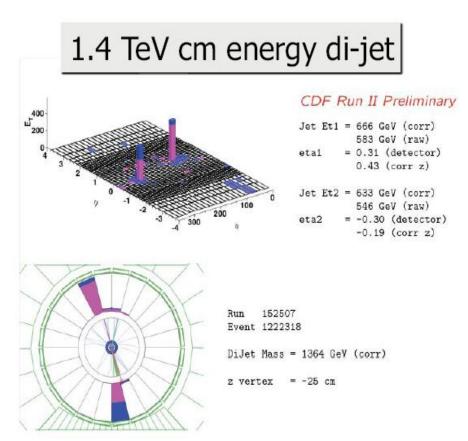

- All detector subsystems expected to survive till the end of the run.
- No further upgrades, stable triggers.

CDF and DØ Detectors


Physics Program at the Tevatron

Broad and deep program being fully exploited.

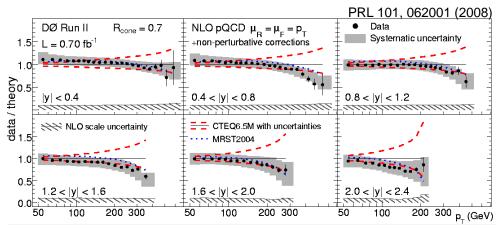
- Recorded luminosity to date: ~5.3 fb⁻¹
- Physics analyses to date typically use ~1-3 fb⁻¹, so final results with the full dataset will have ~2.5-10 times more statistics.
- This talk will only cover a subset of recent results spanning the whole physics program.



QCD Program

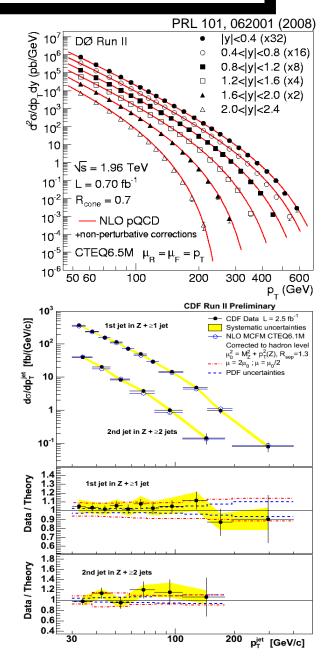
- Physics at a hadron collider (Tevatron, LHC) requires precise understanding of QCD:
 - Hard interactions of 2 partons, PDFs
 - Multi-parton interactions (underlying event)
 - Soft/hard initial/final state radiation
 - Hadronization/fragmentation

Full program of measurements:

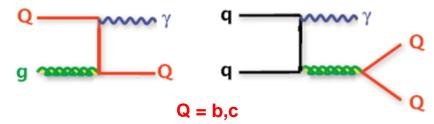

- Jet production
 - Inclusive jet p_T, dijet mass, dijet angular distributions,...
 - Vector boson + jets
- Photon production
 - Diphoton
 - Photon + X
- Heavy-flavor production
 - Inclusive
 - Associated with vector bosons
- Underlying event, jet fragmentation
- Diffractive program

Jet Production

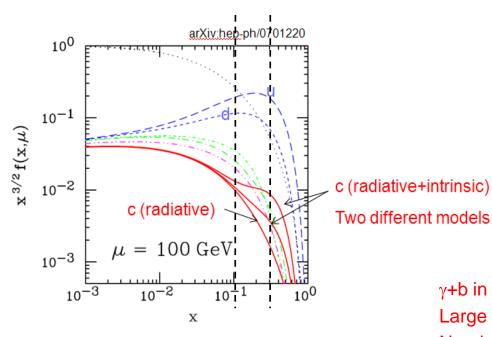
Inclusive jet cross section


- Stringent probe of pQCD over 8 orders of magnitude!
- Forward jets: sensitive probe of gluon PDF at high x.
- Central jets at high p_T: sensitive probe of New Physics.
- After years of work, achieved jet energy calibration ~1-2%.

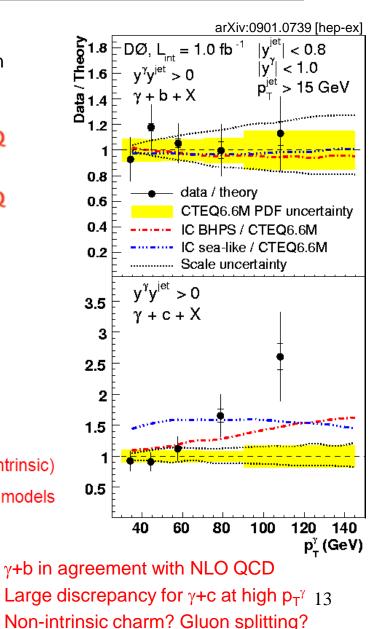
Significant constraints to the gluon PDF. Extremely useful input for the LHC.


W/Z+jets total/differential cross sections

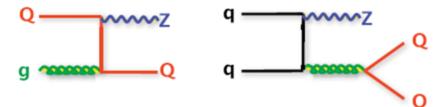
- Test of pQCD predictions at high momentum transfers.
- Main backgrounds to top, Higgs, New Phenomena searches ⇒ critical to validate theoretical calculations and Monte Carlo event generators.



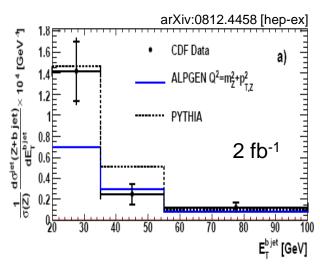
Vector Boson + Heavy Flavor Jets

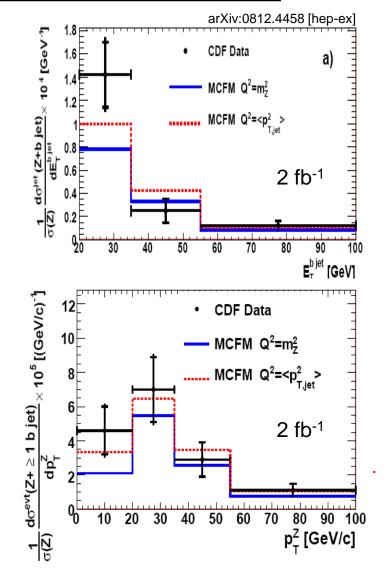

 Sensitive to production mechanism and the heavy quark content of the proton. Also probes fragmentation into heavy quarks.

 Is there an "intrinsic charm" (non-perturbative) component of the proton?



Region probed: 0.1<x<0.3, 0.9x10³<Q²<2x10⁴ GeV²




Vector Boson + Heavy Flavor Jets

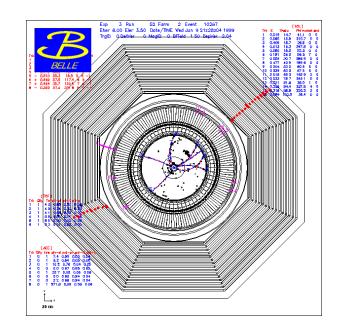
• Sensitive to production mechanism and the heavy quark content of the proton. Also probes fragmentation into heavy quarks.

- Z+b jets constitute main background for Higgs or sbottom searches.
- First differential distributions (normalized to $\sigma(Z)$).
 - Partial-NLO MCFM prediction shows sizeable scale dependence.
 - Data seems to prefer lower scales.

14

Higher luminosity measurements will allow more stringent tests of theoretical predictions

Heavy Flavor Program


- Large production cross section (~0.1 mb).
- Many b,c species are produced at the Tevatron:

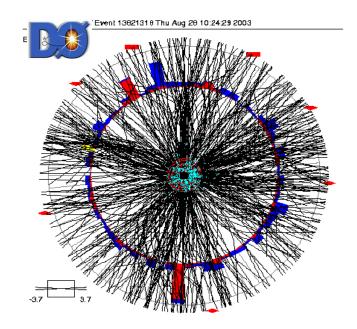
$$\begin{split} \bar{B}^0 &= |\mathbf{b}\,\bar{d}\rangle, \ B^- &= |\mathbf{b}\,\bar{u}\rangle \quad \Lambda_b^0 = |\mathbf{b}\,d\,u\rangle, \ \Sigma_b^- &= |\mathbf{b}\,d\,d\rangle \\ \bar{B}^0_S &= |\mathbf{b}\,\bar{s}\rangle, \ B_c^- &= |\mathbf{b}\,\bar{c}\rangle \quad \Xi_b^- &= |\mathbf{b}\,d\,s\rangle \quad \dots \end{split}$$

many of which are inaccessible at the B factories.

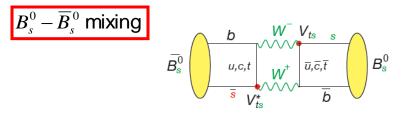
- Low p_T lepton (CDF+DØ) and displaced track (CDF) triggers allow for rich samples of semileptonic and hadronic decay modes.
- Hadron collider environment challenging but sufficient statistics and detector capabilities allow for an extremely rich program:
 - Precise cross section, mass & lifetime measurements
 - Exclusive decays, branching fractions & rare decays
 - Mixing and CP violation
 - Spectroscopy & decay properties
 - Discovery of new states

"Typical" event display at the B-factories:

Heavy Flavor Program


- Large production cross section (~0.1 mb).
- Many b,c species are produced at the Tevatron:

$$\begin{split} \bar{B}^0 &= |\mathbf{b}\,\bar{d}\rangle, \ B^- &= |\mathbf{b}\,\bar{u}\rangle \quad \Lambda_b^0 = |\mathbf{b}\,d\,u\rangle, \ \Sigma_b^- &= |\mathbf{b}\,d\,d\rangle \\ \bar{B}^0_S &= |\mathbf{b}\,\bar{s}\rangle, \ B_c^- &= |\mathbf{b}\,\bar{c}\rangle \quad \Xi_b^- &= |\mathbf{b}\,d\,s\rangle \quad \cdots \end{split}$$

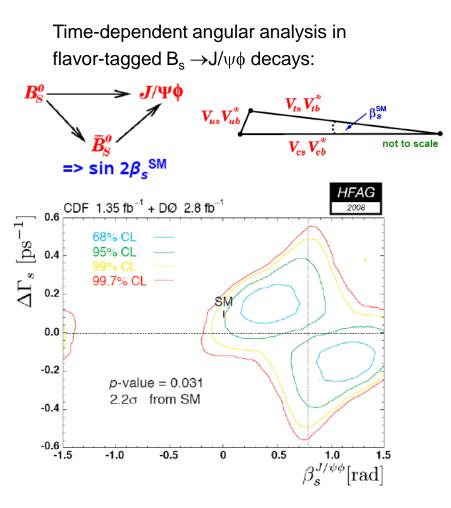

many of which are inaccessible at the B factories.

- Low p_T lepton (CDF+DØ) and displaced track (CDF) triggers allow for rich samples of semileptonic and hadronic decay modes.
- Hadron collider environment challenging but sufficient statistics and detector capabilities allow for an extremely rich program:
 - Precise cross section, mass & lifetime measurements
 - Exclusive decays, branching fractions & rare decays
 - Mixing and CP violation
 - Spectroscopy & decay properties
 - Discovery of new states

"Typical" event display at the Tevatron:

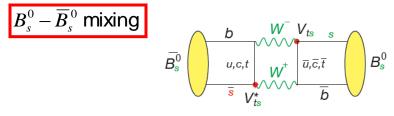
CP Violation in B_s Decays

Weak eigenstates:


$$i \frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{*} - \frac{i\Gamma_{12}^{*}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix}$$

Mass eigenstates:

$$|B_{s}^{H}\rangle = p|B_{s}^{0}\rangle + q|\overline{B}_{s}^{0}\rangle |B_{s}^{L}\rangle = p|B_{s}^{0}\rangle - q|\overline{B}_{s}^{0}\rangle$$


B_s meson allows to probe the entire matrix:

$$\begin{split} \Delta m_{\rm s} &= M_{\rm H} - M_{\rm L} \sim 2 \left| M_{\rm 12} \right| \quad \text{Sensitive to New Physics} \\ \Delta \Gamma_{\rm s}^{CP} &= \Gamma_{even} - \Gamma_{odd} \sim 2 \left| \Gamma_{\rm 12} \right| \quad \text{Not sensitive to New Physics} \\ \Delta \Gamma_{\rm s} &= \Gamma_{\rm L} - \Gamma_{\rm H} \quad \sim 2 \left| \Gamma_{\rm 12} \right| \cos \phi_{\rm s} \quad \begin{array}{l} \text{VERY sensitive to} \\ \text{New Physics} \end{array} \\ \phi_{s}^{SM} &= \arg[-M_{12}/\Gamma_{12}] \rightarrow \phi_{s}^{SM} + \phi_{s}^{NP} \\ \sim 0.004 \end{array}$$

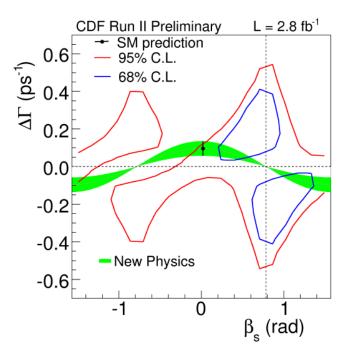
Combination of CDF and DØ measurements w/o assumptions on strong phases yields 2.2σ deviation from the SM (p-value=3.1%). 17

CP Violation in B_s Decays

Weak eigenstates:

$$i \frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{*} - \frac{i\Gamma_{12}^{*}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix}$$

Mass eigenstates:


$$|B_{\rm s}^{\rm H}\rangle = p |B_{\rm s}^{\rm 0}\rangle + q |\bar{B}_{\rm s}^{\rm 0}\rangle |B_{\rm s}^{\rm L}\rangle = p |B_{\rm s}^{\rm 0}\rangle - q |\bar{B}_{\rm s}^{\rm 0}\rangle$$

B_s meson allows to probe the entire matrix:

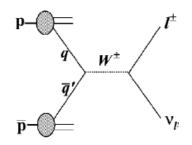
$$\begin{split} \Delta m_{\rm s} &= M_{\rm H} - M_{\rm L} \sim 2 \left| M_{\rm 12} \right| & \text{Sensitive to New Physics} \\ \Delta \Gamma_{\rm s}^{CP} &= \Gamma_{even} - \Gamma_{odd} \sim 2 \left| \Gamma_{\rm 12} \right| & \text{Not sensitive to New Physics} \\ \Delta \Gamma_{\rm s} &= \Gamma_{\rm L} - \Gamma_{\rm H} - 2 \left| \Gamma_{\rm 12} \right| \cos \phi_{\rm s} & \frac{\text{VERY sensitive to}}{\text{New Physics}} \\ \phi_{s}^{SM} &= \arg[-M_{12}/\Gamma_{12}] \rightarrow \phi_{s}^{SM} + \phi_{s}^{NP} \end{split}$$

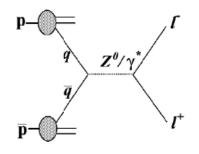
~0.004

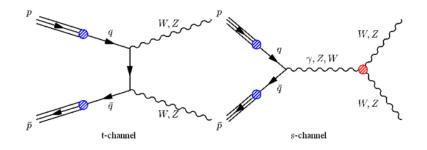
Updated CDF result with 2.8 fb⁻¹: consistency with the SM further decreased (p-value= $0.15 \rightarrow 0.08$).

Very exciting prospects in the near future:

- Updates with 4-5 fb⁻¹ by Winter'09 Confs.
- Additional measurements (charge asymmetries) underway.

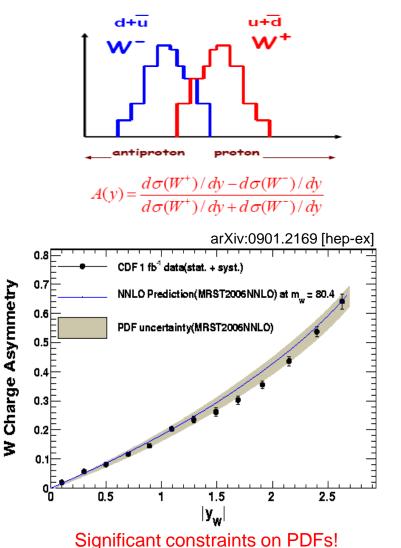

Electroweak Program

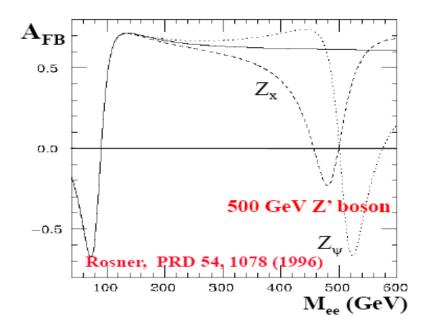

- Single W(→Iv)/Z(→I⁺I⁻) production occurs at high rate: O(100k-10k)/week!!
- Provide "standard candles": lepton ID/trigger efficiencies vs. time, integrated luminosity verification, electron energy scale, etc.
- Inclusive production cross section in good agreement with theoretical prediction.


→ could be used to overcome ~6% luminosity uncertainty in many measurements.

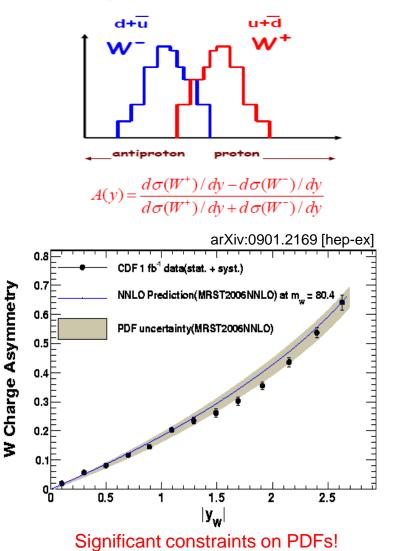
Extensive and very competitive program:

- W/Z production cross sections and differential distributions
- Precision measurements: M_W , Γ_W , $\sin^2\theta_w$,...
- Diboson physics

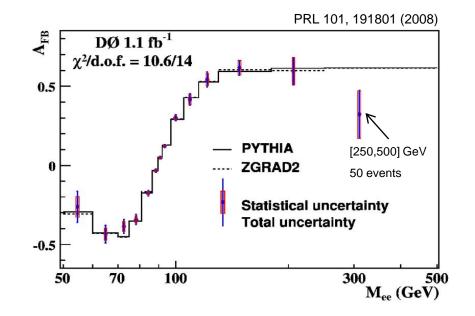



• Differential distributions provide important information on production mechanism.

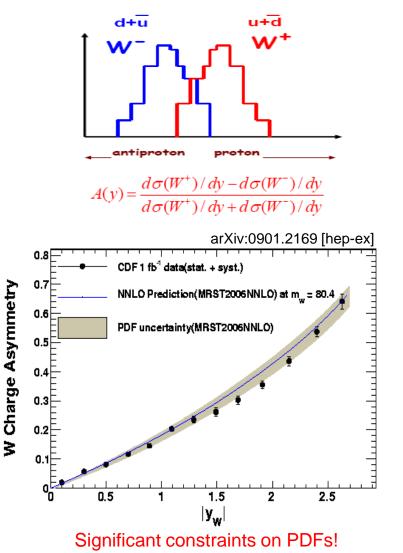
W charge asymmetry


Forward-backward asymmetry in $Z/\gamma^* \rightarrow e^+e^-$

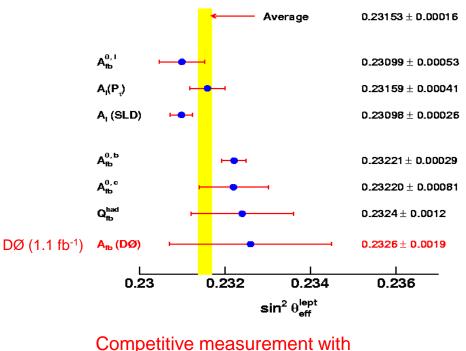
- Measurement of A_{FB} as a function of M_{ee}.
- Sensitive to New Physics effects at high M_{ee} (extend region probed by LEP2).
- Measurement of $\sin^2\theta_w$.
- Measurement of Z-u-u and Z-d-d couplings.


• Differential distributions provide important information on production mechanism.

W charge asymmetry


Forward-backward asymmetry in $Z/\gamma^* \rightarrow e^+e^-$

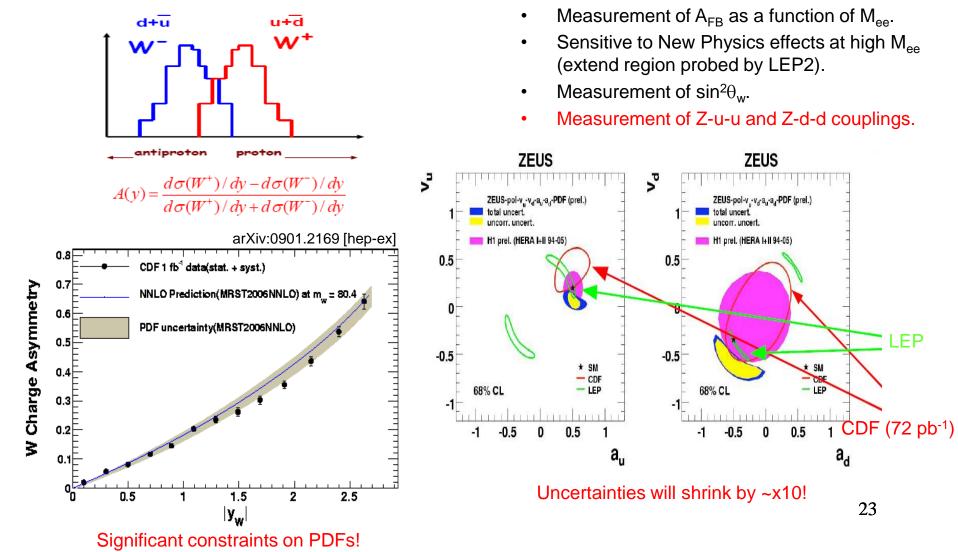
- Measurement of A_{FB} as a function of M_{ee}.
- Sensitive to New Physics effects at high M_{ee} (extend region probed by LEP2).
- Measurement of $\sin^2\theta_w$.
- Measurement of Z-u-u and Z-d-d couplings.


• Differential distributions provide important information on production mechanism.

W charge asymmetry

Forward-backward asymmetry in $Z/\gamma^* \rightarrow e^+e^-$

- Measurement of A_{FB} as a function of M_{ee}.
- Sensitive to New Physics effects at high M_{ee} (extend region probed by LEP2).
- Measurement of $sin^2\theta_w$.
- Measurement of Z-u-u and Z-d-d couplings.

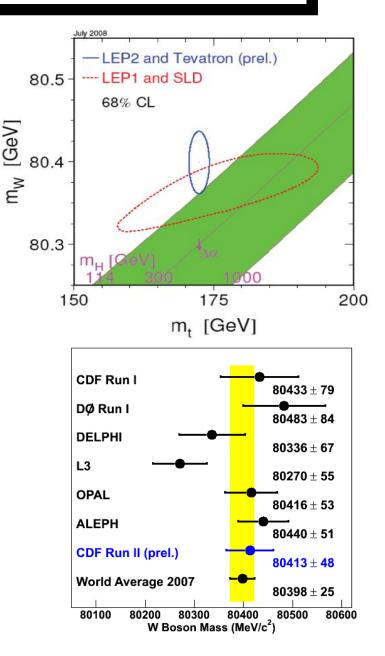


full dataset and CDF+DØ.

Forward-backward asymmetry in $Z/\gamma^* \rightarrow e^+e^-$

• Differential distributions provide important information on production mechanism.

W charge asymmetry



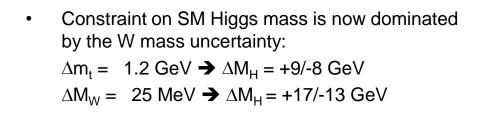
W Boson Mass

- Constraint on SM Higgs mass is now dominated by the W mass uncertainty:
 Δm_t = 1.2 GeV → ΔM_H = +9/-8 GeV
 ΔM_W = 25 MeV → ΔM_H = +17/-13 GeV
- Measured from template fits to W transverse mass, lepton p_T and MET distributions.
- Exquisite understanding of the detector response, noise and pileup required:

~ few MeV for quantities ~40 GeV!

- Uncertainty currently dominated by statistics of Z sample used for calibration.
 Theoretical uncertainties ~10-15 MeV.
- New results expected soon!
 - CDF working on 2.4 fb⁻¹ measurement
 - DØ working on 1 fb⁻¹ measurement

W Boson Mass

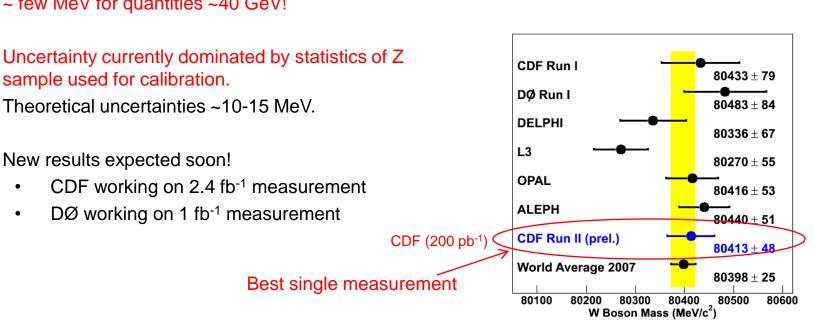

PRL 99, 151801 (2007)

CDF (200 pb⁻¹)

90

100

 m_T (GeV)


- Measured from template fits to W transverse mass, • lepton p_T and MET distributions.
- Exquisite understanding of the detector response, • noise and pileup required:

~ few MeV for quantities ~40 GeV!

•

•

٠

Events / 0.5 GeV

1500

1000

500

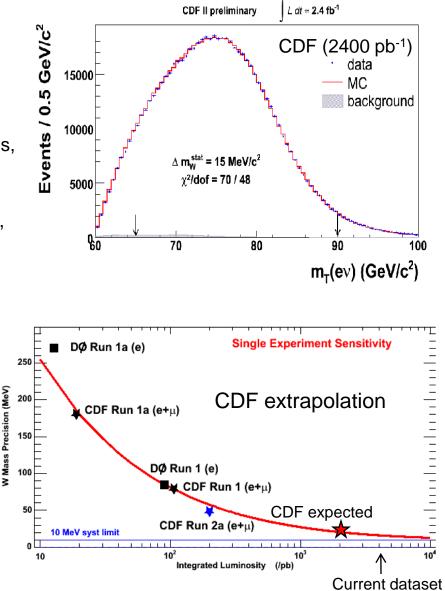
60

 $W \rightarrow e v$

 m_W = (80493 ± 48) MeV

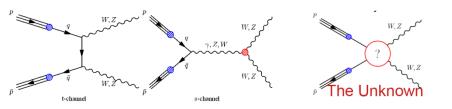
 χ^2 /dof = 86 / 48

80

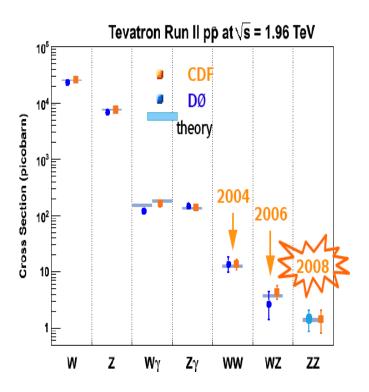

W Boson Mass

- Constraint on SM Higgs mass is now dominated by the W mass uncertainty:
 Δm_t = 1.2 GeV → ΔM_H = +9/-8 GeV
 ΔM_W = 25 MeV → ΔM_H = +17/-13 GeV
- Measured from template fits to W transverse mass, lepton p_{T} and MET distributions.
- Exquisite understanding of the detector response, noise and pileup required:

~ few MeV for quantities ~40 GeV!

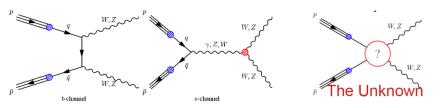

- Uncertainty currently dominated by statistics of Z sample used for calibration.
 Theoretical uncertainties ~10-15 MeV.
- New results expected soon!
 - CDF working on 2.4 fb⁻¹ measurement
 - DØ working on 1 fb⁻¹ measurement

With full data sample expect CDF+DØ combined uncertainty of ~15-20 MeV.

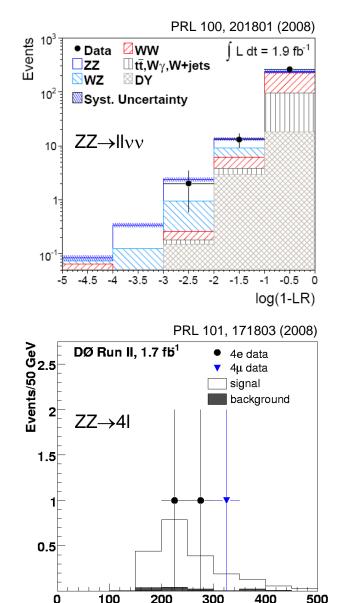


Diboson Production

 Probe of non-abelian structure of SM and sensitive to New Physics.

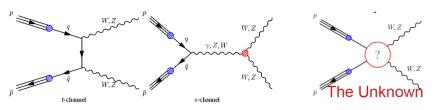


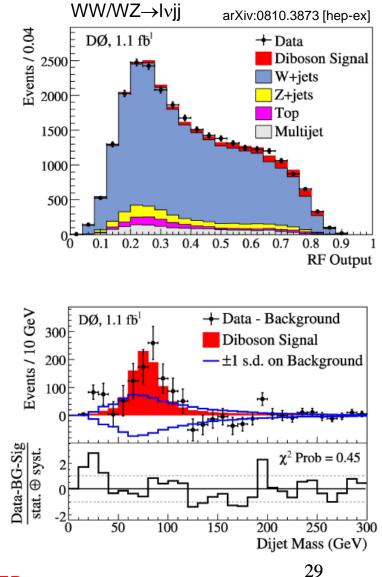
- Background to many direct searches (e.g. Higgs, SUSY) for New Physics. Reality check for NP searches.
- Recent observation of ZZ production in IIvv and 4I channels by DØ (5.7σ). Evidence at CDF (4.4σ).
 Measured cross section in agreement with SM (1.4 pb).
- First evidence of WW/WZ \rightarrow Ivjj by DØ (4.4 σ).
 - σ=20.2±4.4 pb (SM: 16.1±0.9 pb)
 - Advanced multivariate and statistical techniques being used in W(→Iv)H(→bb) now verified in similar final state W(→Iv)W/Z(→jj)
- Anomalous couplings from W(→Iν)γ, Z(→II,νν)γ, W(→Iν)W(→Iν,jj), W(→Iν)Z(→II,jj) and Z(→II)Z(→II,νν,jj).
 Combined limits will be complementary/competitive with LEP.



Diboson Production

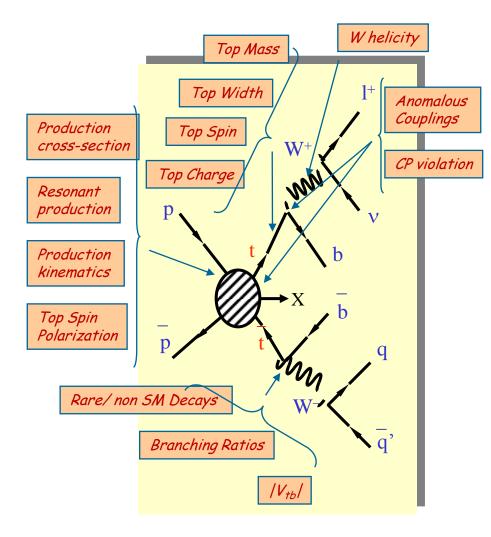
 Probe of non-abelian structure of SM and sensitive to New Physics.


- Background to many direct searches (e.g. Higgs, SUSY) for New Physics. Reality check for NP searches.
- Recent observation of ZZ production in IIvv and 4I channels by DØ (5.7σ). Evidence at CDF (4.4σ).
 Measured cross section in agreement with SM (1.4 pb).
- First evidence of WW/WZ \rightarrow Ivjj by DØ (4.4 σ).
 - σ=20.2±4.4 pb (SM: 16.1±0.9 pb)
 - Advanced multivariate and statistical techniques being used in W(→Iv)H(→bb) now verified in similar final state: W(→Iv)W/Z(→jj)
- Anomalous couplings from W(→Iν)γ, Z(→II,νν)γ, W(→Iν)W(→Iν,jj), W(→Iν)Z(→II,jj) and Z(→II)Z(→II,νν,jj).
 Combined limits will be complementary/competitive with LEP.

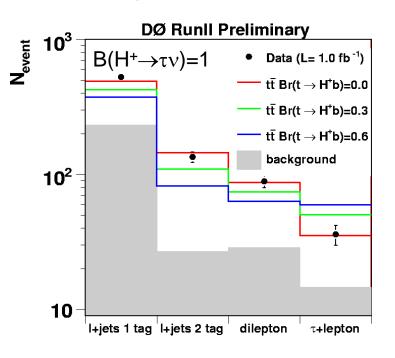

Four lepton invariant mass (GeV)

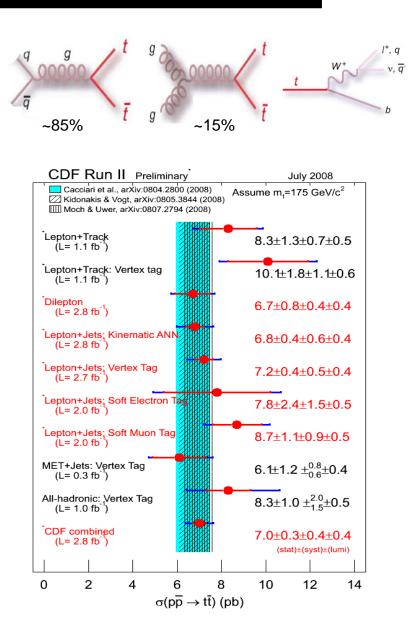
Diboson Production

 Probe of non-abelian structure of SM and sensitive to New Physics.



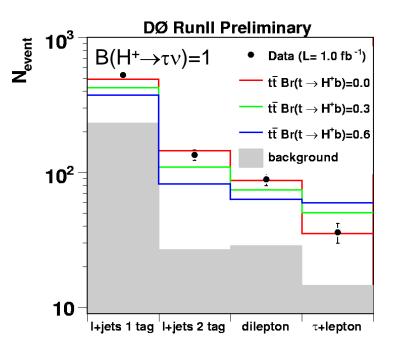
- Background to many direct searches (e.g. Higgs, SUSY) for New Physics. Reality check for NP searches.
- Recent observation of ZZ production in IIvv and 4I channels by DØ (5.7σ). Evidence at CDF (4.4σ).
 Measured cross section in agreement with SM (1.4 pb).
- First evidence of WW/WZ \rightarrow Ivjj by DØ (4.4 σ).
 - σ=20.2±4.4 pb (SM: 16.1±0.9 pb)
 - Advanced multivariate and statistical techniques being used in W(→Iv)H(→bb) now verified in similar final state: W(→Iv)W/Z(→jj).
- Anomalous couplings from W(→Iν)γ, Z(→II,vv)γ, W(→Iv)W(→Iv,jj), W(→Iv)Z(→II,jj) and Z(→II)Z(→II,vv,jj).
 Combined limits will be complementary/competitive with LEP.

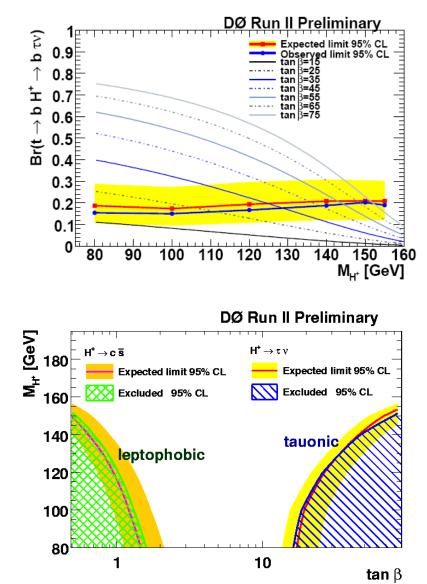

Top Physics Program


- Precision measurements of top quark properties crucial in order to unveil its true nature: $\lambda_t = \sqrt{2} m_t / v = 0.991 \pm 0.007$!!!
- Extremely rich program of measurements.
- Large top samples in Tevatron Run II have allowed to make the transition from the discovery phase to a phase of precision measurements of top quark properties.

Top Quark Production and Decay

- Top quarks dominantly produced in pairs via the strong interaction.
- Measured cross sections in agreement with SM.
 Experimental precision from combination of channels (~9%) comparable to theoretical error.
- Precise measurements in different channels allows to place constraints on New Physics.
 E.g. t→H⁺b: channels affected differently depending on H⁺ decay modes.

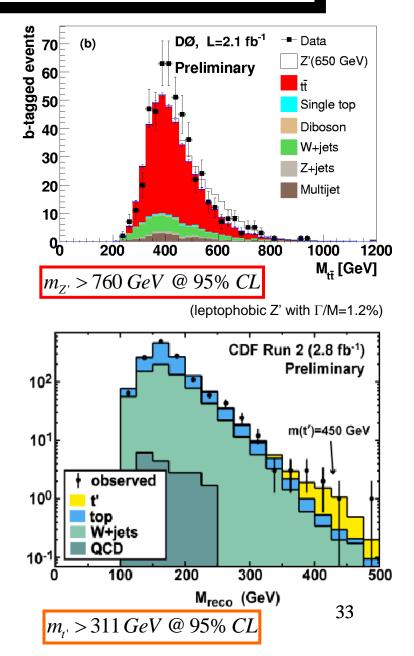




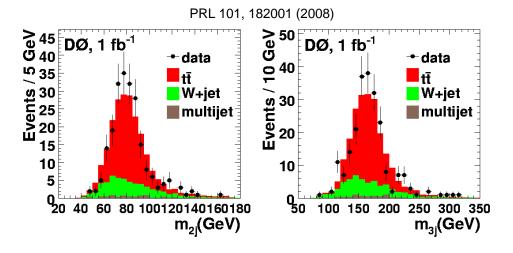
Top Quark Production and Decay

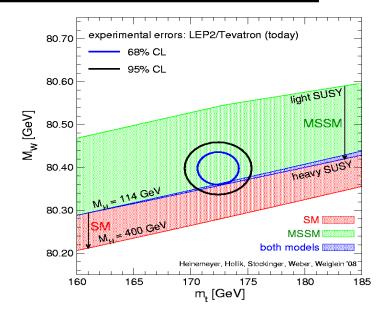
- Top quarks dominantly produced in pairs via the strong interaction.
- Measured cross sections in agreement with SM.
 Experimental precision from combination of channels (~9%) comparable to theoretical error.
- Precise measurements in different channels allows to place constraints on New Physics.

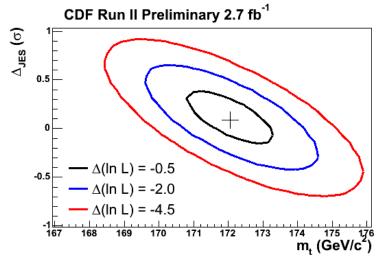
E.g. t \rightarrow H⁺b: channels affected differently depending on H⁺ decay modes.



Top Quark Production and Decay

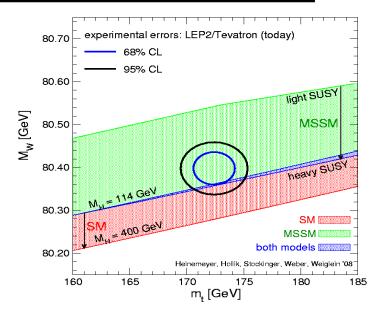

- Top quarks dominantly produced in pairs via the strong interaction.
- Measured cross sections in agreement with SM.
 Experimental precision from combination of channels (~9%) comparable to theoretical error.
- Precise measurements in different channels allows to place constraints on New Physics.
 E.g. t→H⁺b: channels affected differently depending on H⁺ decay modes.
- Also probing for non-SM production mechanisms (e.g. Z'→tt) or New Physics contamination in the top samples (e.g. t't'→WqWq).

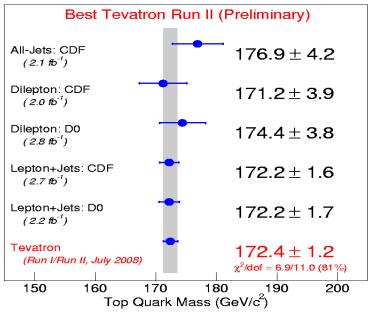

Using top as a tool to look for New Physics



Top Quark Mass

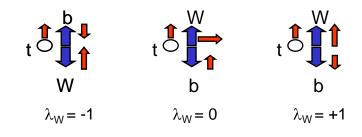
- Fundamental parameter of the Standard Model.
- Important ingredient for EW precision analyses at the quantum level.
 - \Rightarrow incisive consistency checks
 - \Rightarrow constrain/rule out models of New Physics
 - \Rightarrow provide valuable information on the parameters of the Lagrangian
- Sophisticated techniques to minimize statistical and dominant systematic uncertainties (JES via in-situ calibration to M_W in lepton+jets).

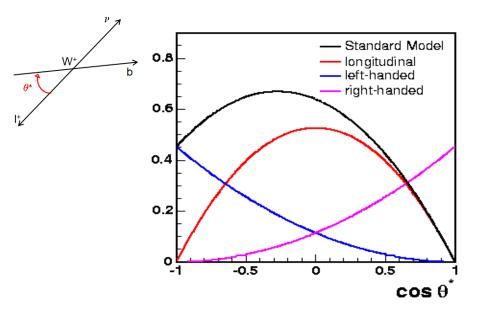

Top Quark Mass


- Fundamental parameter of the Standard Model.
- Important ingredient for EW precision analyses at the quantum level.
 - \Rightarrow incisive consistency checks
 - \Rightarrow constrain/rule out models of New Physics
 - \Rightarrow provide valuable information on the parameters of the Lagrangian
- Sophisticated techniques to minimize statistical and dominant systematic uncertainties (JES via in-situ calibration to M_W in lepton+jets).
- Current world-average (most sensitive channels use up to 2.7 fb⁻¹):

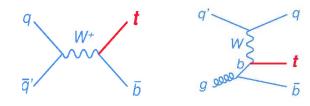
 $m_t = 172.4 \pm 0.7 \pm 1.0 \, GeV$

Measurement will be limited by systematic uncertainties (signal modeling, b-jet response), some of which can be constrained by data.

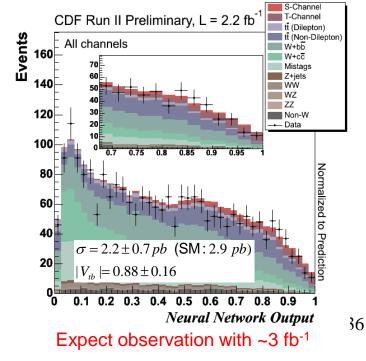

Estimate ultimate precision ≤ 1 GeV


Probing the *tbW* Interaction

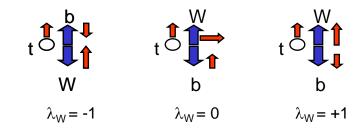
W helicity in top quark decays



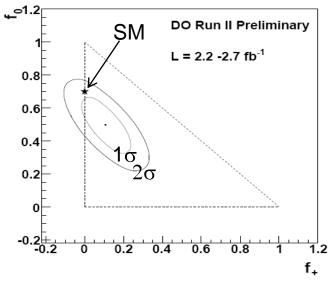
SM: $F_{-} \approx \frac{2M_{W}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.30$ $F_{0} \approx \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.70$ $F_{+} = 0$


• Reconstruct helicity angle of lepton in top quark pair events.

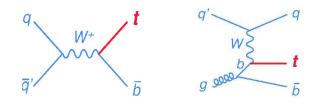
Electroweak single top production



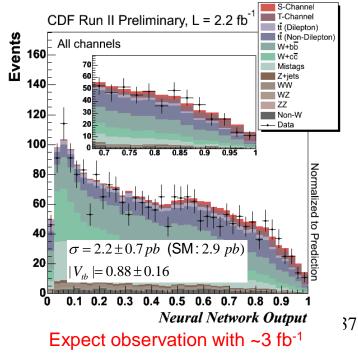
- σ and kinematics sensitive to *tbW* interaction
- $\sigma \sim 1/2 \sigma(tt)$ but very large W+jets background
- Both experiments have evidence for single top via sophisticated multivariate techniques to extract the signal.


Probing the *tbW* Interaction

W helicity in top quark decays

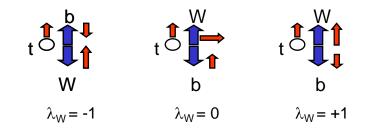

SM: $F_{-} \approx \frac{2M_{W}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.30$ $F_{0} \approx \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.70$ $F_{+} = 0$

Model-independent measurement of W
 helicity fractions

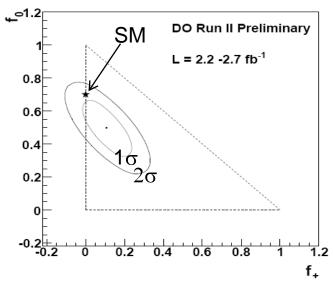


Sensitive to ratio of anomalous couplings

Electroweak single top production



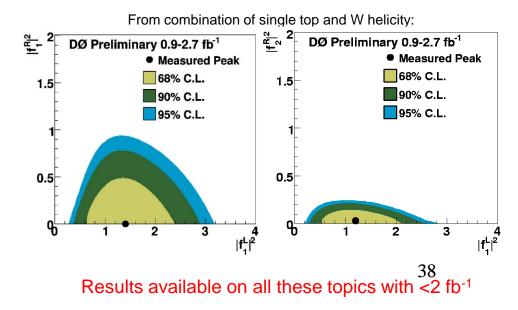
- σ and kinematics sensitive to *tbW* interaction
- $\sigma \sim 1/2 \sigma(tt)$ but very large W+jets background
- Both experiments have evidence for single top via sophisticated multivariate techniques to extract the signal.


Probing the *tbW* Interaction

W helicity in top quark decays

SM:
$$F_{-} \approx \frac{2M_{W}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.30$$
 $F_{0} \approx \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.70$ $F_{+} = 0$

Model-independent measurement of W
 helicity fractions


Sensitive to ratio of anomalous couplings

Electroweak single top production

With full dataset:

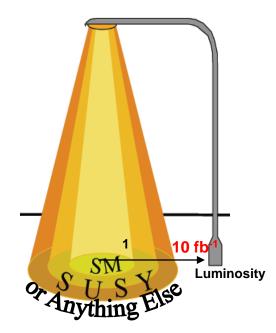
- $\Delta V_{tb}/V_{tb} \sim 8\%$
- Simultaneous measurement of s- and t-channel cross sections
- Searches for anomalous production (W', H⁺, FCNC)
- Measurement of tbW couplings

$$\mathcal{L} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t$$
$$- \frac{g}{\sqrt{2} M_{W}} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t + h.c.$$

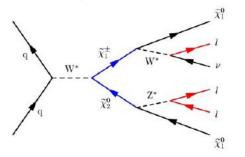
New Phenomena Searches

Model-inspired searches: theory-driven

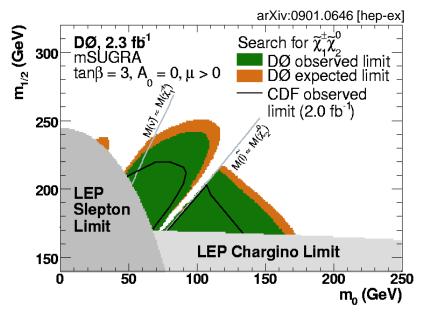
→ optimized analyses to extract well-defined signals.

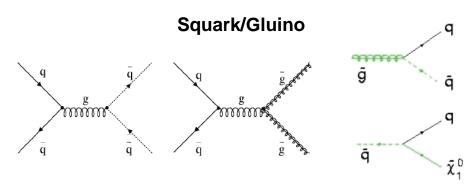

- SUSY: (heavy-quark)jets + MET, multi-leptons + MET, multi-photons+MET, long-lived massive particles, rare B decays, etc
- Extra Dimensions: mono-jets, di-lepton/di-photon resonances
- Extra gauge bosons: W', Z'
- Leptoquarks
- Compositeness: excited leptons,...
- ...

Signature-based searches: final-state driven

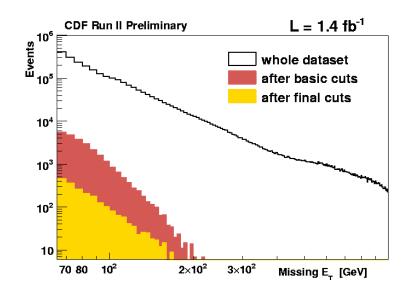

→ Looking for deviations from the SM anywhere.

Prospects for discoveries remain open:

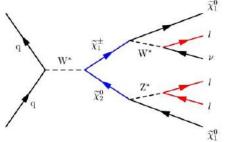

- 1. Tevatron is "still" the energy frontier.
- 2. High luminosity: significant signals may quickly develop as luminosity grows and analyses mature.
- 3. Well understood detector, refined experimental techniques and experienced collaborations. Data makes you smarter...

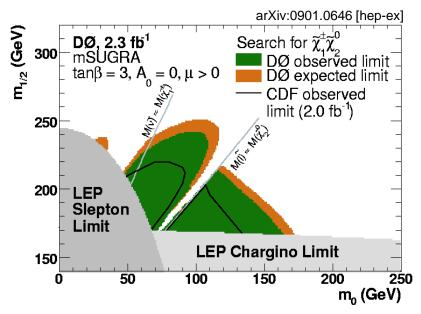


Chargino/Neutralino



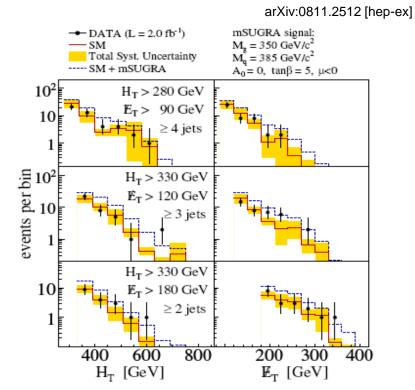
- Clean multi-lepton+MET signature, but:
 - low σxBR (<0.1 pb)
 - low p_T leptons (<10 GeV)
- Challenges: lepton ID at low p_T.
 - → use e.g. dilepton+track selections.



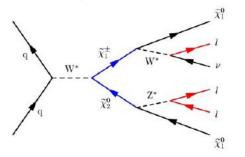

- Pair production of q,g with decays involving multi-jets + MET.
- Critical to understand tail of MET distribution.

Chargino/Neutralino

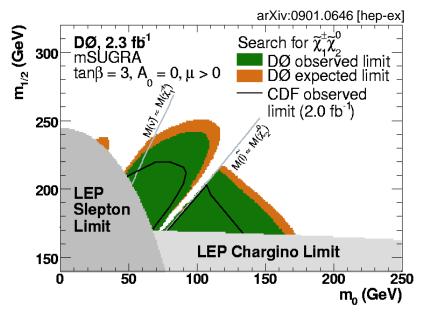
- Clean multi-lepton+MET signature, but: .
 - low σxBR (<0.1 pb) .
 - low p_T leptons (<10 GeV)
- Challenges: lepton ID at low p_{T} .
 - → use e.g. dilepton+track selections.

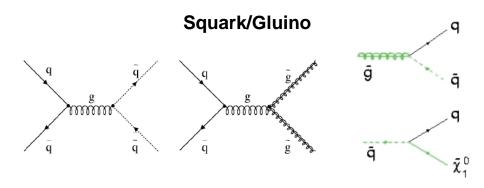


ġ g g mm mmm g ą χî

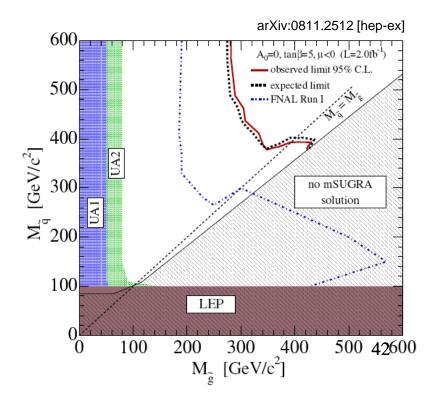

Squark/Gluino

q

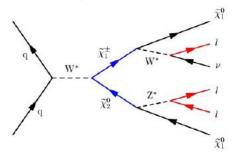

Pair production of q,g with decays involving multi-jets + MET.

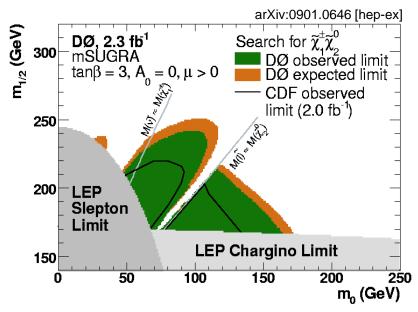


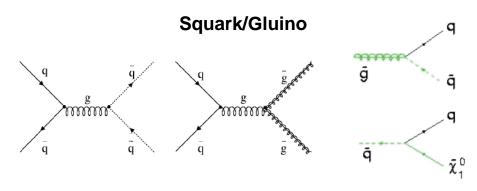
Chargino/Neutralino



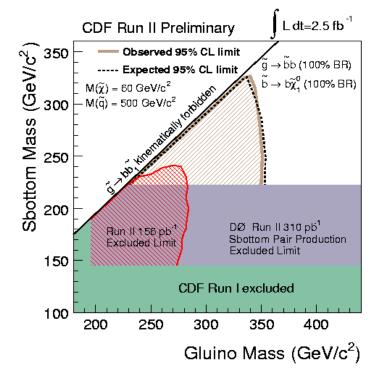
- Clean multi-lepton+MET signature, but:
 - low σxBR (<0.1 pb)
 - low p_T leptons (<10 GeV)
- Challenges: lepton ID at low p_T.
 - → use e.g. dilepton+track selections.



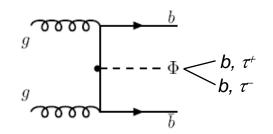

 Pair production of q,g with decays involving multi-jets + MET.

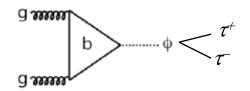


Chargino/Neutralino

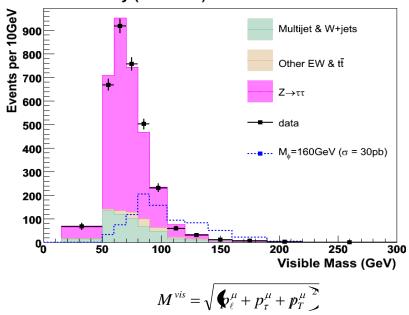


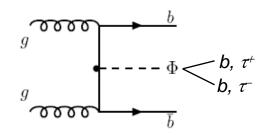
- Clean multi-lepton+MET signature, but:
 - low σxBR (<0.1 pb)
 - low p_T leptons (<10 GeV)
- Challenges: lepton ID at low p_T.
 - → use e.g. dilepton+track selections.

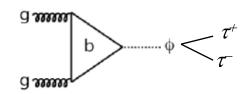


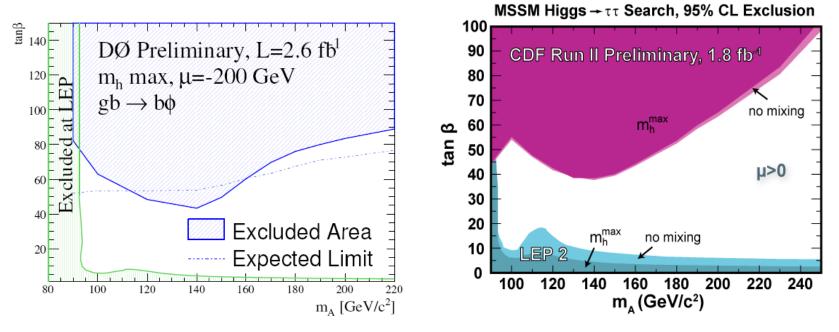

- Pair production of q,g with decays involving multi-jets + MET.
- Stop/sbottom: include b/c in the final state.

SUSY Higgs


- MSSM at large tanβ:
 - Φ⁰={h⁰/H⁰,A⁰} nearly degenerated in mass
 - Coupling to b, τ enhanced ($\propto \tan\beta$) $\Rightarrow \sigma_{\Phi+X} \propto 2 x \tan^2\beta$
 - BR(Φ⁰→bb)~90%, BR(Φ⁰→τ⁺τ⁻)~10%
- Three complementary channels:
 - $b(b)+\Phi^0 \rightarrow bbb(b)$
 - $b(b)+\Phi^0 \rightarrow \tau^+\tau^- b(b)$ (typically require $\geq 1 \tau \rightarrow e, \mu$) • $\Phi^0 \rightarrow \tau^+\tau^-$

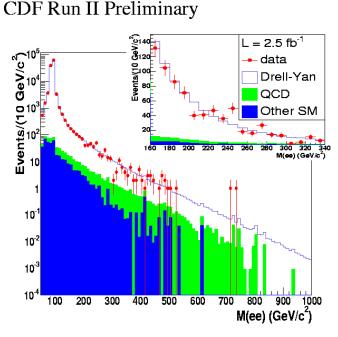



DØ Preliminary (1-2.2 fb⁻¹)



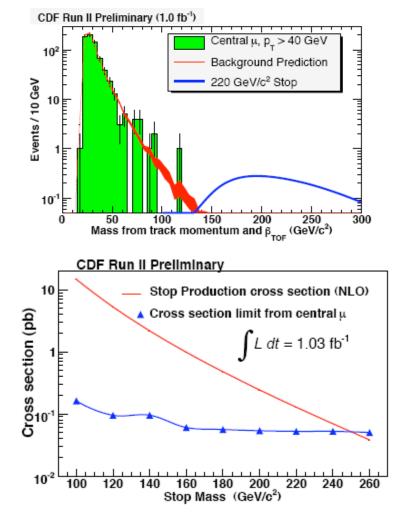
SUSY Higgs

- MSSM at large tanβ:
 - $\Phi^0 = \{h^0/H^0, A^0\}$ nearly degenerated in mass
 - Coupling to b, τ enhanced ($\propto \tan\beta$) $\rightarrow \sigma_{\Phi+X} \propto 2 \times \tan^2\beta$
 - BR(Φ⁰→bb)~90%, BR(Φ⁰→τ⁺τ⁻)~10%
- Three complementary channels:
 - $b(b)+\Phi^0 \rightarrow bbb(b)$
 - $b(b) + \Phi^0 \rightarrow \tau^+ \tau^- b(b)$ (typically require $\geq 1 \tau \rightarrow e, \mu$)
 - $\Phi^0 \rightarrow \tau^+ \tau^-$



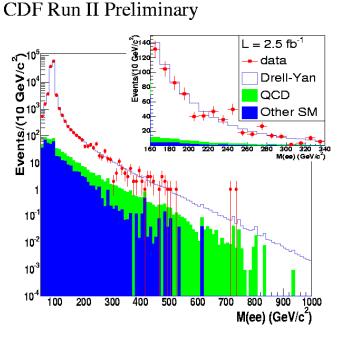
Individual searches approaching "interesting" range $\tan\beta < m_t/m_b \sim 35$. 45 Combination underway.

Non-SUSY Searches

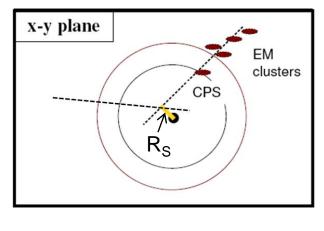

Di-lepton invariant mass distributions probes:

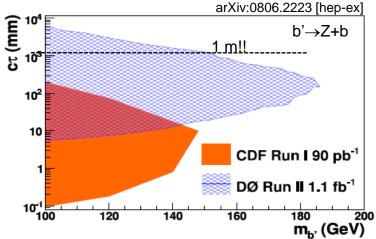
- New Z' gauge bosons: expected in many beyond-SM scenarios (GUTs, etc).
- Extra-dimensions (large, Randall-Sundrum gravitons, etc)

- Most significant excess at M(ee)~240 GeV (3.8σ). Probability for fluctuation in 150-1000 GeV range 0.6% (2.5σ).
- Observed limits ~840-966 GeV depending on Z' model.

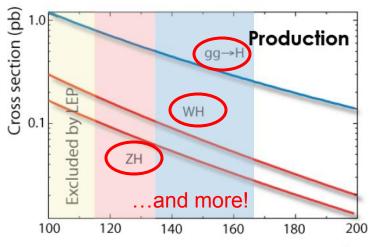

- Quasi-model independent searches for longlived or "stable" particles:
 - Using Time-of-Flight system (CDF) or muon timing (DØ).

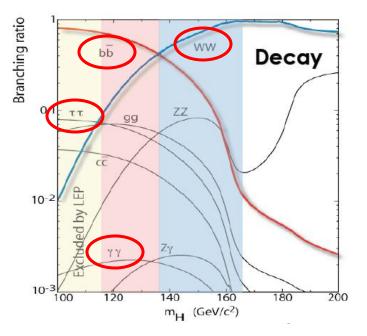
Non-SUSY Searches


Di-lepton invariant mass distributions probes:

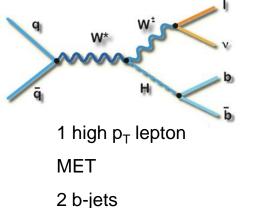

- New Z' gauge bosons: expected in many beyond-SM scenarios (GUTs, etc).
- Extra-dimensions (large, Randall-Sundrum gravitons, etc)

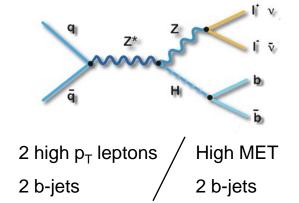
- Most significant excess at M(ee)~240 GeV (3.8σ). Probability for fluctuation in 150-1000 GeV range 0.6% (2.5σ).
- Observed limits ~840-966 GeV depending on Z' model.


- Quasi-model independent searches for longlived or "stable" particles:
 - Reconstructing displaced vertices with the tracking system (CDF) or the calorimeter and preshower (DØ).

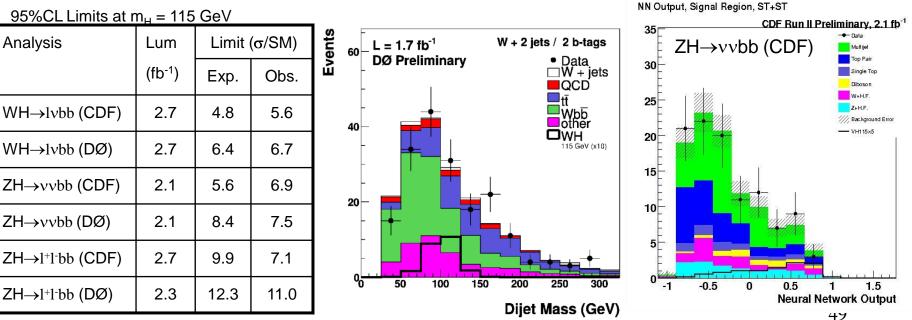


SM Higgs at the Tevatron

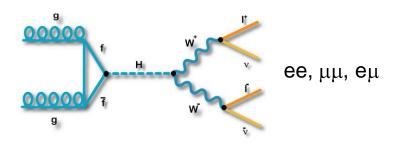

- Current experimental information (limits @ 95% CL):
 - SM LEP direct search: m_H>114.4 GeV
 - SM indirect constraint: m_H<154 GeV
 + LEP direct search: m_H<185 GeV
 - Tevatron is sensitive over whole "interesting" mass range.
- Main production mechanisms (115<m_H<180 GeV):
 - Gluon fusion (gg \rightarrow H): σ ~0.8-0.2 pb
 - Associated production (VH, V=W,Z): σ~0.2-0.03 pb
- Dominant decay channels:
 - m_H<135 GeV: H→bb
 - $m_H > 135 \text{ GeV: } H \rightarrow WW^{(*)}$
- Search strategy:
 - Low mass region: dominated by WH→Ivbb, ZH →I⁺I⁻bb, ZH→vvbb
 - High mass region: dominated by gg→H→WW^(*)→ I⁺vI^{'-}v
 - Complement with many other channels: VBF production, VH→qqbb, H→ττ(with 2jets), H→γγ, WH->WWW, ttH,...



 m_H (GeV/c²)


SM Low Mass Higgs

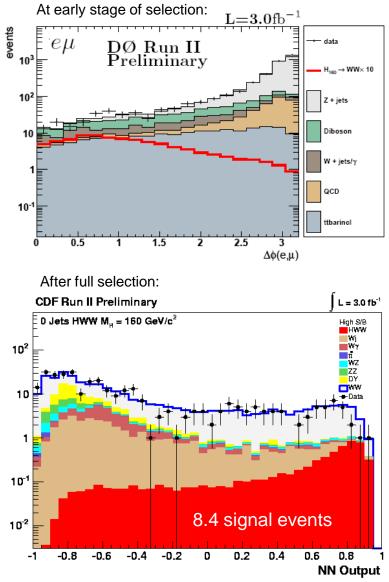
Key issues:


- Lepton identification
- B-tagging performance
- Dijet mass resolution
- Background modeling
 - W/Z+heavy-flavor jets
 - Multijets (ZH \rightarrow vvbb) •
- All analyses use multivariate techniques for signal-to-bckg discrimination.

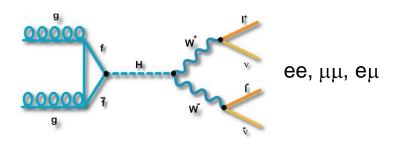
Best individual channels have expected limits ~5-6xSM

95%CL Limits at $m_{H} = 115 \text{ GeV}$

SM High Mass Higgs

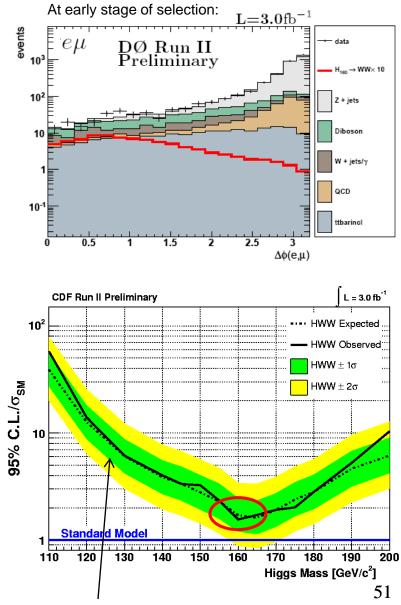


- Highest sensitivity channel for m_H>130 GeV.
- Main backgrounds:
 - m_H~160 GeV: WW
 - m_H~130 GeV: W+jets
- Low $\Delta \phi(I,I)$ because of spin-0 Higgs.
- Capitalize on improvements in lepton identification and multivariate techniques.


95%CL	Limits a	t m _н =	165	GeV

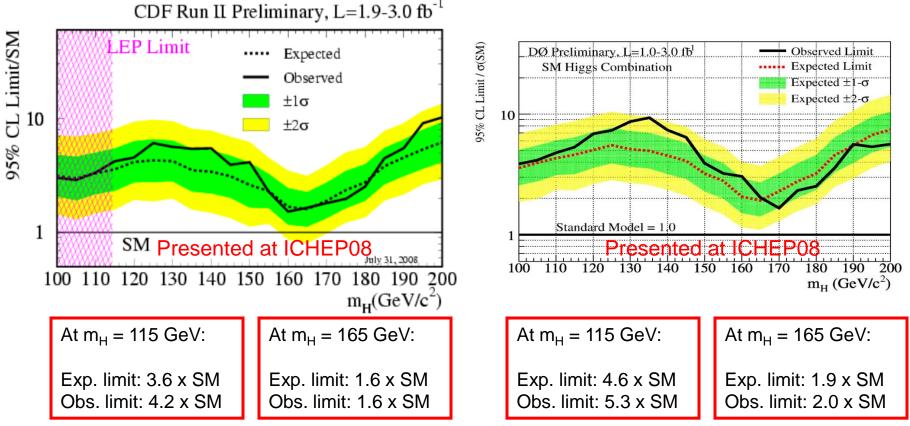
Analysis	Lum	Higgs	Limit ((σ/SM)
	(fb ⁻¹)	Events	Exp.	Obs.
CDF	3.0	17.2	1.6	1.7
DØ	3.0	15.6	1.9	2.0

Both experiments approaching SM sensitivity!


SM High Mass Higgs

- Highest sensitivity channel for m_H>130 GeV.
- Main backgrounds:
 - m_H~160 GeV: WW
 - m_H~130 GeV: W+jets
- Low $\Delta \phi(I,I)$ because of spin-0 Higgs.
- Capitalize on improvements in lepton identification and multivariate techniques

Analysis	Lum	Higgs	Limit ((σ/SM)
	(fb ⁻¹)	Events	Exp.	Obs.
CDF	3.0	17.2	1.6	1.6
DØ	3.0	15.6	1.9	2.0


Both experiments approaching SM sensitivity!

Significant sensitivity at low mass as well!

SM Higgs Combined Limits

- Calculation of limits and combination:
 - Using Bayesian and CLs approaches.
 - Incorporate systematic uncertainties (including correlations) using pseudo-experiments.
 - Some uncertainties are effectively constrained by data.

Tevatron SM Higgs Combination

Presented at ICHEP08 Tevatron Run II Preliminary, L=3 fb⁻¹ 95% CL Limit/SM Expected Observed 95%CL Limits/SM ±1σ 10 $\pm 2\sigma$ 1 170175180155 160165 185 arXiv:0808.0534 [hep-ex] $m_H(GeV/c^2)$ Presented at ICHEP08 1-CLs 1-CLs Observed 1.1 1-CLs Expected Expected ±1-σ Expected $\pm 2-\sigma$ 0.9 0.80.7 155 160165 170 175 180 185 190

July 30, 2008

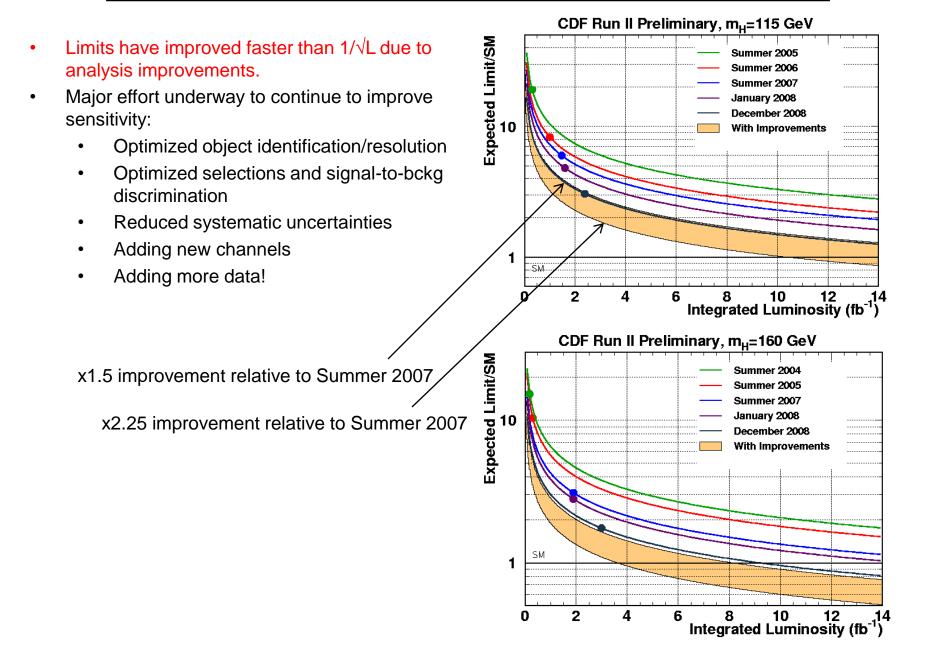
95% C.L.

90% C.L.

195

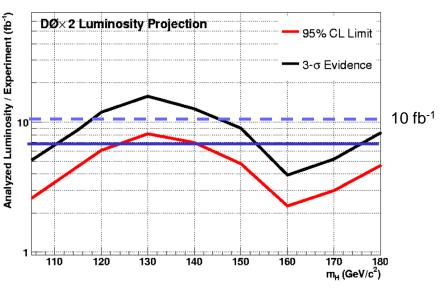
m_H (GeV/c²)

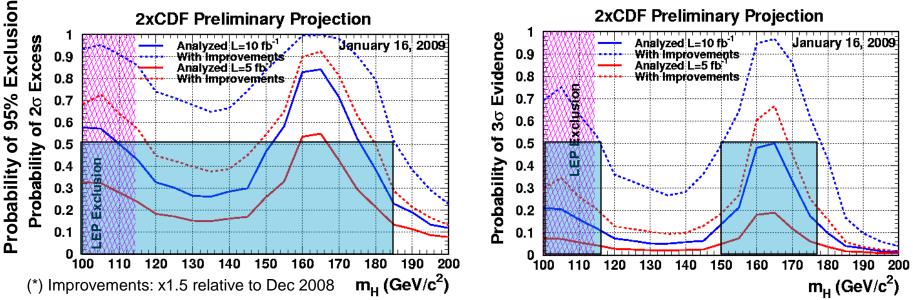
200


195 200

Excluded $m_{H} = 170 \text{ GeV} @ 95\% \text{ CL}$

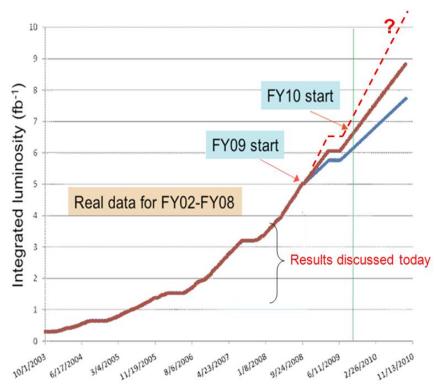
M_Higgs(GeV)	160	165	170	175
Method 1: Exp	1.3	1.2	1.4	1.7
Method 1: Obs	1.4	1.2	1.0	1.3
Method 2: Exp	1.2	1.1	1.3	1.7
Method 2: Obs	1.3	1.1	0.95	1.2


- First direct exclusion since LEP II.
- Verified using two independent methods (CLs, . Bayesian).
- Low mass Tevatron combination not available as of ٠ ICHEP08:
 - Challenging owing to the large number of channels (~70).
 - Expected sensitivity: < 3.0xSM @ m_H=115 GeV. •
- Tevatron combination by Moriond 2009: stay tuned!


SM Higgs Prospects

SM Higgs Prospects

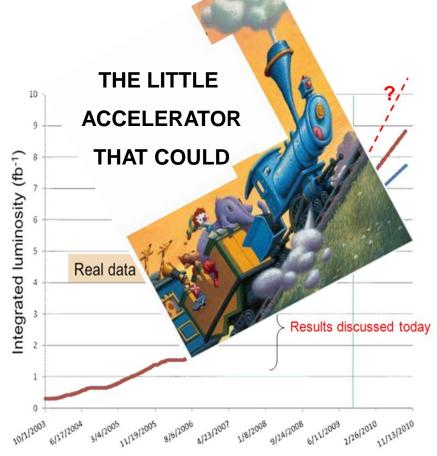
- Median projected reach as a function of analyzed (=0.8 x delivered) integrated luminosity:
 - ** Does NOT include current observed limit ** With 10 fb⁻¹/experiment:
 - Exclude at 95% CL for $m_H < 185$ GeV.
 - 3σ evidence at low and high mass.
 - There is a band of possibilities around these lines.



→ Tevatron complements LHC at low mass.

Conclusions

- Run II physics program in full swing.
- Excellent performance of the accelerator and CDF and DØ detectors. Collaboration strengths sufficient to carry out program.
- Expect >10 fb⁻¹ by the end of the run. Analyzed luminosity will increase by a factor of ~2.5-10.
 Physics reach further expanded by analysis improvements.
- Expect significant statements from the Tevatron on precision measurements and the Higgs search.
 Prospects for discoveries remain open.
- Continue to establish benchmarks in analysis techniques for the LHC era.



In a way we are "just getting started"...

Conclusions

- Run II physics program in full swing.
- Excellent performance of the accelerator and CDF and DØ detectors. Collaboration strengths sufficient to carry out program.
- Expect >10 fb⁻¹ by the end of the run. Analyzed luminosity will increase by a factor of ~2.5-10.
 Physics reach further expanded by analysis improvements.
- Expect significant statements from the Tevatron on precision measurements and the Higgs search.
 Prospects for discoveries remain open.
- Continue to establish benchmarks in analysis techniques for the LHC era.
- Exciting prospects for concurrent analysis of Tevatron and LHC data!

For more information: http://www-cdf.fnal.gov/physics/physics.html http://www-d0.fnal.gov/Run2Physics/WWW/results.htm

Backup

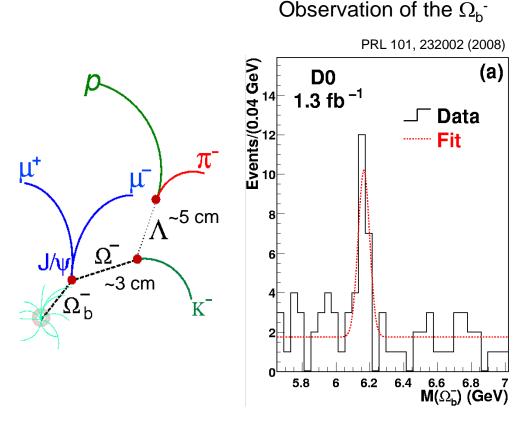
Multi-Muon Events at CDF

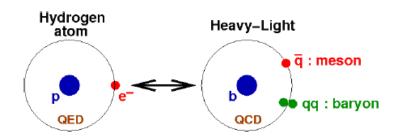
arXiv:0810.5357v2 [hep-ex] 8 Nov 2008

- Observe a larger-than-expected yield of muons with large impact parameter (outside the 1.5 cm radius beam pipe) in a sample collected with a dimuon trigger.
- These events are referred to as "ghost events", and disappear when making tight requirements on silicon tracking.
- Only ~50% of events can be explained based on standard sources (long-lived particles, punch-through, in-flight decays, interactions with material, etc).
- A significant fraction of "ghost events" contain more additional muons (and tracks) in a cone around the trigger muon than predicted:
 - Impact parameter of muons consistent with originating from decay of a particle with τ~20 ps.
 - Also different kinematic properties than expected from standard sources.
- The source of this excess is currently not understood.

FERMILAB-PUB-08-046-E

Study of multi-muon events produced in $p\bar{p}$ collisions at


 $\sqrt{s} = 1.96 \text{ TeV}$

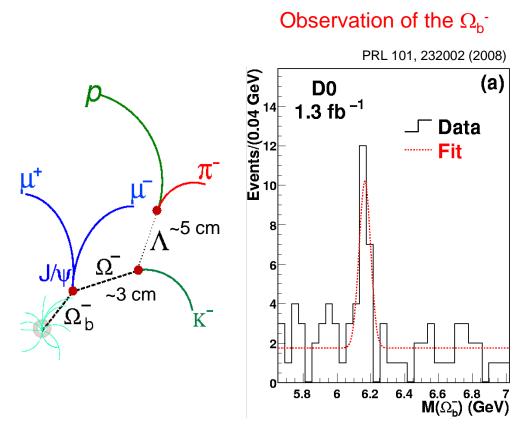

T. Aaltonen,²¹ J. Adelman,¹¹ B. Álvarez González,⁹ S. Amerio^x,³⁵ D. Amidei,²⁸ A. Anastassov,³¹ J. Antos,¹² G. Apollinari,¹⁵ A. Apresyan,³⁹ T. Arisawa,⁴⁴ A. Artikov,¹³ W. Ashmanskas,¹⁵ P. Azzurri^{aa},³⁷ W. Badgett,¹⁵ B.A. Barnett,²³ V. Bartsch,²⁵ D. Beecher,²⁵ S. Behari,²³ G. Bellettini⁹,³⁷ D. Benjamin,¹⁴ I. Bizjak^{dd},²⁵ C. Blocker,⁶ B. Blumenfeld,²³ A. Bocci,¹⁴ V. Boisvert,⁴⁰ G. Bolla,³⁰ D. Bortoletto,³⁹ J. Boudreau,³⁸ A. Bridgeman,²² L. Brigliadori,³⁵ C. Bromberg,²⁹ E. Brubaker,¹¹ J. Budagov,¹³ H.S. Budd,⁴⁰ S. Budd,²² S. Burke,¹⁸ K. Burkett,¹⁵ G. Busetto²,³⁵ P. Bussey^k,¹⁹ K. L. Byrum,² S. Cabrera^u,¹⁴ C. Calancha,²⁶ M. Campanelli,²⁹ F. Canelli,¹⁸ B. Carls,²² R. Carosi,³⁷ S. Carrillo^m,¹⁶ B. Casal,⁹ M. Casarsa,¹⁵ A. Castro^w,⁵ P. Catastini^z, ³⁷ D. Cauz^{ec}, ⁴² V. Cavaliere^z, ³⁷ S.H. Chang, ²⁴ Y.C. Chen, ¹ M. Chertok, ⁷ G. Chiarelli,³⁷ G. Chlachidze,¹⁵ K. Cho,²⁴ D. Chokheli,¹³ J.P. Chou,²⁰ K. Chung,¹⁰ Y.S. Chung,⁴⁰ C.I. Ciobanu,³⁶ M.A. Ciocci²,³⁷ A. Clark,¹⁸ D. Clark,⁶ G. Compostella,³⁵ M.E. Convery,¹⁵ J. Conway,⁷ M. Cordelli,¹⁷ G. Cortiana²,³⁵ C.A. Cox,⁷ D.J. Cox,⁷ F. Crescioli⁹,³⁷ C. Cuenca Almenar⁴,⁷ J. Cuevas^e,⁹ J.C. Cully,²⁸ D. Dagenhart,¹³ M. Datta,¹⁵ T. Davies,¹⁹ P. de Barbaro,⁴⁰ M. Dell'Orso^y,³⁷ L. Demortier,⁴¹ J. Deng,¹⁴ M. Deninno,⁵ G.P. di Giovanni,³⁶ B. Di Ruzza^{cc},⁴² J.R. Dittmann,⁴ S. Donati⁹,³⁷ J. Donini,³³ T. Dorigo,³³ J. Efron,³² R. Erbacher,⁷ D. Errede,²² S. Errede,²² R. Eusebi,¹⁵ W.T. Fedorko,¹¹ J.P. Fernandez,²⁶ R. Field,¹⁶ G. Flanagan,³⁹ R. Forrest,⁷ M.J. Frank,⁴ M. Franklin,²⁰ J.C. Freeman,¹⁵ I. Furic,¹⁶ M. Gallinaro,⁴¹

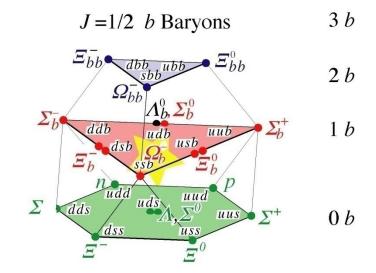
- Investigations continue at CDF.
- Check at DØ underway.

Study of New Heavy b-Baryons

- Heavy quark hadrons are the "hydrogen atom" of QCD and b hadrons offer the heavier quarks in bound systems
 Very sensitive tests of potential models, HQET, lattice gauge calculations...
- Have added to $\Lambda_{b}(udb)$ (seen in UA1):
 - Σ_{b}^{\pm} , $\Sigma_{b}^{*\pm}$ (uub,ddb), Ξ_{b}^{-} (dsb), Ω_{b}^{-} (ssb).

17.8 ±	± 4.9 (stat) ± 0.8 (syst) events	
Mass:	: 6.165 ± 0.010(stat) ± 0.013(syst) GeV	
Significance: 5.4σ		

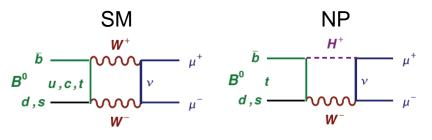

 $\frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-)Br(\Xi_b^- \to J/\psi \ \Xi^-)} = 0.80 \pm 0.32(stat)_{-0.22}^{+0.14}(syst)$


What will be the next discovery?

60

Study of New Heavy b-Baryons

- Heavy quark hadrons are the "hydrogen atom" of QCD and b hadrons offer the heavier quarks in bound systems
 Very sensitive tests of potential models, HQET, lattice gauge calculations...
- Have added to $\Lambda_{b}(udb)$ (seen in UA1): $\Sigma_{b}^{\pm}, \Sigma_{b}^{*\pm}(uub, ddb), \Xi_{b}^{-}(dsb), \Omega_{b}^{-}(ssb).$


17.8 ± 4.9 (stat) ± 0.8 (syst) events Mass: 6.165 ± 0.010 (stat) ± 0.013(syst) GeV Significance: 5.4σ

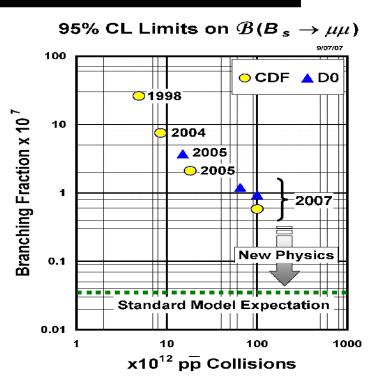
 $\frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-)Br(\Xi_b^- \to J/\psi \ \Xi^-)} = 0.80 \pm 0.32(stat)_{-0.22}^{+0.14}(syst)$

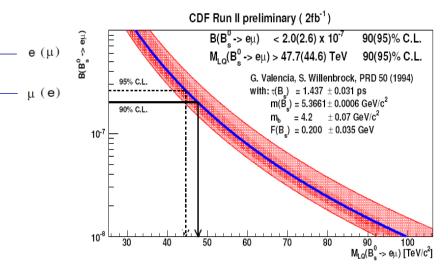
What will be the next discovery?

Rare Decays

- Rare decays very sensitive to New Physics.
 Large b production rate and high luminosity open a window of opportunity at the Tevatron.
- FCNC B_{s/d} decays:

B_s


LQ


B_s ->> eµ

SM: BR(B_s \rightarrow µµ) ~3.8x10⁻⁹ MSSM/2HDM: SM x tan^N β (N=6,4)!! CDF (2 fb⁻¹): <5.8x10⁻⁸ (~15xSM) @ 95% CL

- Flavor-violating $B_s \rightarrow e\mu$ decays:
 - Forbidden in the SM.
 - Sensitivity to very large mass scales.

Limits on B_d competitive with B factories. Unique limits on B_s .

