CP Violation Symmetry Aspect of SM

Yue-Liang Wu (吴岳良)

Kavli Institute for Theoretical Physics China (KITPC) State Key Laboratory of Theoretical Physics(SKLTP) Institute of Theoretical Physics (ITP) Chinese Academy of Sciences (CAS)

FPCP2012 2012.5.21-25 at USTC

CONTENTS

- Issue on Origin/Mechanism of CP Violation
- CP Violation in Light Flavors and Approximate SU(3)_LxSU(3)_R Chiral Symmetry
- CP Violation in Heavy Flavors,
 Approximate SU(2N) Spin-Flavor Symmetry
 Approximate SU(3) Light Flavor Symmetry

Important Issue: Origin/Mechanism of CP Violation

- 1964: Indirect CP violation was discovered in Kaon decays (Cronin & Fitch)
 K→ ππ, πππ
 - which involves only three flavors: u, d, s
- 1964: Superweak Hypothesis (Wolfenstein) $\epsilon \neq 0$, $\epsilon'/\epsilon = 0$
- The Question: CP violation is via weak-type interaction or superweak-type interaction.

CP Violation From 3 Flavors to 3 Families

- 1973: CP violation can occur in the weak interaction with three families of SM (Kobayashi-Maskawa)
- which must be tested via the direct CP violation
- $\epsilon'/\epsilon \approx 0$ (superweak hypothesis) • $\epsilon'/\epsilon \neq 0$ (weak interaction)

CP Violation Mechanism of SM

Explicit CP violation with complex Yukawa couplings.

- There are in general 3 x 2x(3x3)=54 real (or 27 complex) Yukawa coupling constants (for massless neutrinos), i.e. Up-, Down-,Electron-type (3) complex (2) mass matrices 3x3, but only 3x3 (masses) + 3 (angles) +1 (phase) =13 are physical observables, namely 41 can be rotated away.
- Origin of CP violation remains unknown
- It is not big enough to explain matter-antimatter asymmetry in the Universe.

CP Violation Via Spontaneous Symmetry Breaking

- 1973: Spontaneous CP Violation, T.D. Lee Scalars are responsible to CP violation CP originates from vacuum !!!
- 1975: SU(2)_L x SU(2)_R Model, Mohapatra & Pati, Senjanovic and Mohapatra Spontaneous CP violation via Higgs bi-doublet

(One Higgs bidoublet model with spontaneous CP violation is likely excluded from the combining constraints of K and B systems and CP violations)

Multi-Higgs Doublet Models

- 1976: 3HDM with Discrete Symmetry S.Weinberg CP violation arise solely from Higgs Potential (ruled out by CP, b \rightarrow s γ decay, EDM of neutron)
- 1977: NFC hypothesis, Glashow & Weinberg Discrete symmetry: no CP violation in 2HDM Type I & Type II 2HDM
- 1978: 2HDM with soft breaking of CP, H. Georgi strong CP problem, baryogenesis
- 1987: 2HDM with approximate discrete symmetry Smallness of FCNC, Liu & Wolfenstein (superweak type interaction for CP violation)

2HDM with Spontaneous CP

1993: 2HDM with approximate flavor symmetry, Superweak type CP violation by input Hall & Weinberg 1994: 2HDM with approximate U(1) family symmetries & spontaneous CP violation, Wu & Wolfenstein (Type III 2HDM) CP violation originates from a single relative phase of vacuum expectation values Induced four types of CP violations after symmetry breaking: (1) Induced KM phase in CKM matrix of SM (2) New sources of CP violation via charged Higgs (3) FCNC via neutral Higgs (superweak type) (4) scalar-pseudoscalar mixing (boson interactions)

Atwood, Rena, Soni, et al. General 2HDM (explicit CP violation)

.

Statements

- One Higgs Doublet needed for Understanding Mass Generation.
- Two Higgs Doublets or some others enable us to understand the origin of CP violation via Spontaneous Symmetry Breaking.
 - (i) Each quark and lepton get not only mass but also CP phase which cannot be rotated away (new sources of CP violation)
 - (ii) Rich physics phenomena (g-2, $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, Rare decays of bottom mesons,.....)

(consistent with current experiments)

Wolfenstein & YLW, PRL 73, 2809 (1994).
YLW, Chin. Phys. Lett. 16 339 (1999),
YLW & Y.F. Zhou, Phys.Rev. D61 096001 (2000),
YLW & Y.F. Zhou, Phys.Rev. D64 115018 (2001).
YLW & C. Zhuang, Phys.Rev. D75 115006 (2007).

Origin of Both P & CP Violation

Spontaneous P & CP Violation \rightarrow New Physics in Gauge/Higgs/Fermion Sectors

- SU(2)_L x SU(2)_R x U(1)_B-L Gauge Symmetry for Spontaneous P Violation
- Two Higgs Bi-doublets (2HBDM) Necessary for Spontaneous CP Violation Being Consistent with current experiments
- Rich CP violating Sources
- Smallness of FCNC via Mechanism of Approximate U(1) Family Symmetries
- Existence of Light Higgs Particles due to decoupling of 2HBDM to 2HDM in the limit $v_R \gg \kappa_1, \kappa_2, w_1, w_2, v_L$
- Gauge Bosons at TeV scale

YLW & Y.F. Zhou, Sciences in China 81G (2008); arXiv:0709.0042, 2007 J.Y.Liu, L.M. Wang, YLW, Y.F. Zhou, to be published in PRD, 2012

CP Violation in Light Flavors & **Approximate Chiral Symmetry** & **Dynamically Generated Spontaneous Symmetry Breaking** R **Chiral Perturbation Theory (ChPT)**

Direct CP Violation

- Caused by the interferences among different decay amplitudes
- Nonzero relative strong phases among the decay amplitudes
- Nonzero relative weak CP-violating phase among different decay amplitudes

$$\mathbf{a}_{\epsilon''} = \frac{|<\mathbf{f}|\mathbf{H}_{\text{eff}}|\mathbf{M}>|^2 - |<\bar{\mathbf{f}}|\mathbf{H}_{\text{eff}}|\bar{\mathbf{M}}>|^2}{|<\mathbf{f}|\mathbf{H}_{\text{eff}}|\mathbf{M}>|^2 + |<\bar{\mathbf{f}}|\mathbf{H}_{\text{eff}}|\bar{\mathbf{M}}>|^2}$$

 $M \to f \qquad \bar{M} \to \bar{f}$

Direct CP Violation in Kaon Decays

It arises from both nonzero relative weak and strong phases via the KM mechanism

$$\frac{\varepsilon'}{\varepsilon} = \frac{1}{\sqrt{2}|\varepsilon|} Im\left(\frac{A_2}{A_0}\right) = \frac{\omega}{\sqrt{2}|\varepsilon|} \left(\frac{ImA_2}{ReA_2} - \frac{ImA_0}{ReA_0}\right)$$

Isospin Amplitudes & $\Delta I = \frac{1}{2} Rule$

$$A_I e^{i\delta_I} = \langle \pi \pi | \mathcal{H}_{ef f}^{\Delta S=1} | K \rangle \equiv \frac{G_F}{\sqrt{2}} \lambda_u \sum_{i=1}^8 c_i(\mu) \langle Q_i(\mu) \rangle_I$$

Wilson coefficient functions & CKM matrix

$$c_i(\mu) = z_i(\mu) + \tau y_i(\mu)$$
 $\tau = -\lambda_t/\lambda_u$, $\lambda_q = V_{qs}^* V_{qd}$

Hadronic matrix element at low energy

$$\langle Q_i(\mu) \rangle_I \equiv \langle (\pi\pi)_I | Q_i(\mu) | K \rangle \quad \mu < \Lambda_{\chi} = 1 GeV$$

$$Q_{1} = 4 \,\bar{s}_{L} \gamma^{\mu} d_{L} \,\bar{u}_{L} \gamma_{\mu} u_{L} , \qquad Q_{2} = 4 \,\bar{s}_{L} \gamma^{\mu} u_{L} \,\bar{u}_{L} \gamma_{\mu} d_{L} , Q_{3} = 4 \,\sum_{q} \bar{s}_{L} \gamma^{\mu} d_{L} \,\bar{q}_{L} \gamma_{\mu} q_{L} , \qquad Q_{4} = 4 \,\sum_{q} \bar{s}_{L} \gamma^{\mu} q_{L} \,\bar{q}_{L} \gamma_{\mu} d_{L} , Q_{5} = 4 \,\sum_{q} \bar{s}_{L} \gamma^{\mu} d_{L} \,\bar{q}_{R} \gamma_{\mu} q_{R} , \qquad Q_{6} = -8 \,\sum_{q} \bar{s}_{L} q_{R} \,\bar{q}_{R} d_{L} , Q_{7} = 4 \,\sum_{q} \frac{3}{2} e_{q} \,\bar{s}_{L} \gamma^{\mu} d_{L} \,\bar{q}_{R} \gamma_{\mu} q_{R} \qquad Q_{8} = -8 \,\sum_{q} \frac{3}{2} e_{q} \,\bar{s}_{L} q_{R} \,\bar{q}_{R} d_{L}$$

THE HARD TASK IS TO CALCULATE THE HADRONIC MATRIX ELEMENTS AT THE LOW ENERGY DUE TO NONPERTUBATIVE STRONG INTERACTION OF QCD Strong Interaction of QCD & Approximate Chiral Symmetry Chiral limit: Taking vanishing quark masses $m_q \rightarrow 0$.

QCD Lagrangian

$$L_{QCD}^{(o)} = \overline{q}_L \gamma_\mu i D_\mu q_L + \overline{q}_R \gamma_\mu i D_\mu q_R - \frac{1}{4} G_{\mu\nu}^{\alpha} G^{\alpha\mu\nu}$$
$$D_\mu = \partial_\mu - g_s \lambda_\alpha / 2G_\mu^{\alpha}$$
$$q = \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad q_{R,L} = \frac{1}{2} (1 \pm \gamma_5) q$$

has maximum global Chiral symmetry :

$$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$$

Strong Interaction of QCD & Approximate Chiral Symmetry

QCD Lagrangian with massive light quarks

$$\begin{split} \mathcal{L}_{QCD} &= \bar{q} \gamma^{\mu} (i \partial_{\mu} + g_s G^a_{\mu} T^a) q - \bar{q} M q - \frac{1}{2} tr G_{\mu\nu} G^{\mu\nu} \\ q &= (u, d, s), \qquad M = diag.(m_1, m_2, m_3) \equiv diag.(m_u, m_d, m_s) \end{split}$$

Approximate Global Chiral Symmetry

 $\mathbf{U}(3)_L\times \mathbf{U}(3)_R, \qquad \mathbf{m}_i << \Lambda_{\mathbf{QCD}}(i=1,2,3)$

Instanton Effects via t'Hooft Determination

 $\mathcal{L}^{inst} = \kappa_{inst} e^{i\theta_{inst}} \det(-\bar{\mathbf{q}}_{\mathbf{R}} \mathbf{q}_{L}) + h.c., \qquad \kappa_{inst} \sim e^{-8\pi^{2}/g^{2}}$

 $\mathbf{U}(1)_{\mathbf{L}}\times \mathbf{U}(1)_{\mathbf{R}}\to \mathbf{U}(1)_{\mathbf{V}}$

Effective Lagrangian Based on Loop Regularization

Y.B. Dai and Y-L. Wu, EPJC

Effective Four Quark Interactions-NJL at low energy

$$\mathcal{L}^{4\mathbf{q}} = \frac{1}{\mu_{\mathbf{f}}^2} (\bar{\mathbf{q}}_{\mathbf{L}\mathbf{i}} \mathbf{q}_{\mathbf{R}\mathbf{j}}) (\bar{\mathbf{q}}_{\mathbf{R}\mathbf{j}} \mathbf{q}_{\mathbf{L}\mathbf{i}}) + \mathbf{h.c.}$$

Effective Lagrangian for Quarks and Bound States

Integrating over the gluon field and considering the bound state solution

$$\begin{split} \mathcal{L}_{\mathrm{eff}}(\mathbf{q},\bar{\mathbf{q}},\Phi) &= \bar{\mathbf{q}}\gamma^{\mu}\mathbf{i}\partial_{\mu}\mathbf{q} + \bar{\mathbf{q}}_{\mathbf{L}}\gamma_{\mu}\mathcal{A}_{\mathbf{L}}^{\mu}\mathbf{q}_{\mathbf{L}} + \bar{\mathbf{q}}_{\mathbf{R}}\gamma_{\mu}\mathcal{A}_{\mathbf{R}}^{\mu}\mathbf{q}_{\mathbf{R}} - \left[\ \bar{\mathbf{q}}_{\mathbf{L}}(\Phi-\mathbf{M})\mathbf{q}_{\mathbf{R}} + \mathbf{h.c.} \right] \\ &+ 2\mu_{\mathrm{f}}^{2}\mathrm{tr}\left(\Phi\mathbf{M}^{\dagger} + \mathbf{M}\Phi^{\dagger}\right) - \mu_{\mathrm{f}}^{2}\mathrm{tr}\Phi\Phi^{\dagger} + \mu_{\mathrm{inst}}\left(\det\Phi + \mathbf{h.c.}\right) \end{split}$$

After integrating out quark fields by the LORE method

Dynamically Generated Spontaneous Symmetry Breaking

Dynamically Generated Effective Potential

$$\begin{split} \mathbf{V}_{\mathrm{eff}}(\Phi) &= -\mathrm{tr}\hat{\mu}_{\mathrm{m}}^{2}\left(\Phi\mathbf{M}^{\dagger}+\mathbf{M}\Phi^{\dagger}\right) + \frac{1}{2}\mathrm{tr}\hat{\mu}_{\mathrm{f}}^{2}(\Phi\Phi^{\dagger}+\Phi^{\dagger}\Phi) \\ &+ \frac{1}{2}\mathrm{tr}\lambda\left[\left(\hat{\Phi}\hat{\Phi}^{\dagger}\right)^{2} + \left(\hat{\Phi}^{\dagger}\hat{\Phi}\right)^{2}\right] - \mu_{\mathrm{inst}}\left(\det\Phi + \mathrm{h.c.}\right) \\ \hat{\mu}_{f}^{2}, \ \hat{\mu}_{m}^{2} \ \mathrm{and} \ \lambda \ \mathrm{the} \ \mathrm{three} \ \mathrm{diagonal} \ \mathrm{matrices} \end{split}$$

with
$$\hat{\mu}_{f}^{2}$$
, $\hat{\mu}_{m}^{2}$ and λ the three diagonal matrices

$$\begin{aligned} \hat{\mu}_{f}^{2} &= \mu_{f}^{2} - \frac{N_{c}}{8\pi^{2}} \left(\mathbf{M}_{c}^{2} \mathbf{T}_{2} + \bar{\mathbf{M}}^{2} \mathbf{T}_{0} \right) \\ \hat{\mu}_{m}^{2} &= \mu_{m}^{2} - \frac{N_{c}}{8\pi^{2}} \left(\mathbf{M}_{c}^{2} \mathbf{T}_{2} + \bar{\mathbf{M}}^{2} \mathbf{T}_{0} \right), \quad \lambda = \frac{N_{c}}{16\pi^{2}} \mathbf{T}_{0} \end{aligned}$$



Dynamically Generated Spontaneous Symmetry Breaking

Vacuum Expectation Values (VEVs)

 $\Phi(\mathbf{x}) = \xi_{\mathbf{L}}(\mathbf{x})\phi(\mathbf{x})\xi_{\mathbf{R}}^{\dagger}(\mathbf{x}), \quad \phi(\mathbf{x}) = \mathbf{V} + \varphi(\mathbf{x}), \quad \mathbf{V} = <\phi> = \mathbf{diag.}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$

Minimal Conditions/Generalized Gap Equations

$$-\left(\hat{\mu}_{f}^{2}\right)_{i}\mathbf{v}_{i}+\left(\hat{\mu}_{m}^{2}\right)_{i}\mathbf{m}_{i}-2\lambda_{i}\bar{\mathbf{m}}_{i}^{3}+\mu_{inst}\bar{\mathbf{v}}^{3}/\mathbf{v}_{i}=0, \quad i=1,2,3, \quad \bar{\mathbf{v}}^{3}=\mathbf{v}_{1}\mathbf{v}_{2}\mathbf{v}_{3}$$

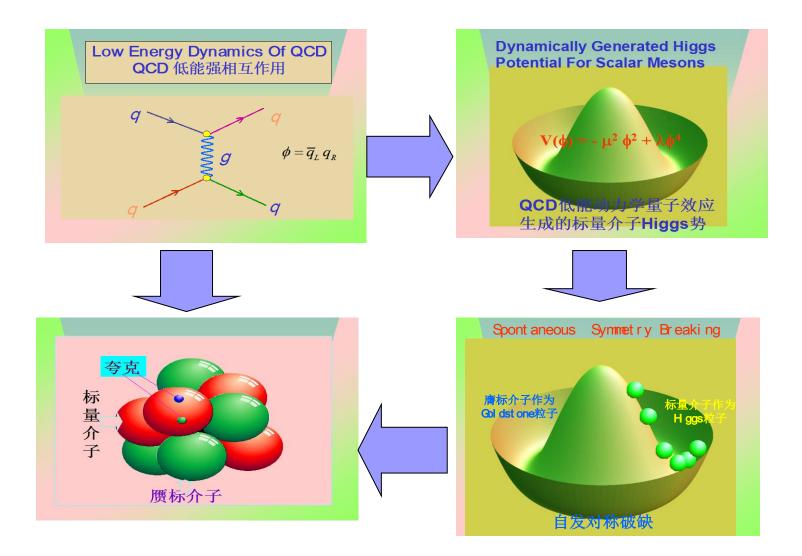
Gap Equation without Instanton $(v_{inst} = 0)$

$$\frac{N_c}{8\pi^2\mu_f^2} \; [\; M_c^2 - \mu_o^2 \left(\ln \frac{M_c^2}{\mu_o^2} - \gamma_w + 1 + y_2 (\frac{\mu_o^2}{M_c^2}) \right) \;] = 1$$

Quadratic Term by the LORE method

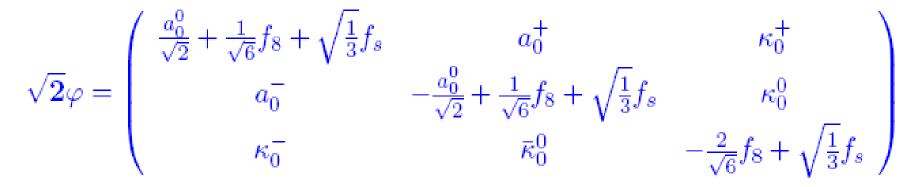
$$T_2^{(i)}(\frac{\mu_i^2}{M_c^2}) = 1 - \frac{\mu_i^2}{M_c^2} \left[\ln \frac{M_c^2}{\mu_i^2} - \gamma_w + 1 + y_2(\frac{\mu_i^2}{M_c^2}) \right]$$

Composite Higgs Fields



Scalars as Partner of Pseudoscalars & The Lightest Composite Higgs Bosons

Scalar mesons:



Pseudoscalar mesons :

$$\sqrt{2}\Pi = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{1}{\sqrt{6}}\eta_{8} + \sqrt{\frac{1}{3}}\eta_{0} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{1}{\sqrt{6}}\eta_{8} + \sqrt{\frac{1}{3}}\eta_{0} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta_{8} + \sqrt{\frac{1}{3}}\eta_{0} \end{pmatrix}$$

Mass Formula

Pseudoscalar mesons :

$$\begin{split} m_{\pi^{\pm}}^{2} &\simeq \frac{2\mu_{P}^{3}}{f^{2}}(m_{u} + m_{d}) \\ m_{K^{\pm}}^{2} &\simeq \frac{2\mu_{P}^{3}}{f^{2}}(m_{u} + m_{s}) \\ m_{K^{0}}^{2} &\simeq \frac{2\mu_{P}^{3}}{f^{2}}(m_{d} + m_{s}) \\ m_{\eta_{8}}^{2} &\simeq \frac{2\mu_{P}^{3}}{f^{2}}[\frac{1}{3}(m_{u} + m_{d}) + \frac{4}{3}m_{s}] = \frac{1}{3}(4m_{K}^{2} - m_{\pi}^{2}) \\ m_{\eta_{8}\gamma_{0}}^{2} &\simeq -\frac{2\mu_{P}^{3}}{f^{2}}\sqrt{2}[2m_{s} - (m_{u} + m_{d})] = -\frac{2\sqrt{2}}{3}(m_{K}^{2} - m_{\pi}^{2}) \\ m_{\eta_{0}}^{2} &\simeq \frac{2\mu_{P}^{3}}{f^{2}}\frac{2}{3}(m_{u} + m_{d} + m_{s}) + \frac{12\bar{v}^{3}}{f^{2}}\mu_{inst} = \frac{1}{3}(2m_{K}^{2} + m_{\pi}^{2}) + \frac{24\bar{v}^{3}}{f^{2}}\bar{\lambda}v_{inst} \\ \mu_{P}^{3} &= (\bar{\mu}_{m}^{2} + 2\bar{\lambda}v_{o}^{2})v_{o} \simeq 12\bar{\lambda}v_{o}^{3} \simeq 3v_{o}f^{2} \\ \hline \text{Mixing Angles} & \tan 2\theta_{P} = 2\sqrt{2}[1 - \frac{9v_{inst}v_{3}}{m_{K}^{2} - m_{\pi}^{2}}]^{-1} \end{split}$$

Mass Formula

Scalar Mesons - Lightest Composite Higgs Bosons

$$\begin{split} m^2_{a_0^{\pm}} &\simeq m^2_{a_0^{0}} \simeq 2(2\bar{m}_u + \bar{m}_d)\bar{m}_u + 2v_{inst}v_3 \sim 8v_o^2 \\ m^2_{k_0^{\pm}} &\simeq 2(2\bar{m}_u + \bar{m}_s)\bar{m}_u + 2v_{inst}v_2 \sim 8v_o^2 \\ m^2_{k_0^{0}} &\simeq 2(2\bar{m}_d + \bar{m}_s)\bar{m}_d + 2v_{inst}v_1 \sim 8v_o^2 \\ m^2_{f_8} &\simeq \bar{m}_u^2 + \bar{m}_d^2 + 4\bar{m}_s^2 + \frac{2}{3}v_{inst}(2v_1 + 2v_2 - v_3) \sim 8v_o^2 \\ m^2_{f_s} &\simeq 2(\bar{m}_u^2 + \bar{m}_d^2 + \bar{m}_s^2) - \frac{4}{3}v_{inst}(v_1 + v_2 + v_3) \sim 2v_o^2 \\ m^2_{f_s f_8} &\simeq \sqrt{2}(2\bar{m}_s^2 - \bar{m}_u^2 - \bar{m}_d^2) - \frac{\sqrt{2}}{3}v_{inst}(2v_3 - v_1 - v_2) \sim 0 \end{split}$$

Mixing Angles

$$\tan 2\theta_{\rm S} = \frac{2m_{f_{\rm S}f_8}^2}{m_{f_8}^2 - m_{f_8}^2}$$

Predictions for Mass Spectra & Mixings

Input Parameters

$f_{\pi} = 94 MeV$	$v_o=340 MeV$	
$m_u\simeq 3.8 \text{MeV}$	$m_d \simeq 5.7 \text{MeV}$	$\mathbf{m}_s/\mathbf{m}_d\simeq 20.5$

Output Predictions

$\mu_{ m f} \simeq 144 { m MeV},$	$\mu_{ m inst}\simeq 8.0{ m MeV}$		
$\mathbf{M_c}\simeq \mathbf{922MeV},$	$\mu_{ m s} \simeq 333 { m MeV}$		
$< \mathbf{\bar{u}u} > \simeq < \mathbf{\bar{d}d} > \simeq < \mathbf{\bar{s}s} > = -(\mathbf{242MeV})^{3}$			
1001414			
$\mathbf{m}_{\pi}\simeq139MeV,$	$\mathbf{m}_{\pi} _{\mathbf{exp}}\simeq 139 MeV$		
${f m_\pi\simeq 139}$ MeV, ${f m_{K^0}\simeq 500}$ MeV,	$egin{array}{l} \mathbf{m}_{\pi}ert_{ ext{exp}}\simeq 139 ext{MeV} \ \mathbf{m}_{\mathbf{K}^0}ert_{ ext{exp}}\simeq 500 ext{MeV} \end{array}$		

 $\mathbf{m}_\eta \simeq 503 {\sf MeV}, \qquad \mathbf{m}_\eta |_{\mathbf{exp}} \simeq 548 {\sf MeV}$

 $\mathbf{m}_{\eta'}\simeq 986 \mbox{MeV}, \qquad \mathbf{m}_{\eta'}|_{exp}\simeq 958 \mbox{MeV}$

Predictions

 $\begin{array}{ll} m_{a_0}\simeq 978 \,\, \mbox{MeV}, & m_{a_0}^{exp.}=984.8\pm 1.4 \,\,\mbox{MeV} \quad \mbox{PDG} \\ m_{\kappa_0}\simeq 970 \,\,\mbox{MeV}, & m_{\kappa_0}^{exp.}=797\pm 19\pm 43 \,\,\mbox{MeV} \quad \mbox{E7912} \\ m_{f_0}\simeq 1126 \,\,\mbox{MeV}, & m_{f_0}^{epx.}=980\pm 10 \,\,\mbox{MeV} \quad \mbox{PDG} \\ m_{\sigma}\simeq 677 \,\,\mbox{MeV}, & m_{\sigma}^{exp.}=(400-1200) \,\,\mbox{MeV} \quad \mbox{PDG} \end{array}$

$$\begin{split} \theta_{\rm P} &\simeq -18^{\rm o}, & \theta_{\rm S} \simeq -18^{\rm o} \\ \eta_8 &= \cos \theta_{\rm P} \ \eta + \sin \theta_{\rm P} \ \eta' \\ \eta_0 &= \cos \theta_{\rm P} \ \eta' - \sin \theta_{\rm P} \ \eta \\ {\bf f}_8 &= \cos \theta_{\rm S} \ {\bf f}_0 + \sin \theta_{\rm S} \ \sigma \\ {\bf f}_{\rm s} &= \cos \theta_{\rm S} \ \sigma - \sin \theta_{\rm S} \ {\bf f}_0 \end{split}$$

The Chiral Lagrangian and Chiral Perturbation Theory for characterizing the QCD nonperturbative effects

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \frac{f^2}{4} \{ tr(D_{\mu}U^{\dagger}D^{\mu}U) + \frac{m_{\alpha}^2}{4N_c} tr(\ln U^{\dagger} - \ln U)^2 \\ &+ r\frac{\chi_5}{\Lambda_{\chi}^2} tr\left(D_{\mu}U^{\dagger}D^{\mu}U(\mathcal{M}^{\dagger}U + U^{\dagger}\mathcal{M}) + r tr(\mathcal{M}U^{\dagger} + U\mathcal{M}^{\dagger}) \right. \\ &+ r^2\frac{\chi_8}{\Lambda_{\chi}^2} tr\left(\mathcal{M}^{\dagger}U\mathcal{M}^{\dagger}U + \mathcal{M}U^{\dagger}\mathcal{M}U^{\dagger}\right) + r^2\frac{\kappa_2}{\Lambda_{\chi}^2} tr(\mathcal{M}^{\dagger}\mathcal{M}) \} \end{aligned}$$

$$rac{\mathbf{p}^2}{\mathbf{\Lambda_f^2}}\sim rac{\mathbf{1}}{\mathbf{N_c}}-\mathbf{Large}~N_c~\mathbf{Expansion}$$

 $\frac{p^2}{\Lambda_{\chi}^2} \& \frac{m_q^2}{\Lambda_{\chi}^2} - Momentum/Mass-Expansion$

$$\begin{aligned} & \text{he chiral representation of four quark operators} \\ & Q_1^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U\right) tr \left(\lambda^{(1)} U^{\dagger} \partial^{\mu} U\right) + O(1/\Lambda_{\chi}^2) \\ & Q_2^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U \lambda^{(1)} U^{\dagger} \partial^{\mu} U\right) + O(1/\Lambda_{\chi}^2) \ , \\ & Q_3^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U\right) tr \left(U^{\dagger} \partial^{\mu} U\right) + O(1/\Lambda_{\chi}^2) \ , \\ & Q_4^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 \partial_{\mu} U^{\dagger} \partial^{\mu} U\right) + O(1/\Lambda_{\chi}^2) \ , \\ & Q_5^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U\right) tr \left(U \partial^{\mu} U^{\dagger}\right) + O(1/\Lambda_{\chi}^2) \ , \\ & Q_5^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U\right) tr \left(U \partial^{\mu} U^{\dagger}\right) + O(1/\Lambda_{\chi}^2) \ , \\ & Q_6^{\chi} + H.c. = -f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U\right) tr \left(\lambda_6 \partial_{\mu} U^{\dagger} \partial^{\mu} U\right) + O(1/\Lambda_{\chi}^2) \ , \\ & Q_6^{\chi} + H.c. = -\frac{1}{2}Q_5^{\chi} - \frac{3}{2}f^4 \ tr \left(\lambda_6 U^{\dagger} \partial_{\mu} U\right) tr \left(\lambda^{(1)} U \partial^{\mu} U^{\dagger}\right) + O(1/\Lambda_{\chi}^2) \\ & Q_8^{\chi} + H.c. = -\frac{1}{2}Q_6^{\chi} + f^4 r^2 \frac{3}{4} tr \left(\lambda_6 U^{\dagger} \lambda^{(1)} U\right) \\ & + f^4 r^2 \frac{3}{4} \frac{\chi_5}{\Lambda_{\chi}^2} 2r \ tr \lambda_6 \left(U^{\dagger} \lambda^{(1)} U \mathcal{M}^{\dagger} U + U^{\dagger} \mathcal{M} U^{\dagger} \lambda^{(1)} U\right) + O(1/\Lambda_{\chi}^4). \end{aligned}$$

The chiral loop contribution of QCD nonperturbative effects was found to be significant. It is important to keep quadratic terms as proposed by BBG (1986)

$$\begin{split} Q_1(\mu) &\to Q_1^{\chi}(M(\mu)) = Q_1^{\chi}(M(\mu')) - \frac{2(M^2(\mu) - M^2(\mu'))}{\Lambda_F^2} Q_2^{\chi}(M(\mu')) \,, \\ Q_2(\mu) &\to Q_2^{\chi}(M(\mu)) = Q_2^{\chi}(M(\mu')) - \frac{2(M^2(\mu) - M^2(\mu'))}{\Lambda_F^2} Q_1^{\chi}(M(\mu')) \\ &\quad + \frac{M^2(\mu) - M^2(\mu')}{\Lambda_F^2} \left(Q_2^{\chi} - Q_1^{\chi}\right) (M(\mu')) \,, \end{split}$$

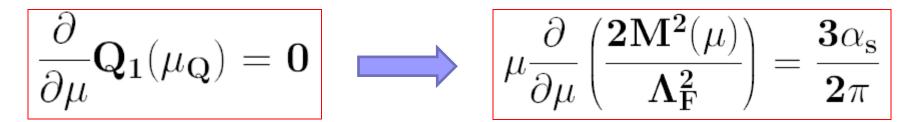
$$Q_{4}(\mu) \to Q_{4}^{\chi}(M(\mu)) = (Q_{2}^{\chi} - Q_{1}^{\chi})(M(\mu))$$

$$Q_{6}(\mu) \to Q_{6}^{\chi}(\mu, M(\mu)) = \left(1 + 3(N_{c} - 1/N_{c})\frac{\alpha_{s}}{4\pi}\ln(\frac{\mu^{2}}{\mu_{\chi}^{2}})\right) Q_{6}^{\chi}(\mu_{\chi}, M(\mu))$$

$$Q_{8}(\mu) \to Q_{8}^{\chi}(\mu, M(\mu)) = \left(1 + 3(N_{c} - 1/N_{c})\frac{\alpha_{s}}{4\pi}\ln(\frac{\mu^{2}}{\mu_{\chi}^{2}})\right) Q_{8}^{\chi}(\mu_{\chi}, M(\mu))$$

Importance of matching between ChPT & QCD

Scale independence condition



Matching between anomalous dimensions

$$\begin{split} \gamma_i^{Meson} &\equiv \mu \frac{\partial}{\partial \mu} Q_i^{\chi}(M(\mu)) = \gamma_i^{Quark} \equiv \mu \frac{\partial}{\partial \mu} Q_i(\mu) \\ & \checkmark \\ Q_6^{\chi}(\mu_{\chi}, M(\mu)) = -\frac{11}{2} (Q_2^{\chi} - Q_1^{\chi})(M(\mu)) \end{split}$$

Algebraic Relations of Chiral Operators

$$Q_{4}^{\chi} = \left(Q_{2}^{\chi} - Q_{1}^{\chi}\right) \qquad Q_{6}^{\chi} = -\frac{r^{2}}{\Lambda_{\chi}^{2}} \chi_{5} \left(Q_{2}^{\chi} - Q_{1}^{\chi}\right)$$
$$\frac{2M^{2}(\mu)}{\Lambda_{F}^{2}} \simeq \frac{3\alpha_{s}}{4\pi} + \frac{3\alpha_{s}}{4\pi} \ln(\frac{\mu^{2}}{\mu_{0}^{2}}) \qquad \frac{r^{2}}{\Lambda_{\chi}^{2}} \chi_{5} = \frac{11}{2}$$

Inputs and Theoretical Uncertainties

$$\Lambda_{QCD} = 325 \pm 80 \text{ MeV} \quad \alpha_{s}(\mu_{0})/2\pi \simeq 0.19^{+0.06}_{-0.05}$$

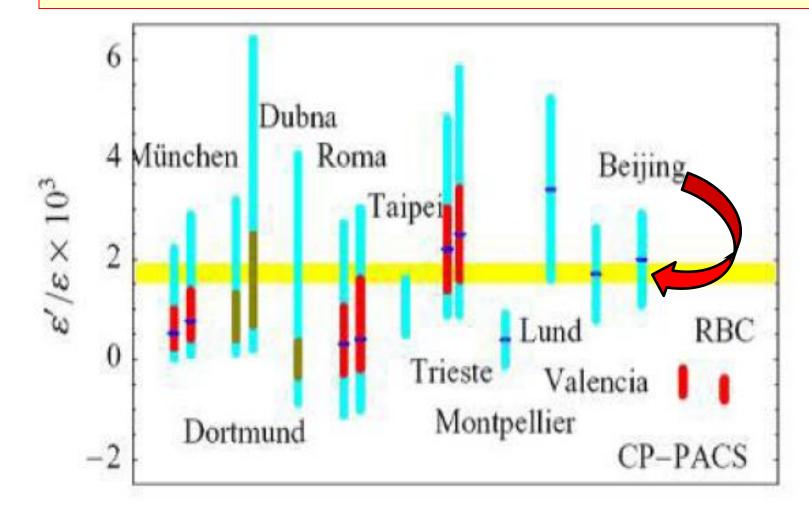
 $\mathbf{M}_{\chi} \equiv \mathbf{M}(\mu = \mathbf{\Lambda}_{\chi} \simeq \mathbf{1} \mathbf{GeV}) \simeq \mathbf{0.71}^{+0.11}_{-0.12} \mathbf{GeV} \ M(\mu_0) \simeq \mu_0$

Theoretical Prediction & Experimental Measurements Theoretical Prediction:

- $\epsilon' = (20 \pm 4 \pm 5) \times 10^{-4}$
- (Y.L. Wu Phys. Rev. D64: 016001,2001) Experimental Results:
- $\epsilon'/\epsilon = (19.2 \pm 2.1) \times 10^{-4}$

(KTeV Collab. Phys. Rev. D 83, 092001, 2011) $\epsilon'/\epsilon = (20.7 \pm 2.8) \times 10^{-4}$ (KTeV Collab. Phys. Rev. D67: 012005,2003) $\epsilon'/\epsilon = (14.7 \pm 2.2) \times 10^{-4}$ (NA48 Collab. Phys. Lett. B544: 97,2002)

Direct CP violation ε'/ε in kaon decays can be well explained by the KM CP-violating mechanism in SM



S. Bertolini, Theory Status of ε'/ε FrascatiPhys.Ser.28 275 (2002)

Consistency of Prediction

The consistency of our theoretical prediction is strongly supported from a simultaneous prediction for the $\Delta I = \frac{1}{2}$ isospin selection rule of decay amplitudes ($|A_0/A_2| = 22.5$ (exp.) $|A_0/A_2| \approx 1.4$ (naïve fac.), differs by a factor of 16)

Theoretical Prediction

Re
$$A_0 = 3.10^{+0.94}_{-0.61} \times 10^{-4}$$
 Re $A_2 = 0.12 \pm 0.02 \times 10^{-4}$

Experimental Results

$$\operatorname{Re} A_0 = 3.33 \times 10^{-4} \quad \operatorname{Re} A_2 = 0.15 \times 10^{-4}$$

CP Violation in Heavy Flavors 2 **Approx. Spin-Flavor Symmetry** R **Heavy Quark Effective Field Theory Effective Hamiltonian of Six Quark Operators** ጲ **Approx. SU(3) Flavor Symmetry**

F.Su, YLW, C. Zhuang, Y.B. Yang, Eur. Phys. J. C72 (2012) 1914 ; J.Phys.G38:015006,2011; Int.J.Mod.Phys.A25:69-111,2010;

Heavy Quark Symmetry $\mathbf{m}_{\mathbf{Q}} \gg \mathbf{\Lambda}_{\mathbf{QCD}} \gg \mathbf{m}_{\mathbf{q}} \ (\mathbf{Q} = \mathbf{b}, \mathbf{c}; \ \mathbf{q} = \mathbf{u}, \mathbf{d}, \mathbf{s})$ $\mathbf{P}^{\mu}_{\mathbf{Q}} = \mathbf{m}_{\mathbf{Q}} \mathbf{v}^{\mu} + \mathbf{k}^{\mu}, \quad \mathbf{v}^2 = \mathbf{1} \qquad \quad \mathbf{m}_{\mathbf{Q}} \rightarrow \infty$ $\frac{i}{p\!\!\!/_{\mathbf{Q}}-\mathbf{m}_{\mathbf{Q}}} \xrightarrow{} \frac{i}{\mathbf{v}\cdot\mathbf{k}}\frac{1+v\!\!\!/}{2}$ $\mathcal{L}_{m_O \to \infty} = h_v i v \cdot D h_v$

SU(2N) heavy quark spin-flavor symmetry With N-the number of heavy flavor

Motivation of Effective Six Quark Operators

 Meson: Quark-antiquark bound state;

 B decays to two light mesons: Three quark-antiquark pairs;

 Leading order: One W boson and one gluon exchange;

The four quarks via W-boson exchange can be regarded as a local four quark interaction at the energy scale much below the W-boson mass, while two QCD vertexes due to gluon exchange are at the independent space-time points, the resulting effective six quark operators are hence in general nonlocal;

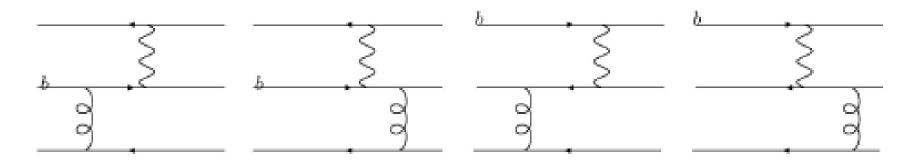
Effective Hamiltonian of Four Quark Operator

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q=u,c} \lambda_q^s \left[C_1(\mu) O_1^{(q)}(\mu) + C_2(\mu) O_2^{(q)}(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) \right] + \text{h.c.}$$

where $\lambda_q^s = V_{qb}V_{qs}^*$ are products of the CKM matrix elements, $C_i(\mu)$ the Wilson coefficient functions, and $O_i(\mu)$ the four-quark operators

$$\begin{aligned} O_{1}^{(q)} &= (\bar{q}_{i}b_{i})_{V-A}(\bar{s}_{j}q_{j})_{V-A}, \\ O_{3} &= (\bar{s}_{i}b_{i})_{V-A}\sum_{q'}(\bar{q}_{j}'q_{j}')_{V-A}, \\ O_{5} &= (\bar{s}_{i}b_{i})_{V-A}\sum_{q'}(\bar{q}_{j}'q_{j}')_{V+A}, \\ O_{5} &= (\bar{s}_{i}b_{i})_{V-A}\sum_{q'}(\bar{q}_{j}'q_{j}')_{V+A}, \\ O_{7} &= \frac{3}{2}(\bar{s}_{i}b_{i})_{V-A}\sum_{q'}e_{q'}(\bar{q}_{j}'q_{j}')_{V+A}, \\ O_{9} &= \frac{3}{2}(\bar{s}_{i}b_{i})_{V-A}\sum_{q'}e_{q'}(\bar{q}_{j}'q_{j}')_{V-A}, \\ O_{9} &= \frac{3}{2}(\bar{s}_{i}b_{i})_{V-A}\sum_{q'}e_{q'}(\bar{q}_{j}'q_{j}')_{V-A}, \\ O_{10} &= \frac{3}{2}\sum_{q'}e_{q'}(\bar{q}_{i}'b_{i})_{V-A}(\bar{s}_{j}q_{j}')_{V-A} \end{aligned}$$

Six Quark Diagrams and Operators



Four different six-quark diagrams with a single W-boson exchange and a single gluon exchange

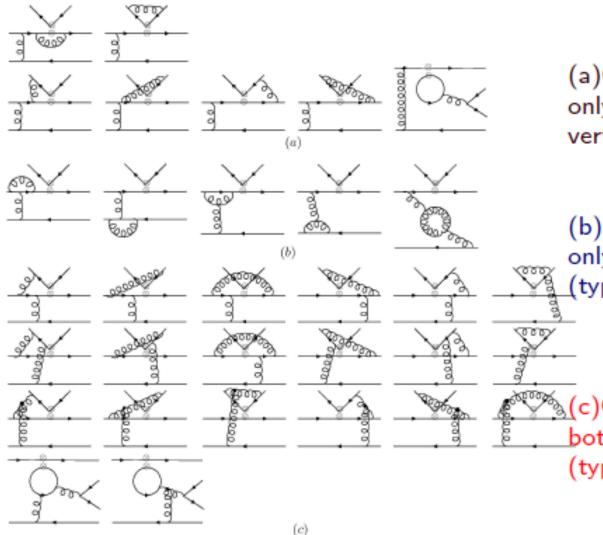
$$O_{q_{2}}^{(6)} = 4\pi\alpha_{s} \iint \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} e^{-i((x_{1}-x_{2})p+(x_{2}-x_{3})k)} (\bar{q}'(x_{3})\gamma_{\nu} T^{s}q'(x_{3})) \frac{1}{k^{2}+i\epsilon}$$

$$(\bar{q}_{2}(x_{2}) \frac{\not{p}+m_{q_{1}}}{p^{2}-m_{q_{1}}^{2}+i\epsilon} \gamma^{\nu} T^{s}\Gamma_{1}q_{1}(x_{1})) * (\bar{q}_{4}(x_{1})\Gamma_{2}q_{3}(x_{1})),$$

$$g|uon \ exchange$$

$$O \equiv (\bar{q}_{2}\Gamma_{1}q_{1}) * (\bar{q}_{4}\Gamma_{2}q_{3}) \longrightarrow O^{(6)} = \sum_{j=1}^{4} O_{q_{j}}^{(6)} \leftarrow L = \frac{\alpha_{s}}{\mu^{2}} \bar{\psi}\psi\bar{\psi}\psi$$

Possible Six Quark Diagrams at One Loop



(a)One-Loop contributions only to the effective weak vertex(type I).

(b)One-Loop contributions only to the gluon vertexes (type II).

(c)One-Loop contributions for both weak and strong vertexes (type III).

Effective Hamiltonian of Six Quark Operators

$$\begin{split} H_{\text{eff}}^{(6)} &= \frac{G_F}{\sqrt{2}} \sum_{j=1}^{4} \{ \sum_{q=u,c} \lambda_q^{s(d)} [C_1(\mu) O_{1q_j}^{(q)(6)}(\mu) + C_2(\mu) O_{2q_j}^{(q)(6)}(\mu)] \\ &+ \sum_{i=3}^{10} \lambda_t^{s(d)} C_i(\mu) O_{i-q_j}^{(6)}(\mu) \} + h.c. + \dots, \end{split}$$

 $O_{i q_j}^{(6)}(\mu)(j = 1, 2, 3, 4)$ are six quark operators which can effectively be obtained from the corresponding four quark operators $O_i(\mu)(i = 1 - 10)$ are four quark operators at the scale μ , from which nonlocal six quark operators are obtained via the effective gluon exchanging interactions between one of the external quark lines of four quark operators and a spectator quark line at the same scale in the leading approximation.

Hadronic Matrix Element of Six Quark Operators

For illustration, consider the hadronic matrix elements of a typical six-quark operator for $B \rightarrow \pi^0 \pi^0$

$$O_{LL}^{(6)} = \iint \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{\mathrm{d}^4 p}{(2\pi)^4} e^{-i((x_1 - x_2)p + (x_2 - x_3)k)} \frac{1}{k^2} \frac{1}{p^2 - m_d^2} [\bar{d}_k(x_2)(\not p + m_d)\gamma^\nu T_{ki}^a \gamma^\mu (1 - \gamma^5) b_i(x_1)] [\bar{d}_j(x_1)\gamma_\mu (1 - \gamma^5) d_j(x_1)] [\bar{d}_m(x_3)\gamma_\nu T_{mn}^a d_n(x_3)],$$

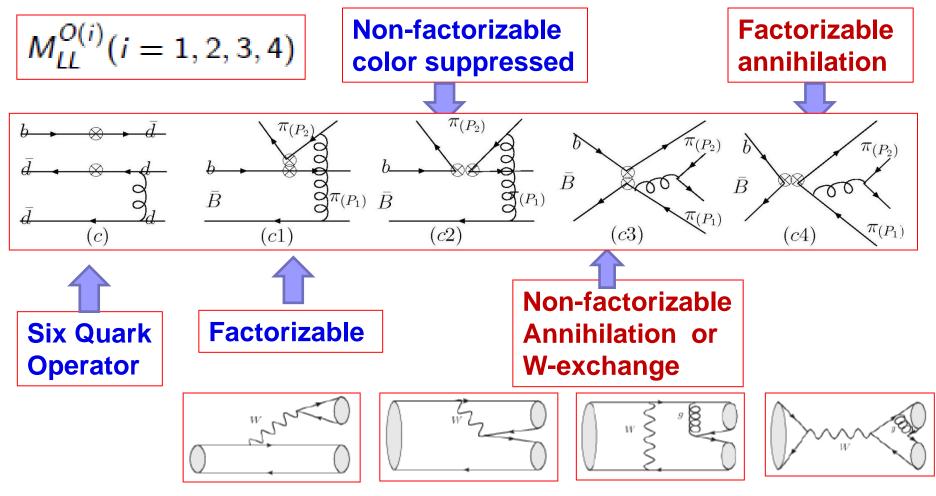
$$\begin{split} &M_{LL}^{O}(B\pi\pi) \equiv <\pi^{0}\pi^{0} \mid O_{LL}^{(6)} \mid \bar{B}_{0} > \\ &= \int \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} \, e^{-i((x_{1}-x_{2})p+(x_{2}-x_{3})k)} \frac{1}{k^{2}} \, \frac{1}{p^{2}-m_{d}^{2}} \\ &< \pi^{0}\pi^{0} \mid [\bar{d}_{k}(x_{2})(\not p+m_{d})\gamma^{\nu} \, T_{ki}^{a}\gamma^{\mu}(1-\gamma^{5})b_{i}(x_{1})] \\ &[\bar{d}_{j}(x_{1})\gamma_{\mu}(1-\gamma^{5})d_{j}(x_{1})][\bar{d}_{m}(x_{3})\gamma_{\nu} \, T_{mn}^{a}d_{n}(x_{3})] \mid \bar{B}_{0} > \\ &\equiv M_{LL}^{O(1)} + M_{LL}^{O(2)} + M_{LL}^{O(3)} + M_{LL}^{O(4)}, \end{split}$$

The advantage of Six Quark Operator for the evaluation of hadronic matrix elements of two body decays is: Applicable of Naïve QCD Factorization

$$\begin{split} M_{LL}^{O(1)} &= \int \int \frac{d^4k}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} e^{-i((x_1 - x_2)p + (x_2 - x_3)k)} \frac{1}{k^2(p^2 - m_d^2)} T_{ki}^a T_{mn}^a \\ &= [(p + m_d)\gamma^{\nu}\gamma^{\mu}(1 - \gamma^5)]_{\rho\sigma}[\gamma_{\mu}(1 - \gamma^5)]_{\alpha\beta}[\gamma_{\nu}]_{\gamma\delta} M_{Bim}^{\sigma\gamma}(x_1, x_3) M_{\pi nk}^{\delta\rho}(x_3, x_2) M_{\pi jj}^{\beta\alpha}(x_1, x_1) \\ &= \frac{M_{Bnm}^{\beta\alpha}(x_i, x_j)}{M_{Bnm}^{\beta\alpha}(x_i, x_j)} = < 0 \mid \bar{d}_m^{\alpha}(x_j) b_n^{\beta}(x_i) \mid \bar{B}^0(P_B) > \\ &= -\frac{iF_B}{4} \frac{\delta_{mn}}{N_c} \int_0^1 du \, e^{-i(u P_B^+ x_j + (P_B - u P_B^+) x_i)} M_B^{\beta\alpha}(u, P_B) \\ &= \frac{iF_m}{4} \frac{\delta_{mn}}{N_c} \int_0^1 du \, e^{-i(u P_B^+ x_j + (P_B - u P_B^+) x_i)} M_B^{\beta\alpha}(u, P_B) \\ &= \frac{iF_m}{4} \frac{\delta_{mn}}{N_c} \int_0^1 dx \, e^{-i(x P x_j + (1 - x)P x_i)} M_\pi^{\beta\alpha}(x, P) \\ &= \frac{M_B^{\beta\alpha}(u, P_B) \text{ and } M_\pi^{\beta\alpha}(x, P) \\ &= \text{ spin structures for the bottom meson and light meson } \pi \end{split}$$

Four Kinds of Hadronic Matrix Elements for each Six Quark Operator with Naïve QCD Factorization

Four different ways of reducing the hadronic matrix element of six quark operator via the naïve QCDF



Four Kinds of Hadronic Matrix Elements for each Six Quark Operator with Naïve QCD Factorization

$$\begin{split} M^{O}_{LL}(B\pi\pi) &= <\pi^{0}\pi^{0} \mid O^{(6)}_{LL} \mid \bar{B_{0}} > = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} du \, dx \, dy \\ & \left\{ \frac{1}{(u\,P_{B}^{+} - (1-x)P_{1})^{2}} \left[\frac{M^{(1)}_{LL}}{(P_{1} - u\,P_{B}^{+})^{2} - m_{d}^{2}} + \frac{M^{(2)}_{LL}}{((1-x)P_{1} + y\,P_{2} - u\,P_{B}^{+})^{2} - m_{d}^{2}} \right] \right\} \\ & + \frac{1}{(xP_{1} + (1-y)P_{2})^{2}} \left[\frac{M^{(3)}_{LL}}{(x\,P_{1} + P_{2})^{2} - m_{d}^{2}} + \frac{M^{(4)}_{LL}}{(x\,P_{1} + (1-y)P_{2} - u\,P_{B}^{+})^{2} - m_{d}^{2}} \right] \right\}, \end{split}$$

 $M_{LL}^{(i)}(i = 1, 2, 3, 4)$ are obtained by performing the trace of matrices and determined by the distribution amplitudes.

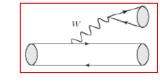
$$M_{LL}^{(1)} = \frac{C_F}{N_C} * F_B F_{\pi}^2 \text{Tr}[M_B(u, P_B)\gamma_{\nu} M_{\pi}(x, P_1)\gamma^{\nu} (P_1 - u P_B^+ + m_d)\gamma_{\mu}(1 - \gamma^5)]$$

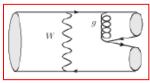
$$\text{Tr}[M_{\pi}(y, P_2)\gamma^{\mu}(1 - \gamma^5)] = i \frac{C_F}{4N_C} F_B F_{\pi}^2 \phi_B(u) m_B^3 \mu_{\pi} \phi_{\pi}(y) \phi_{\pi}^p(x),$$

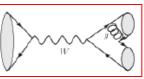
Hadronic Matrix Elements Four Quark Operator vs Six Quark Operator

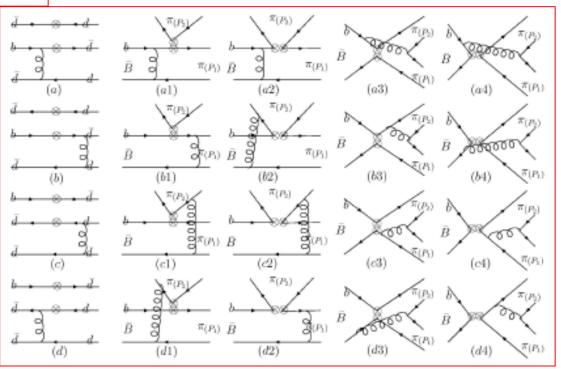
There are 4 types of diagrams corresponding to each four quark operator, which contribute to the hadronic matrix element of two body hadronic decays

For each four quark operator, it induces **4** kinds of effective six quark operators which lead to **16** types of diagrams for hadronic two body decays of heavy meson via naïve QCD factorization





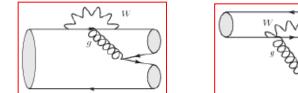


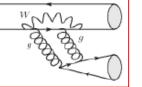


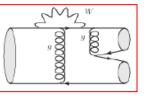
Sixteen Types of Hadronic Matrix Elements Induced From Each four Quark Operator

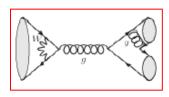
There are two additional vertex operators due to pinguin

 $(V - A) \times (V - A)$ or (LL), $(V - A) \times (V + A)$ or (LR), $(S - P) \times (S + P)$ or (SP)









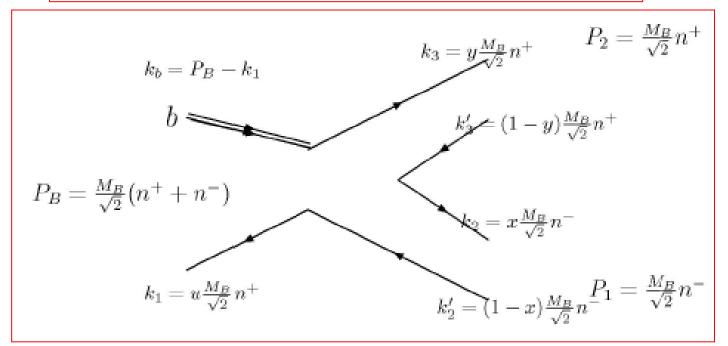
3x16=48 kinds of hadronic matrix elements with relations

M_{LL}^{a1}	=	Τ ^F _{LLa} ;	M_{LL}^{a2}	=	$T_{LL_a}^F/N_C;$	M^{a3}_{LL} M^{a3}_{LR}	=	$egin{array}{lla} A^N_{LLa}/N_C;\ A^N_{SPa}/N_C;\ A^N_{LRa}/N_C;\ A^F_{LLb}/N_C; \end{array}$	M_{LL}^{a4}	=	0;
$M_{LR}^{\overline{a1}}$	=	$T_{LR_a}^F;$	$M_{LR}^{\overline{a2}}$	=		$M_{LR}^{\overline{a3}}$	=	$A_{SPa}^{N^{-}}/N_C;$	M ^{a4}	=	0;
M ^{a1} _{SP}	=	$I_{SP_a};$	M_{SP}^{a2}	=	$T_{LRa}^{F}/N_{C};$	M_{SP}^{a3}	=	$A_{LRa}^{N}/N_C;$	M ^{a4} SP	=	0;
M_{LL}^{b1}	=	$T_{IIb}^{F};$	$M_{LL}^{b_2}$	=	$T_{LLb}^{N}/N_C;$	M_{LL}^{b3}	=	$A_{LLb}^{F}/N_C;$	M_{LL}^{b4}	=	0;
M_{LR}^{bI}	=	$T_{LRb}^{F};$ $T_{LRb}^{F};$ $T_{LLb}^{F};$	M_{LR}^{52}	=	$T_{SPb}^{N^{\sim}}/N_C;$	М ₅ ³³ М ₁ М ₁ М ₁ М ₁ М ₁ М ₁ С М ₁ С М ₁ С С С С С С С С С С С С С С С С С С С	=	$\begin{array}{l} A_{LLb}^{F}/N_{C};\\ A_{SPb}^{F}/N_{C};\\ A_{LRb}^{F}/N_{C};\\ A_{LLa}^{F}/N_{C};\\ A_{SPa}^{F}/N_{C};\\ A_{LRa}^{F}/N_{C};\\ A_{LRa}^{F}/N_{C};\end{array}$	M ² SP M ² SP M ² L M ²⁴ M ²⁴ M ⁵⁴ M ⁵⁴	=	0;
M_{SP}^{b1}	=	T_{LLb}^{F} ;	M_{SP}^{52}	=	$T_{LRb}^{N}/N_C;$	$M_{SP}^{\overline{b3}}$	=	$A_{LRb}^{F}/N_{C};$	M_{SP}^{54}	=	0;
M_{LL}^{c1}	=	0;	M_{LL}^{c2}	=	$T_{LL_a}^N/N_C;$	M_{LL}^{c3} M_{LR}^{c3}	=	$A_{LL_a}^F/N_C;$	Mii	=	$A_{LL_a}^F;$ $A_{LR_a}^F;$
M_{LR}^{c1}	=	0;	M_{LR}^{c2}	=	$T_{SPa}^N/N_C;$	M_{LR}^{c3}	=	$A_{SPa}^{F}/N_{C};$	M ^c ⁴	=	$A_{LRa}^{F};$
M_{SP}^{c1}	=	0;	M_{SP}^{c2}	=	$T_{LRa}^{N}/N_{C};$	M_{SP}^{c3}	=	$A_{LRa}^{F}/N_{C};$	M_{SP}^{c4}	=	$A_{LRa}^{r};$ $A_{SPa}^{r};$ $A_{LLb}^{r};$
M_{LL}^{d1}	=	0;	M_{LL}^{d2}	=	$T_{LLb}^F/N_C;$	M ^{d3}	=	$A_{LLb}^{N}/N_C;$	M ^{d4} LL	=	$A_{LLb}^{F};$
M ^{a1} M ¹¹ M ¹² M ¹² M	=	0;	Mallar M M M M M M M M M M M M M M M M M M M	=	$T_{LRa}^{spa}/N_{C};$ $T_{LRa}^{F}/N_{C};$ $T_{SPb}^{N}/N_{C};$ $T_{LRb}^{N}/N_{C};$ $T_{LRb}^{N}/N_{C};$ $T_{LRa}^{N}/N_{C};$ $T_{LRa}^{N}/N_{C};$ $T_{LLb}^{F}/N_{C};$ $T_{SPb}^{F}/N_{C};$ $T_{SPb}^{F}/N_{C};$ $T_{SPb}^{F}/N_{C};$ $T_{SPb}^{F}/N_{C};$	M_{LL}^{d3}	=	$A_{SPb}^N/N_C;$	M_{LL}^{d4}	=	$A_{LRb}^{F};$
M_{SP}^{d1}	=	0;	M_{SP}^{d2}	=	$T_{LRb}^{F^{\sim}}/N_C;$	М ₅ М ₁ М ₁ М ₁ М ₁ М ₁ М ₁	=	$\begin{array}{l} A_{LRa}^{P}/N_{C};\\ A_{LLb}^{N}/N_{C};\\ A_{SPb}^{N}/N_{C};\\ A_{LRb}^{N}/N_{C}; \end{array}$	M ^{LA} SP M ⁴⁴ M ⁴⁴ M ⁴⁴ M ⁴⁴ M ⁴⁴	=	А _{[LLb} ; А _{[Rb} ; А ^F А _{SPb} .

Treatment of Singularities

- Infrared divergence of gluon exchanging interaction
- On mass-shell divergence of internal quark propagator

Definition of momentum in $B \rightarrow M_1M_2$ decay.



 $(n^+, n^-, \vec{k}_\perp)$

The light-cone coordinate

Treatment of Singularities

Use dynamics masses as infrared cut-off for both gluon and light quark to treat the infrared divergence and investigate the cut-off dependence.

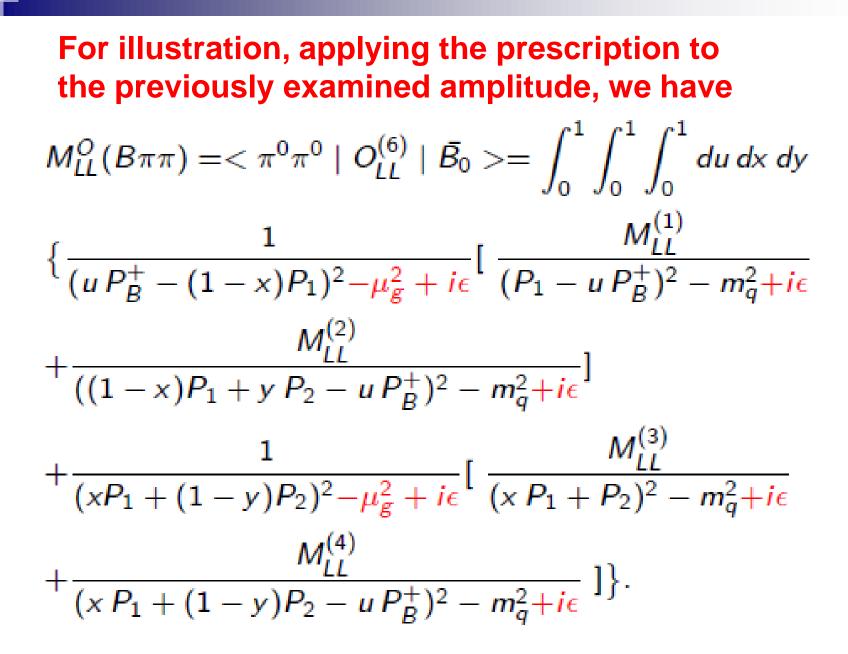
$$\frac{1}{k^2} \frac{p' + m_q}{(p^2 - m_q^2)} \to \frac{1}{(k^2 - \mu_g^2 + i\epsilon)} \frac{p' + \mu_q}{(p^2 - \mu_q^2 + i\epsilon)}$$

Applying the Cutkosky rule to deal with a physical-region singularity for the propagators with following formula:

$$\frac{1}{p^2 - m_q^2 + i\epsilon} = P\left[\frac{1}{p^2 - m_q^2}\right] - i\pi\delta[p^2 - m_q^2]$$

It is known as the principal integration method, and the integration with the notation of capital letter P is the so-called principal integration

 $|\mu_g, \mu_q|$ energy scale play the role of infrared cut-off with preserving gauge symmetry and translational symmetry of original theory. Use of this effective gluon propagator is supported by the lattice and the field theoretical studies.



For example, the hadronic matrix element of factorizable emission diagram with (V-A) x (V-A) vertex is given by

$$\begin{aligned} T_{LLa}^{FM_1M_2}(M) &= i\frac{1}{4}\frac{C_F}{N_C} F_M F_{M_1} F_{M_2} \int_0^1 \int_0^1 \int_0^1 du \, dx \, dy \, m_B^2 \phi_M(u) \\ & \left\{ m_B(2m_b - m_B x) \phi_{M_1}(x) + \mu_{M_1}(2m_B x - m_b) \right. \\ & \left. \left[\phi_{M_1}^P(x) - \phi_{M_1}^T(x) \right] \right\} \phi_{M_2}(y) h_{Ta}^F(u, x), \end{aligned}$$

The nonlocal effect from the propagators of gluon and quark

$$h_{T_a}^F(u,x) = \frac{1}{(-u(1-x)m_B^2 - \mu_g^2 + i\epsilon)(xm_B^2 - m_b^2 + i\epsilon)},$$

Vertex Corrections

$$C_{2n}(\mu) + \frac{C_{2n-1}}{N_C}(\mu) \to C_{2n}(\mu) + \frac{C_{2n-1}}{N_C}(\mu) + \frac{\alpha_s(\mu)}{4\pi} C_F \frac{C_{2n-1}(\mu)}{N_c} V_{2n}(M_2)$$

$$C_{2n-1}(\mu) + \frac{C_{2n}}{N_C}(\mu) \to C_{2n-1}(\mu) + \frac{C_{2n}}{N_C}(\mu) + \frac{\alpha_s(\mu)}{4\pi} C_F \frac{C_{2n}(\mu)}{N_c} V_{2n-1}(M_2)$$

The vertex corrections are proposed to improve the scale dependence of Wilson coecient functions of factorizable emission amplitudes in QCDF

$$V_i(M) = \begin{cases} 12\ln(\frac{m_b}{\mu}) - 18 + \int_0^1 dx \, \phi_a(x) \, g(x) \,, & \text{for } i = 1 - 4, 9, 10 \\ -12\ln(\frac{m_b}{\mu}) + 6 - \int_0^1 dx \, \phi_a(1 - x) \, g(1 - x) \,, & \text{for } i = 5, 7 \,, \\ -6 + \int_0^1 dx \, \phi_b(x) \, h(x) \,, & \text{for } i = 6, 8 \,, \end{cases}$$

 $\phi_a(x)$ Leading-twist for a pseudoscalar meson

 $\phi_b(x)$ Twist-3 distribution amplitudes for a pseudoscalar meson

Non-perturbative non-local effects

$$\begin{aligned} a_{i} \rightarrow a_{i}^{eff} &= C_{i}(\mu) + \frac{C_{i\pm1}}{N_{C}}(\mu) + \frac{\alpha_{s}(\mu)}{4\pi}C_{F}\frac{C_{i\pm1}(\mu)}{N_{c}}(V_{i}(M_{2}) + \widetilde{V}_{1}(M_{2}))) & (i = 1 - 4, 9, 10) \\ a_{i} \rightarrow a_{i}^{eff} &= C_{i}(\mu) + \frac{C_{i\pm1}}{N_{C}}(\mu) + \frac{\alpha_{s}(\mu)}{4\pi}C_{F}\frac{C_{i\pm1}(\mu)}{N_{c}}(V_{i}(M_{2}) + \widetilde{V}_{2}(M_{2}))) & (i = 5 - 8) \\ \widetilde{V}_{1}(M_{2}) & (V-A) \times (V-A) \text{ structure} & \widetilde{V}_{2}(M_{2}) & (V-A) \times (V+A) \text{ structure} \end{aligned}$$

They depend on properties of mesons and could be caused from the higher order non-perturbative non-local effects.

$$\widetilde{V}_1(P) = 26e^{-\frac{\pi}{3}i}$$
 $\widetilde{V}_2(P) = -26,$

 $V_1(V) = 15e^{\frac{\pi}{8}i}$

 $\widetilde{V}_2(V) = -15e^{\frac{\pi}{8}i}$

Both the branching ratios and CP asymmetries of $B \rightarrow PP$; PV; VV decay modes are improved.

Strong Phase Effects

When the virtual particles in the Feynman diagram become on mass-shell, it will lead to an imaginary part for the decay amplitudes, which generates the strong phase of the process.

The calculation of strong phase from nonperturbative QCD effects is a hard task, there exist no efficient approaches to evaluate reliably the strong phases caused from nonperturbative QCD effects, so we set strong phases of $\tilde{V}_1(M_2)$ and $\tilde{V}_2(M_2)$ as input parameter.

Taking different strong phases for annihilation processes in $B \rightarrow PP$; PV; VV decay modes to get reasonable results.

Nonperturbative Corrections via Annihilation

Annihilation contributions are mainly from factorizable annihilation diagrams with (S-P) x (S + P) effective four-quark vertex

$$\begin{split} A_{SP}^{P_1P_2}(M) &\sim \int dx dy \frac{(\mu_{P_1} + \mu_{P_2})y(1-y)}{(x(1-y)m_B^2 - \mu_g^2 + i\epsilon)((1-y)m_B^2 - m_q^2 + i\epsilon)},\\ A_{SP}^{P_1V_2}(M) &\sim \int dx dy \frac{(\mu_{P_1} - 3(2x-1)m_{V_2})y(1-y)}{(x(1-y)m_B^2 - \mu_g^2 + i\epsilon)((1-y)m_B^2 - m_q^2 + i\epsilon)},\\ A_{SP}^{V_1P_2}(M) &\sim \int dx dy \frac{(-3(1-2x)m_{V_1} - \mu_{P_2})y(1-y)}{(x(1-y)m_B^2 - \mu_g^2 + i\epsilon)((1-y)m_B^2 - m_q^2 + i\epsilon)},\\ A_{SP}^{V_1V_2}(M) &\sim \int dx dy \frac{3(1-2x)(-m_{V_1} + 3(2x-1)m_{V_2})y(1-y)}{(x(1-y)m_B^2 - \mu_g^2 + i\epsilon)((1-y)m_B^2 - m_q^2 + i\epsilon)}. \end{split}$$

Since the contributions of these amplitudes are dominated by the area x ~ 0 or y ~ 1, A^{P₁P₂}_{SP}(M) and A^{P₁V₂}_{SP}(M) have the same sign, while A^{V₁P₂}_{SP}(M) and A^{V₁V₂}_{SP}(M) have a different sign from A^{P₁P₂}_{SP}(M)

As a result, we use the same strong phase for $A_{SP}^{P_1P_2}(M)$ and $A_{SP}^{P_1V_2}(M)(\theta_1^a \sim 5^o)$, and another one for $A_{SP}^{V_1P_2}(M)$ and $A_{SP}^{V_1V_2}(M)(\theta_1^a \sim 60^o)$.

B meson wave function

H. Y. Cheng and K. C. Yang, Phys. Lett. B 511, 40 (2001); Phys. Rev. D 64, 074004 (2001)

 $\omega_R = 0.25 GeV$

Twist-2

$$\phi_B(x) = N_B x^2 (1-x)^2 \exp\left[-\frac{1}{2} \left(\frac{xm_B}{\omega_B}\right)^2\right]$$

$$\begin{split} \phi_P(x,\mu) &= 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^P(\mu) C_n^{3/2}(2x-1) \right] \\ \phi_V(x,\mu) &= 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^V(\mu) C_n^{3/2}(2x-1) \right] \\ \phi_V^T(x,\mu) &= 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^{T,V}(\mu) C_n^{3/2}(2x-1) \right] \end{split}$$

Cn(x) the Gegenbauer polynomials

Light-cone distribution amplitudes for light mesons

$$\begin{array}{rcl} \phi_{p}(x,\mu) &=& 1, & \phi_{\sigma}(x,\mu) = 6x(1-x) \\ \\ \phi_{\nu}(x,\mu) &=& 3\left[2x-1+\sum_{n=1}^{\infty}a_{n}^{T,V}(\mu)P_{n+1}(2x-1)\right] \\ \\ \phi_{+}(x) &=& 3(1-x)^{2}, & \phi_{-}(x) = 3x^{2}, \end{array}$$

Twist-3

Pn(x) the Legendre polynomials

		μ	π	Κ	ρ	K^*	ϕ	ω		
of	a_1	1.0	_	0.06 ± 0.03	-	0.03 ± 0.02	_	_		
bauer hts at		1.5	_	0.05 ± 0.03	_	0.03 ± 0.02	_	_		
ale µ=1	a_2	1.0	0.25 ± 0.15	0.25 ± 0.15	0.15 ± 0.07	0.11 ± 0.09	0.15 ± 0.07	0.18 ± 0.08		
nd at		1.5	0.20 ± 0.12	0.20 ± 0.12	0.12 ± 0.05	0.09 ± 0.07	0.12 ± 0.05	0.14 ± 0.06		
eV via	a_1^T	1.0	_	_	_	0.04 ± 0.03	_	_		
ing		1.5	_	_	_	0.03 ± 0.03	_	-		
	a_2^T	1.0	_	_	0.14 ± 0.06	0.10 ± 0.08	0.16 ± 0.06	0.14 ± 0.07		
		1.5	_	_	0.11 ± 0.05	0.08 ± 0.06	0.13 ± 0.05	0.11 ± 0.05		

Values of Gegenbauer moments at the scale µ=1 GeV and at µ=1.5GeV via a running

CKM matrix elements with Wolfenstein parametrization

 $A = 0.798^{+0.023}_{-0.017}, \, \lambda = 0.2252^{+0.00083}_{-0.00082}, \, \bar{\rho} = 0.141^{+0.035}_{-0.021}, \, \bar{\eta} = 0.340 \pm 0.016$

Running scale

$$\mu = 1.5 \pm 0.1 \text{GeV} \sim \sqrt{2\Lambda_{QCD}m_b}. \implies \alpha_s(\mu)$$

$$\alpha_{QCD} \simeq 288^{+21}_{-18} \text{MeV} \quad \Leftarrow \quad \alpha_s(M_z) = 0.1172 \pm 0.002.$$

$$m_q(\mu) = \mathcal{R}(\alpha_s(\mu))\hat{m}_q \qquad \pi$$

$$\mathcal{R}(\alpha_s) = \left(\frac{\alpha_s}{\pi}\right)^{\gamma_0/\beta_0} \left[1 + \frac{\alpha_s}{\pi}\right]^{\gamma_0/\beta_0}$$

$$m_b(\mu)\simeq 5.54 \, GeV.$$
 $\mu=1.5 \, GeV$

Cut-off scale
$$\mu_q = \mu_g = 0.37 \, GeV.$$

The infrared cut-off scale for gluon and light quarks are the basic scale to determine annihilation diagram contributions

The hadronic input parameters: Life-time, masses and decay constants

$ au_{B^\pm}$	$ au_{B_d}$	m _B	m _b	mt	mu	m _d
1.638 <mark>ps</mark>	1.525ps	5.28GeV	4.4GeV	173.3GeV	4.2MeV	7.6MeV
mc	m _s		m_{π^0}			$m_{ ho\pm}$
1.5GeV	0.122GeV	0.140GeV	0.135GeV	0.494GeV	0.775GeV	0.775GeV
m_ω				μ_{π}		f_{ϕ}
1.7GeV	1.8GeV	300MeV	0.78GeV	1.02GeV		0.215GeV
f _B	f_{π}	f _K	$f_{ ho}$	f_{ω}	f_{K^*}	f_{ω}^{I}
0.210GeV	0.130GeV	0.16GeV	0.216GeV	0.187GeV	0.220GeV	0.151GeV
$f_{K^*}^T$	f_{ϕ}^{T}	f_{ρ}^{T}				
0.185GeV	0.186GeV	0.165GeV				

The method developed based on the six quark effective Hamiltonian allows us to calculate the relevant transition form factors $B \rightarrow M$ via a simple factorization approach.

$$\begin{split} F_0^{B \to M_1} &= \frac{4\pi\alpha(\mu)C_F}{N_c m_B^2 F_{M_2}} T_{LL}^{FM_1M_2}(B)(M_1, M_2 = P), \\ V^{B \to M_1} &= \frac{4\pi\alpha(\mu)C_F}{N_c m_B^2 F_{M_2}} T_{LL,\perp}^{FM_1M_2}(B) \frac{m_B^2(m_B + m_{M_1})}{m_{M_2}(m_B^2 - m_{M_1}m_{M_2})} (M_1, M_2 = V), \\ A_0^{B \to M_1} &= \frac{4\pi\alpha(\mu)C_F}{N_c m_B^2 F_{M_2}} T_{LL}^{FM_1M_2}(B) (M_1 = V, M_2 = P), \\ A_1^{B \to M_1} &= \frac{4\pi\alpha(\mu)C_F}{N_c m_B^2 F_{M_2}} T_{LL,//}^{FM_1M_2}(B) \frac{m_B^2}{m_{M_2}(m_B + m_{M_1})} (M_1, M_2 = V) \end{split}$$

$$T_{LL,\perp} = \frac{1}{2}(T_{LL,+} - T_{LL,-})$$

$$C_F = \frac{N_c^2 - 1}{2N_c},$$

Relevant transition form factors $B_s \rightarrow M$

$$\begin{split} F_0^{B_s \to M_1} &= \frac{4\pi \alpha_s(\mu) C_F}{N_c m_{B_s}^2 F_{M_2}} T_{LL}^{FM_1 M_2}(B_s) (M_1, M_2 = P), \\ V^{B_s \to M_1} &= \frac{4\pi \alpha_s(\mu) C_F}{N_c m_{B_s}^2 F_{M_2}} T_{LL,\perp}^{FM_1 M_2}(B_s) \frac{m_{B_s}^2 (m_{B_s} + m_{M_1})}{m_{M_2} (m_{B_s}^2 - m_{M_1} m_{M_2})} (M_1, M_2 = V), \\ A_0^{B_s \to M_1} &= \frac{4\pi \alpha_s(\mu) C_F}{N_c m_{B_s}^2 F_{M_2}} T_{LL}^{FM_1 M_2}(B_s) (M_1 = V, M_2 = P), \\ A_1^{B_s \to M_1} &= \frac{4\pi \alpha_s(\mu) C_F}{N_c m_{B_s}^2 F_{M_2}} T_{LL,//}^{FM_1 M_2}(B_s) \frac{m_{B_s}^2}{m_{M_2} (m_{B_s} + m_{M_1})} (M_1, M_2 = V), \end{split}$$

The $B \rightarrow P$, V form factors at $q^2 = 0$. In comparison with QCD Sum Rules, HQEFT QCD Sum Rules, Light Cone QCD Sum Rules.

Mode	F(0)	QCDSR	LC	LC(HQEFT)	PQCD	This work
$B \rightarrow K^*$	V	0.411	0.339	0.331	0.406	0.277
	A_0	0.374	0.283	0.280	0.455	0.328
	A_1	0.292	0.248	0.274	0.30	0.220
$B \rightarrow \rho$	V	0.323	0.298	0.289	0.318	0.233
	A_0	0.303	0.260	0.248	0.366	0.280
	A_1	0.242	0.227	0.239	0.25	0.193
$B \rightarrow \omega$	V	0.293	0.275	0.268	0.305	0.206
	A_0	0.281	0.240	0.231	0.347	0.251
	A_1	0.219	0.209	0.221	0.30	0.170
$B \rightarrow \pi$	F_0	0.258	0.247	0.285	0.292	0.269
$B \rightarrow K$	F_0	0.331	0.297	0.345	0.321	0.349

The $B_s \rightarrow P$, V form factors at $q^2 = 0$. In comparison with QCD Sum Rules,, Light Cone QCD Sum Rules (HQEFT).

Mode	F(0)	QCDSR	LC	LC(HQEFT)	This work
$B_s o K^*$	V	0.311	0.323	0.285	$0.227^{+0.064+0.003}_{-0.037-0.002}$
	A ₀	0.360	0.279	0.222	$0.280^{+0.082+0.013}_{-0.043-0.008}$
	<i>A</i> ₁	0.233	0.228	0.227	$0.178^{+0.046+0.002}_{-0.027-0.002}$
$B_s \rightarrow \phi$	V	0.434	0.329	0.339	$0.259^{+0.080+0.006}_{-0.036-0.003}$
	A ₀	0.474	0.279	0.212	$0.311^{+0.096+0.014}_{-0.047-0.006}$
	<i>A</i> ₁	0.311	0.232	0.271	$0.194^{+0.052+0.004}_{-0.028-0.002}$
$B_s \to K$	F ₀		0.290	0.296	$0.260^{+0.053+0.007}_{-0.031-0.003}$

The errors stem mainly from the uncertainties in the global parameters

 $\mu_{\textit{scale}} = 1.5 \pm 0.1 \text{GeV}$

$$\mu_g = 0.37 \pm 0.037 \text{GeV}$$

$$\begin{split} A(B \to M_1 M_2) &= \\ &\sum_{i=1,4,6,8,10} \sum_{p=u,c} \left\{ C_i (M_i^{a1} + M_i^{b1} + M_i^{c1} + M_i^{d1}) B M_1 U_i M_2 \Lambda_p \\ &+ C_i (M_i^{a2} + M_i^{b2} + M_i^{c2} + M_i^{d2}) B M_1 \Lambda_p \cdot \operatorname{Tr} [U_i M_2] \\ &+ C_i (M_i^{a3} + M_i^{b3} + M_i^{c3} + M_i^{d3}) B U_i M_1 M_2 \Lambda_p \\ &+ C_i (M_i^{a4} + M_i^{b4} + M_i^{c4} + M_i^{d4}) B \Lambda_p \cdot \operatorname{Tr} [U_i M_1 M_2] \right\} + \\ &\sum_{i=2,3,5,7,9} \sum_{p=u,c} \left\{ C_i (M_i^{a1} + M_i^{b1} + M_i^{c1} + M_i^{d1}) B M_1 \Lambda_p \cdot \operatorname{Tr} [U_i M_2] \\ &+ C_i (M_i^{a2} + M_i^{b2} + M_i^{c2} + M_i^{d2}) B M_1 U_i M_2 \Lambda_p \\ &+ C_i (M_i^{a3} + M_i^{b3} + M_i^{c3} + M_i^{d3}) B \Lambda_p \cdot \operatorname{Tr} [U_i M_1 M_2] \\ &+ C_i (M_i^{a4} + M_i^{b4} + M_i^{c4} + M_i^{d4}) B U_i M_1 M_2 \Lambda_p \right\}, \end{split}$$

All the mesons are expressed in terms of SU(3) flavor symmetry into a vector or matrix form

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{q}}{\sqrt{2}} + \frac{\eta'_{q}}{\sqrt{2}} & \pi^{-} & K^{-} \\ \pi^{+} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{q}}{\sqrt{2}} + \frac{\eta'_{q}}{\sqrt{2}} & \bar{K}^{0} \\ K^{+} & K^{0} & \eta_{s} + \eta'_{s} \end{pmatrix} \qquad V = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{-} & K^{*-} \\ \rho^{+} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \bar{K}^{*0} \\ K^{*+} & K^{*0} & \phi \end{pmatrix}$$
$$U_{i} = \begin{cases} U_{p} & \text{for } i = 1, 2 \\ I & \text{for } i = 3 - 6 \\ Q & \text{for } i = 7 - 10 \end{cases} \qquad U_{p} = \begin{pmatrix} \delta_{pu} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad Q = \begin{pmatrix} \frac{2}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix}$$

$$\begin{array}{ccc}
B = (B^+, B^0, B_s) \\
M_p = \begin{pmatrix} 0 \\ \lambda_p^{(d)} \\ \lambda_p^{(s)} \end{pmatrix} \\
M_i = \begin{cases}
M_{LL} & \text{for } i = 1 - 4, 9, 10 & (V - A) \times (V - A) \\
M_{LR} & \text{for } i = 5, 7 & (V - A) \times (V + A) \\
M_{SP} & \text{for } i = 6, 8 & (S - P) \times (S + P).
\end{array}$$

$$\begin{split} A(B \to M_1 M_2) &= \\ \sum_{p=u,c} \left\{ BM_1 \left(T^{M_1 M_2}(B) U_p + P^{M_1 M_2}(B)^p + P^{CM_1 M_2}_{EW}(B)^p Q \right) M_2 \Lambda_p \\ &+ BM_1 \Lambda_p \cdot \operatorname{Tr} \left[\left(C^{M_1 M_2}(B) U_p + P^{M_1 M_2}_C(B)^p + P^{M_1 M_2}_{EW}(B) Q \right) M_2 \right] \\ &+ B \left(A^{M_1 M_2}(B) U_p + P^{M_1 M_2}_A(B)^p + P^{EM_1 M_2}_{EW}(B)^p Q \right) M_1 M_2 \Lambda_p \\ &+ B\Lambda_p \cdot \operatorname{Tr} \left[\left(E^{M_1 M_2}(B) U_p + P^{M_1 M_2}_E(B)^p + P^{AM_1 M_2}_{EW}(B)^p Q \right) M_1 M_2 \right] \right\} \end{split}$$

There are totally 12 types of amplitudes

 $E^{M_1M_2}(M)$

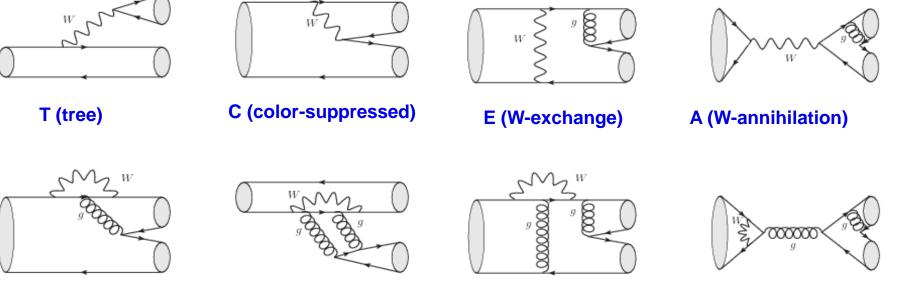
$$T^{M_1M_2}(M), C^{M_1M_2}(M), P^{M_1M_2}(M), P^{M_1M_2}_C(M), P^{M_1M_2}_{EW}(M), A^{M_1M_2}(M),$$

 $P_{E}^{M_{1}M_{2}}(M), P_{A}^{M_{1}M_{2}}(M), P_{EW}^{CM_{1}M_{2}}(M), P_{EW}^{EM_{1}M_{2}}(M), P_{EW}^{AM_{1}M_{2}}(M)$

$$P^{M_1M_2}(M), C^{M_1M_2}(M), P^{M_1M_2}(M), P^{M_1M_2}_C(M), P^{M_1M_2}_{EW}(M), A^{M_1M_2}(M)$$

The 12 types of two-body hadronic decays of heavy mesons can be expressed in terms of the distinct topological diagrams

[Chau ('80); Chau, HYC('86)]



P, P^c_{EW}

S, P_{FW}

 PE, PE_{EW}

 $\mathsf{PA}, \, \mathsf{PA}_{\mathsf{EW}}$

HYC, Oh ('11)

All quark graphs are topological with all strong interactions encoded and the SU(3) flavor symmetry assumed !!!

6 amplitudes for the so-called emission diagrams

$$\begin{split} T^{M_1M_2}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\big\{[C_1(\mu) + \frac{1}{N_C}C_2(\mu)]T_{LL}^{FM_1M_2}(M) + \frac{1}{N_C}C_2(\mu)T_{LL}^{NM_1M_2}(M)\big\},\\ C^{M_1M_2}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\big\{[C_2(\mu) + \frac{1}{N_C}C_1(\mu)]T_{LL}^{FM_1M_2}(M) + \frac{1}{N_C}C_1(\mu)T_{LL}^{NM_1M_2}(M)\big\},\\ P^{M_1M_2}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\big\{[C_4(\mu) + \frac{1}{N_C}C_3(\mu)]T_{LL}^{FM_1M_2}(M) + \frac{1}{N_C}C_3(\mu)T_{LL}^{NM_1M_2}(M) \\&\quad + [C_6(\mu) + \frac{1}{N_C}C_5(\mu)]T_{SP}^{FM_1M_2}(M) + \frac{1}{N_C}C_5(\mu)T_{LR}^{NM_1M_2}(M)\big\},\\ P^{M_1M_2}_C(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\big\{[C_3(\mu) + \frac{1}{N_C}C_4(\mu)]T_{LL}^{FM_1M_2}(M) + \frac{1}{N_C}C_4(\mu)T_{LL}^{NM_1M_2}(M) \\&\quad + [C_5(\mu) + \frac{1}{N_C}C_6(\mu)]T_{SP}^{FM_1M_2}(M) + \frac{1}{N_C}C_6(\mu)T_{LR}^{NM_1M_2}(M)\big\},\\ P^{M_1M_2}_{EW}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\frac{3}{2}\big\{[C_9(\mu) + \frac{1}{N_C}C_{10}(\mu)]T_{LL}^{FM_1M_2}(M) + \frac{1}{N_C}C_{10}(\mu)T_{LL}^{NM_1M_2}(M) \\&\quad + [C_7(\mu) + \frac{1}{N_C}C_8(\mu)]T_{LR}^{FM_1M_2}(M) + \frac{1}{N_C}C_8(\mu)T_{SP}^{NM_1M_2}(M)\big\},\\ P^{CM_1M_2}_{EW}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\frac{3}{2}\big\{[C_{10}(\mu) + \frac{1}{N_C}C_9(\mu)]T_{LL}^{FM_1M_2}(M) + \frac{1}{N_C}C_9(\mu)T_{LL}^{NM_1M_2}(M) \\&\quad + [C_8(\mu) + \frac{1}{N_C}C_7(\mu)]T_{SP}^{FM_1M_2}(M) + \frac{1}{N_C}C_7(\mu)T_{LR}^{NM_1M_2}(M)\big\}, \end{aligned}$$

6 amplitudes for the so-called annihilation diagrams

$$\begin{split} A^{M_1M_2}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\{[C_1(\mu) + \frac{1}{N_C}C_2(\mu)]A^{FM_1M_2}_{LL}(M) + \frac{1}{N_C}C_2(\mu)A^{NM_1M_2}_{LL}(M)\},\\ E^{M_1M_2}(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\{[C_2(\mu) + \frac{1}{N_C}C_1(\mu)]A^{FM_1M_2}_{LL}(M) + \frac{1}{N_C}C_1(\mu)A^{NM_1M_2}_{LL}(M)\},\\ P^{M_1M_2}_E(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\{[C_4(\mu) + \frac{1}{N_C}C_3(\mu)]A^{FM_1M_2}_{LL}(M) + \frac{1}{N_C}C_3(\mu)A^{NM_1M_2}_{LL}(M) \\ &\quad + [C_6(\mu) + \frac{1}{N_C}C_5(\mu)]A^{FM_1M_2}_{SP}(M) + \frac{1}{N_C}C_5(\mu)A^{NM_1M_2}_{LR}(M)\},\\ P^{M_1M_2}_A(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\{[C_3(\mu) + \frac{1}{N_C}C_4(\mu)]A^{FM_1M_2}_{LL}(M) + \frac{1}{N_C}C_4(\mu)A^{NM_1M_2}_{LL}(M) \\ &\quad + [C_5(\mu) + \frac{1}{N_C}C_6(\mu)]A^{FM_1M_2}_{LR}(M) + \frac{1}{N_C}C_6(\mu)A^{NM_1M_2}_{SP}(M)\},\\ P^{AM_1M_2}_E(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\frac{3}{2}\{[C_9(\mu) + \frac{1}{N_C}C_{10}(\mu)]A^{FM_1M_2}_{LL}(M) + \frac{1}{N_C}C_{10}(\mu)A^{NM_1M_2}_{LL}(M) \\ &\quad + [C_7(\mu) + \frac{1}{N_C}C_8(\mu)]A^{FM_1M_2}_{LR}(M) + \frac{1}{N_C}C_8(\mu)A^{NM_1M_2}_{SP}(M)\},\\ P^{EM_1M_2}_E(M) &= 4\pi\alpha_s(\mu)\frac{G_F}{\sqrt{2}}\frac{3}{2}\{[C_{10}(\mu) + \frac{1}{N_C}C_9(\mu)]A^{FM_1M_2}_{LL}(M) + \frac{1}{N_C}C_9(\mu)A^{NM_1M_2}_{LL}(M) \\ &\quad + [C_8(\mu) + \frac{1}{N_C}C_7(\mu)]A^{FM_1M_2}_{SP}(M) + \frac{1}{N_C}C_7(\mu)A^{NM_1M_2}_{LR}(M)\},\\ \end{array}$$

There are in general 24 amplitude contributions. Here for an example

The factorizable emission contributions for the (V-A)x(V-A)

$$\begin{split} T_{LL}^{FM_1M_2}(M) &= T_{LLa}^{FM_1M_2}(M) + T_{LLb}^{FM_1M_2}(M), \\ T_{LLa}^{FM_1M_2}(M) &= i\frac{1}{4}\frac{C_F}{N_C} \; F_M \; F_{M_1} \; F_{M_2} \int_0^1 \int_0^1 \int_0^1 du \, dx \, dy \, m_B^2 \phi_M(u) \\ & \left\{ m_B(2m_b - m_Bx)\phi_{M_1}(x) + \mu_{M_1}(2m_Bx - m_b)[\phi_{M_1}^p(x) - \phi_{M_1}^T(x)] \right\} \phi_{M_2}(y) h_{Ta}^F(u, x), \\ T_{LLb}^{FM_1M_2}(M) &= i\frac{1}{2}\frac{C_F}{N_C} \; F_M \; F_{M_1} \; F_{M_2} \int_0^1 \int_0^1 \int_0^1 du \, dx \, dy \, m_B^3 \mu_{M_1} \phi_M(u) \phi_{M_2}(y) \phi_{M_1}^F(x) h_{Tb}^F(u, x), \end{split}$$

The factorizable annihilation contributions for the (V-A)x(V-A)

$$\begin{split} A_{LL}^{FM_1M_2}(M) &= A_{LLa}^{FM_1M_2}(M) + A_{LLb}^{FM_1M_2}(M), \\ A_{LLa}^{FM_1M_2}(M) &= -\frac{1}{4}\frac{C_F}{N_C} \ F_M \ F_{M_1} \ F_{M_2} \int_0^1 \int_0^1 \int_0^1 du \ dx \ dy \ m_B^2 \phi_M(u) \\ & \left\{ (1-y)m_B^2 \phi_{M_2}(y)\phi_{M_1}(x) + 2\mu_{M_2} \ \mu_{M_1}[(2-y)\phi_{M_2}^p(y) + y\phi_{M_2}^T(y)]\phi_{M_1}^p(x) \right\} h_{Aa}^F(x,y), \\ A_{LLb}^{FM_1M_2}(M) &= \frac{1}{4}\frac{C_F}{N_C} \ F_M \ F_{M_1} \ F_{M_2} \int_0^1 \int_0^1 \int_0^1 du \ dx \ dy \ m_B^2 \phi_M(u) \\ & \left\{ xm_B^2 \phi_{M_2}(y)\phi_{M_1}(x) + 2\mu_{M_2} \ \mu_{M_1}[(1+x)\phi_{M_1}^p(x) - (1-x)\phi_{M_1}^T(x)]\phi_{M_2}^p(y) \right\} h_{Ab}^F(x,y), \end{split}$$

Amplitudes for $B \rightarrow \pi\pi$

Take B $\rightarrow \pi\pi$ decay as example, the decay amplitudes can be expressed as follows:

$$\begin{aligned} A(B^0 \to \pi^+ \pi^-) &= V_{td} V_{tb}^* [P_T^{\pi\pi}(B) + \frac{2}{3} P_{EW}^{C\pi\pi}(B) + P_E^{\pi\pi}(B) + 2P_A^{\pi\pi}(B) \\ &+ \frac{1}{3} P_{EW}^{A\pi\pi}(B) - \frac{1}{3} A_{EW}^{E\pi\pi}(B)] - V_{ud} V_{ub}^* [T^{\pi\pi}(B) + E^{\pi\pi}(B)] \end{aligned}$$

$$A(B^+ \to \pi^+ \pi^0) = \frac{1}{\sqrt{2}} \{ V_{td} V_{tb}^* [P_{EW}^{\pi\pi}(B) + P_{EW}^{C\pi\pi}(B)] - V_{ud} V_{ub}^* [T^{\pi\pi}(B) + C^{\pi\pi}(B)] \}$$

$$\begin{split} A(B^0 \to \pi^0 \pi^0) &= \frac{1}{\sqrt{2}} \{ -V_{td} V_{tb}^* [P_T^{\pi\pi}(B) - P_{EW}^{\pi\pi}(B) - \frac{1}{3} P_{EW}^{C\pi\pi}(B) + P_E^{\pi\pi}(B) \\ &+ 2P_A^{\pi\pi}(B) + \frac{1}{3} P_{EW}^{A\pi\pi}(B) - \frac{1}{3} P_{EW}^{E\pi\pi}(B)] \\ &+ V_{ud} V_{ub}^* [-C^{\pi\pi}(B) + E^{\pi\pi}(B)] \}, \end{split}$$

Amplitudes for $B \rightarrow \pi\pi$

Totally, it involves 11 amplitudes, which are defined as follows:

$$\begin{split} T^{M_{1}M_{2}}(M) &= 4\pi\alpha_{s}(\mu)\frac{G_{F}}{\sqrt{2}}\left\{ [C_{1}(\mu) + \frac{1}{N_{C}}C_{2}(\mu)]T_{LL}^{FM_{1}M_{2}}(M) \right. \\ &+ \frac{1}{N_{C}}C_{2}(\mu)T_{LL}^{NM_{1}M_{2}}(M) \right\}, \\ C^{M_{1}M_{2}}(M) &= 4\pi\alpha_{s}(\mu)\frac{G_{F}}{\sqrt{2}}\left\{ [C_{2}(\mu) + \frac{1}{N_{C}}C_{1}(\mu)]T_{LL}^{FM_{1}M_{2}}(M) \right. \\ &+ \frac{1}{N_{C}}C_{1}(\mu)T_{LL}^{NM_{1}M_{2}}(M) \right\}, \\ P^{M_{1}M_{2}}_{EW}(M) &= 4\pi\alpha_{s}(\mu)\frac{G_{F}}{\sqrt{2}}\frac{3}{2}\left\{ [C_{9}(\mu) + \frac{1}{N_{C}}C_{10}(\mu)]T_{LL}^{FM_{1}M_{2}}(M) \right. \\ &+ \frac{1}{N_{C}}C_{10}(\mu)T_{LL}^{NM_{1}M_{2}}(M) + [C_{7}(\mu) + \frac{1}{N_{C}}C_{8}(\mu)]T_{LR}^{FM_{1}M_{2}}(M) \\ &+ \frac{1}{N_{C}}C_{\delta}(\mu)T_{SP}^{NM_{1}M_{2}}(M) \right\}, \end{split}$$

Numerical Results: Branch Ratio & CP Violation for B→ PP

Table: The branching ratios (in units of 10^{-6}) and direct CP asymmetries in $B \to \pi K$ decays. The central values are obtained at $\mu_q = \mu_g = 0.37 \text{GeV}.(Penguin dominate)$

Mode Data[HFAG]		This work						
		NLO+Vertex	NLO ^{eff}	NLO ^{eff} (-10 ^o)	NLO ^{eff} (5 ^o)	NLO ^{eff} (20 ⁰)		
$B^+ \rightarrow \pi^+ K^0$	23.1 ± 1.0	22.5	21.4	19.0	22.6	25.9		
$B^+ \rightarrow \pi^0 K^+$	12.9 ± 0.6	12.8	12.5	11.2	13.1	14.9		
$B^0 \rightarrow \pi^- K^+$	19.4 ± 0.6	19.2	19.5	17.4	20.5	23.3		
$B^0 \rightarrow \pi^0 K^0$	9.8 ± 0.6	8.3	8.4	7.4	8.9	10.2		
$A_{CP}(\pi^+K^0)$	0.009 ± 0.025	-0.006	-0.006	-0.006	-0.007	-0.007		
$A_{CP}(\pi^0 K^+)$	0.050 ± 0.025	-0.053	0.012	0.003	0.018	0.034		
$A_{CP}(\pi^-K^+)$	-0.098 ± 0.012	-0.118	-0.139	-0.158	-0.131	-0.105		
$A_{CP}(\pi^0 K^0)$	-0.01 ± 0.10	-0.052	-0.139	-0.143	-0.138	-0.137		
s _{π⁰Ks}	0.58 ± 0.17	0.699	0.760	0.768	0.756	0.745		

 NLO^{eff}

"NLO correction + effective Wilson coefficients"

"NLO correction + effective Wilson coefficients + annihilation with strong phase"

Numerical Results: Branch Ratio & CP Violation for $B \rightarrow PP$

Table: $B \rightarrow \pi \pi$, *KK* decay modes (*Tree dominate*)

Mode	Data[HFAG]			This work		
		NLO+Vertex	NLO ^{eff}	NLO ^{eff} (-40 ^o)	NLO ^{eff} (5 ^o)	NLO ^{eff} (50 ⁰)
$B^0 \rightarrow \pi^- \pi^+$	5.16 ± 0.22	7.1	6.5	6.00	6.6	7.6
$B^+ \rightarrow \pi^+ \pi^0$	5.59 ± 0.40	4.1	5.5	5.51	5.5	5.5
$B^0 \rightarrow \pi^0 \pi^0$	1.55 ± 0.19	0.3	1.0	1.11	1.0	1.0
$B^+ \rightarrow K^+ \bar{K}^0$	1.36 ± 0.28	1.7	1.6	1.0	1.7	2.2
$B^0 \rightarrow K^0 \bar{K}^0$	0.96 ± 0.20	1.5	1.4	0.7	1.5	2.2
$B^0 \rightarrow K^+ K^-$	0.15 ± 0.10	0.09	0.09	0.09	0.09	0.09
$A_{CP}(\pi^-\pi^+)$	0.38 ± 0.06	0.206	0.266	0.239	0.260	0.141
$A_{CP}(\pi^+\pi^0)$	0.06 ± 0.05	-0.000	-0.001	-0.001	-0.001	-0.001
$A_{CP}(\pi^{0}\pi^{0})$	0.43 ± 0.25	0.382	0.453	0.272	0.485	0.789
$S_{\pi \pi}$	-0.61 ± 0.08	-0.504	-0.506	-0.353	-0.524	-0.638
$A_{CP}(K^+\bar{K}^0)$	0.12 ± 0.17	0.101	0.098	0.041	0.101	0.106
$A_{CP}(K^0 R^0)$	-0.58 ± 0.7	0.000	0.000	0.000	0.000	0.000
$A_{CP}(K^+K^-)$	-	-0.184	-0.184	-0.184	-0.184	-0.184

Table: Comparisons of predictions between our framework and QCDF, pQCD methods in $B \rightarrow \pi \pi, \pi K$ decays.

Mode	Data	QCDF	pQCD		This work
			NLO+Vertex	NLO+Vertex	NLO(a ^{eff} , θ ^a)
$B^+ \rightarrow \pi^+ K^0$	23.1 ± 1.0	21.7 ^{+9.2+9.0} -6.0-6.9	24.5 + 13.6(+12.9) - 8.1(-7.8)	22.5	$22.6^{+6.1+9.8}_{-3.5-2.8}$
$B^+ \rightarrow \pi^0 K^+$	12.9 ± 0.6	$12.5 \substack{+4.7 + 4.9 \\ -3.0 - 3.8}$	$13.9^{+10.0(+7.0)}_{-5.6(-4.2)}$	12.8	$13.1^{+3.7+6.0}_{-2.1-1.3}$
$B^0 \rightarrow \pi^- K^+$	19.4 \pm 0.6	$19.3^{+7.9+8.2}_{-4.8-6.2}$	$20.9^{+15.6}_{-8.3}(-6.5)$	19.2	20.5 + 5.2 + 10.4 - 3.0 - 3.0
$B^0 \rightarrow \pi^0 K^0$	9.8 ± 0.6	$8.6^{+3.8+3.8}_{-2.2-1.4}$	$9.1^{+5.6(+5.1)}_{-3.3(-2.9)}$	8.3	$8.9^{+2.1+5.0}_{-1.3-1.1}$
$B^0 \rightarrow \pi^- \pi^+$	5.16 ± 0.22	$7.0^{+0.4+0.7}_{-0.7-0.7}$	6.5^{+}_{-} $3.8(-1.8)$	7.1	$6.6^{+3.3+1.1}_{-1.3-0.3}$
$B^+ \rightarrow \pi^+ \pi^0$	5.59 ± 0.40	$5.9^{+.2+1.4}_{-1.11.1}$	$4.0^+ 3.4(+ 1.7)^-$ - 1.9(- 1.2)	4.1	$5.5^{+2.3+1.3}_{-1.1-0.4}$
$B^0 \rightarrow \pi^0 \pi^0$	1.55 ± 0.19	$1.1^{+1.0+0.7}_{-0.4-0.3}$	$0.29^{+0.50(+0.13)}_{-0.20(-0.08)}$	0.3	$1.0^{+0.3+0.3}_{-0.1-0.1}$
$A_{CP}(\pi^+K^0)$	0.009 ± 0.025	$0.0028 \pm 0.0003 \pm 0.0009 \\ -0.0003 \pm 0.0010$	$-0.01 \pm 0.00 (\pm 0.00)$	-0.006	-0.007 + 0.002 + 0.003 - 0.003 - 0.001 - 0.013
$A_{CP}(\pi^0 K^+)$	0.050 ± 0.025	$0.049 \substack{+0.039 + 0.044 \\ -0.021 - 0.054}$	$-0.01^{+0.03}_{-0.05}(+0.03)_{-0.05}$	-0.053	$0.018 \substack{+0.014 + 0.022 \\ -0.004 - 0.020}$
$A_{CP}(\pi^-K^+)$	-0.098 ± 0.012	$\scriptstyle -0.074 \substack{+0.017 + 0.043 \\ -0.015 - 0.048}$	-0.09 $+0.06(+0.04)$ $-0.08(-0.06)$	-0.118	$-0.131\substack{+0.009+0.022\\-0.003-0.004}$
$A_{CP}(\pi^{0}K^{0})$	-0.01 ± 0.10	$-0.106 \substack{+0.027 + 0.056 \\ -0.038 - 0.043}$	-0.07 + 0.03 (+0.01) - 0.03 (-0.01)	-0.052	$-0.138\substack{+0.003+0.004\\-0.006-0.007}$
s _{π⁰Ks}	0.58 ± 0.17	-	$0.73 + 0.03 (+0.01) \\ -0.02 (-0.01)$	0.699	$0.756^{+0.002+0.002}_{-0.004-0.007}$
$A_{CP}(\pi^-\pi^+)$	0.38 ± 0.06	$0.170^{+0.013+0.043}_{-0.012-0.087}$	0.18+0.20 (+0.07) -0.12 (-0.06)	0.225	$0.260^{+0.043+0.059}_{-0.032-0.063}$
$A_{CP}(\pi^{+}\pi^{0})$	0.06 ± 0.05	-0.0002	$0.00 \pm 0.00 (\pm 0.00)$	-0.000	-0.001^{+0+0}_{-0-0}
$A_{CP}(\pi^0\pi^0)$	0.43 ± 0.25	$0.572^{+0.148+0.303}_{-0.208-0.346}$	$0.63^{+0.35}_{-0.34}(-0.15)$	0.382	$0.485 \substack{+0.061+0.169\\-0.025-0.070}$
$S_{\pi \pi}$	-0.61 ± 0.08	-	$-0.43^{+1.00(+0.05)}_{-0.56(-0.05)}$	-0.504	$-0.524 \substack{+0.017 + 0.003 \\ -0.004 - 0.017 \ }$

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).

pQCD: H. N. Li, S. Mishima, A. I. Sanda, Phys.Rev. D72, 114005 (2005).

From the naive power-counting based on factorization theory predicts

$$Br(\pi^{-}\pi^{+}) > Br(\pi^{-}\pi^{0}) \gg Br(\pi^{0}\pi^{0}).$$

From the experimental data

$$\operatorname{Br}(\pi^{-}\pi^{+}) \sim \operatorname{Br}(\pi^{-}\pi^{0}) \qquad \operatorname{Br}(\pi^{0}\pi^{0})$$

Two ratios

$$R_c = \frac{2Br(B^+ \to \pi^0 K^+)}{Br(B^+ \to \pi^+ K^0)}$$

$$R_n = \frac{Br(B^0 \to \pi^- K^+)}{2Br(B^0 \to \pi^0 K^0)}$$

Experimental data

$$R_c = 1.12 \pm 0.07$$

$$R_n = 0.99 \pm 0.07$$

Our Theory Predictions

$$R_c = 1.15$$

$$R_n = 1.13$$

Table: The branching ratios (in units of 10^{-6}) and direct CP asymmetries in penguin dominated $B \rightarrow PV$ decays

Mode	Data[HFAG]			This work		
		NLO+Vertex	NLO ^{eff}	NLO ^{eff} (-10°)	NLO ^{eff} (5°)	NLO ^{eff} (20 ⁰)
$B^+ \rightarrow K^{*0} \pi^+$	9.9 ± 0.8	10.3	9.0	7.6	9.8	11.8
$B^+ \rightarrow K^{*+} \pi^0$	6.9 ± 2.3	6.2	5.5	4.8	5.9	7.1
$B^0 \rightarrow K^{*-}\pi^+$	8.6 ± 0.9	8.8	8.3	7.2	8.9	10.6
$B^0 \rightarrow K^{*0}\pi^0$	2.4 ± 0.7	3.5	3.6	3.1	3.9	4.6
$B^+ \rightarrow \phi K^+$	8.30 ± 0.65	9.3	6.9	5.6	7.6	9.6
$B^0 \rightarrow \phi K^0$	8.3 ± 1.1	8.9	6.6	5.4	7.3	9.2
$A_{CP}(K^{*0}\pi^{+})$	-0.038 ± 0.042	-0.017	-0.018	-0.020	-0.017	-0.015
$A_{CP}(K^{*+}\pi^{0})$	0.04 ± 0.29	-0.224	-0.123	-0.164	-0.103	-0.045
$A_{CP}(K^{*-}\pi^{+})$	-0.23 ± 0.08	-0.357	-0.355	-0.415	-0.327	-0.251
$A_{CP}(K^{*0}\pi^{0})$	-0.15 ± 0.12	-0.067	-0.125	114	-0 129	-0.143
$A_{CP}(\phi K^+)$	0.23 ± 0.15	-0.022	-0.025	-0.028	-0.023	-0.020
$A_{CP}(\phi K^0)$	-0.01 ± 0.06	0	0	0	0	0

Table: The branching ratios (in units of 10^{-6}) and direct CP asymmetries in penguin dominated $B \rightarrow PV$ decays

Mode	Data[HFAG]			This work		
		NLO+Vertex	NLO ^{eff}	NLO ^{eff} (45 ^o)	NLO ^{eff} (60 ⁰)	NLO ^{eff} (75 ⁰)
$B^+ \rightarrow \rho^+ K^0$	8.0 ± 1.45	5.2	7.1	7.1	6.8	6.3
$B^+ \rightarrow \rho^0 K^+$	3.81 ± 0.48	3.0	3.3	2.8	2.6	2.4
$B^0 \rightarrow \rho^- K^+$	8.6 ± 1.0	5.4	6.2	7.3	7.3	7.2
$B^0 \rightarrow \rho^0 K^0$	4.7 ± 0.7	2.8	3.9	4.9	5.0	5.0
$B^+ \rightarrow \omega K^+$	6.7 ± 0.5	2.4	3.6	4.3	5.3	5.2
$B^0 \rightarrow \omega K^0$	5.0 ± 0.6	1.9	3.2	4.1	4.8	4.6
$A_{CP}(\rho^+K^0)$	-0.12 ± 0.17	0.016	0.013	0.014	0.014	0.014
$A_{CP}(\rho^{0}K^{+})$	0.37 ± 0.11	0.635	0.727	0.594	0.463	0.285
$A_{CP}(\rho^-K^+)$	0.15 ± 0.06	0.605	0.549	0.373	0.290	0.196
$A_{CP}(\rho^0 K^0)$	0.06 ± 0.20	0.056	-0.136	-0.044	-0.015	0.015
$A_{CP}(\omega K^+)$	0.02 ± 0.05	0.453	0.404	0.167	0.091	0.015
$A_{CP}(\omega K^0)$	0.32 ± 0.17	-0.011	0.117	0.048	0.026	0.002

Table: Tree dominant $B \rightarrow PV$ decay modes

Mode	Data[HFAG]		This work						
		NLO+Vertex			NLO ^{eff}				
			default	(-45°,0°)	(45 ⁰ ,0 ⁰)	(0 ⁰ ,-45 ⁰)	(0 ⁰ ,45 ⁰)		
$B^+ \rightarrow \rho^+ \pi^0$	10.9 ± 1.5	12.0	13.9	14.2	13.5	13.7	14.2		
$B^+ \rightarrow \rho^0 \pi^+$	8.3 ± 1.3	5.2	7.4	7.0	7.8	7.2	7.4		
$B^0 \rightarrow \rho^+ \pi^-$	15.7 ± 1.8	19.6	17.4	16.5	19.1	17.5	17.4		
$B^0 \rightarrow \rho^- \pi^+$	7.3 ± 1.2	6.2	6.5	6.5	6.5	6.1	7.5		
$B^0 \rightarrow \rho^0 \pi^0$	2.0 ± 0.5	0.2	1.3	1.5	1.2	1.5	1.1		
$B^+ \rightarrow K^{*0}K^+$	0.68 ± 0.19	0.6	0.3	0.3	0.3	0.3	0.3		
$B^0 \rightarrow K^{*0} \bar{K}^0$	< 1.9	0.6	0.4	0.2	0.8	0.8	0.1		
$A_{CP}(\rho^+\pi^0)$	0.02 ± 0.11	0.255	0.199	0.196	0.133	0.195	0.131		
$A_{CP}(\rho^0 \pi^+)$	$0.18 \substack{+0.09 \\ -0.17}$	-0.308	-0.344	-0.330	-0.269	-0.309	-0.285		
$A_{CP}(\rho^+\pi^-)$	0.11 ± 0.06	0.120	0.126	0.108	0.066	0.121	0.127		
$A_{CP}(\rho - \pi^+)$	-0.18 ± 0.12	-0.281	-0.282	-0.283	-0.281	-0.217	-0.176		
$A_{CD}(\rho^0 \pi^0)$	-0.30 ± 0.38	0.058	0.187	0.112	0.381	0.258	-0.008		
$A_{CD}(K^{*0}K^+)$	-	0.191	0.257	-0.342	0.205	0.112	0.837		
$A_{CP}(k^{*0}R^{0})$	-	0.000	0	0	0	0	0		

 $\theta^a_{\pi\rho}=5^\circ$ and $\theta^a_{\rho\pi}=60^\circ$.

Mode	Data[31]	QCDF[11]	pQCD(LO)[33, 34]		this	work
				LO	NLO+Vetex	$NLO(a^{eff})$
$B^+ \to \rho^+ \pi^0$	10.9 ± 1.5	$11.8^{+1.8+1.4}_{-1.1-1.4}$	$6 \sim 9$	12.0	12.0	$13.9^{+5.7+2.8}_{-3.2-0.9}$
$B^+ \to \rho^0 \pi^+$	8.3 ± 1.3	$8.7^{+2.7+1.7}_{-1.314}$	$5 \sim 6$	5.4	5.2	$7.4^{+3.7+1.0}_{-1.9-0.2}$
$B^0 \to \rho^+ \pi^-$	15.7 ± 1.8	$15.9^{+1.1+0.9}_{-1.5-1.1}$		18.6	19.6	$17.4^{+8.2+3.2}_{-4.2-0.9}$
$B^0 \to \rho^- \pi^+$	7.3 ± 1.2	$9.2^{+0.4+0.5}_{-0.7-0.7}$		6.9	6.2	$6.5^{+4.3+0.1}_{-2.0-0.0}$
$B^0 \to \rho^0 \pi^0$	2.0 ± 0.5	$1.3^{+1.7+1.2}_{-0.6-0.6}$	$0.07 \sim 0.11$	0.2	0.2	$1.3^{+0.3+0.4}_{-0.2-0}$
$B^+ \to K^{*0} K^+$	0.68 ± 0.19	$0.80^{+0.20+0.31}_{-0.17-0.28}$	$0.32^{+0.12}_{-0.07}$	0.3	0.6	$0.3\substack{+0.0+0.1\\-0.0-0.2}$
$B^0 \to K^{*0} \bar{K}^0$	< 1.9	$0.47\substack{+0.36+0.43\\-0.17-0.27}$	$0.49^{+0.15}_{-0.09}$	0.3	0.6	$0.4^{+0.1+0.2}_{-0.1-0.2}$
$A_{CP}(\rho^+\pi^0)$	0.02 ± 0.11	$0.097\substack{+0.021+0.080\\-0.031-0.103}$	$0 \sim 20$	0.251	0.255	$0.199^{+0.027+0.016}_{-0.044-0.053}$
$A_{CP}(\rho^0\pi^+)$	$0.18^{+0.09}_{-0.17}$	$-0.098\substack{+0.034+0.114\\-0.026-0.104}$	$-20 \sim 0$	-0.351	-0.308	$-0.344^{+0.062+0.023}_{-0.41-0.086}$
$A_{CP}(\rho^+\pi^-)$	0.11 ± 0.06	$0.044^{+0.003+0.058}_{-0.003-0.068}$		0.113	0.120	$0.126^{+0.013\pm0.004}_{-0.023-0.014}$
$A_{CP}(\rho^{-}\pi^{+})$	-0.18 ± 0.12	$-0.227^{+0.009+0.082}_{-0.011-0.044}$		-0.225		$-0.284^{+0.064+0.045}_{-0.045-0.047}$
$A_{CP}(\rho^0\pi^0)$	-0.30 ± 0.38	$0.110\substack{+0.050+0.235\\-0.057-0.288}$	$-75 \sim 0$	0.048	0.058	$0.187\substack{+0.004+0.012\\-0.001-0.007}$
$A_{CP}({\ensuremath{\bar{K}}}^{*0}K^+)$	-	$-0.089\substack{+0.011+0.028\\-0.011-0.024}$	$-0.069^{+0.056+0.010+0.092+0.040}_{-0.053-0.003-0.065-0.0060}$	0.360	0.191	$0.257^{+0.039\pm0.023}_{-0.042-0.019}$
$A_{CP}(k^{\ast 0}K^0)$	-	$-0.035\substack{+0.013+0.007\\-0.017-0.020}$	-	0.000	0.000	0^{+0+0}_{-0-0}

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).

pQCD: H. N. Li and S. Mishima, Phys. Rev. D 74, 094020 (2006). C. D. Lu and M. Z. Yang, Eur. Phys. J. C 23, 275 (2002).

 $\theta^a_{\pi K^*} = \theta^a_{K\phi} = 5^\circ.$

	-		•			
Mode	Data[31]	QCDF[11]	pQCD(LO)[33]		this v	work
				LO	NLO+Vertex	$\mathrm{NLO}(a^{eff}, \theta^a)$
$B^+ \to K^{*0} \pi^+$	9.9 ± 0.8	$10.4^{+1.3+4.3}_{-1.5-3.9}$	$6.0^{+2.8+2.7}_{-1.5-1.4}(5.5)$	7.5	10.3	$9.8^{+2.8+2.5}_{-1.7-0.9}$
$B^+ \to K^{*+} \pi^0$	6.9 ± 2.3	$6.7^{+0.7+2.4}_{-0.7-2.2}$	$4.3^{+5.0+1.7}_{-2.2-1.0}(4.0)$	4.7	6.2	$5.9^{+2.0+1.4}_{-1.1-0.3}$
$B^0 \to K^{*-} \pi^+$	8.6 ± 0.9	$9.2^{+1.0+3.7}_{-1.0-3.3}$	$6.0^{+6.8+2.4}_{-2.6-1.3}(5.1)$	6.5	8.8	$8.9^{+2.4+2.4}_{-1.4-1.0}$
$B^0 \to K^{*0} \pi^0$	2.4 ± 0.7	$3.5^{+0.4+1.6}_{-0.4-1.4}$	$2.0^{+1.2+0.9}_{-0.6-0.4}(1.5)$	2.5	3.5	$3.9^{+0.8+1.1}_{-0.6-0.2}$
$B^+ \to \phi K^+$	8.30 ± 0.65	$8.8^{+2.8+4.4}_{-2.7-3.6}$	$7.8^{+5.9+5.8}_{-1.8-1.7}(13.8)$	10.8	9.3	$7.6^{+1.8+0.6}_{-1.4-0.6}$
$B^0 o \phi K^0$	8.3 ± 1.1	$8.1^{+2.6+4.4}_{-2.5-3.3}$	$7.3^{+5.4+5.1}_{-1.8-1.5}(12.9)$	10.4	8.9	$7.3^{+1.6+0.5}_{-1.3-0.7}$
$A_{CP}(K^{*0}\pi^+)$	-0.038 ± 0.042	$0.004^{+0.013+0.043}_{-0.016-0.039}$	$-0.01^{+0.01+0.01}_{-0.00-0.00}(-0.03)$	-0.021	-0.017	$-0.017\substack{+0.003+0.012\\-0.002-0.003}$
$A_{CP}(K^{*+}\pi^0)$	0.04 ± 0.29	$0.016\substack{+0.031+0.111\\-0.017-0.144}$	$-0.32^{+0.21+0.16}_{-0.28-0.19}(-0.38)$	-0.348	-0.224	$-0.103\substack{+0.055+0.081\\-0.027-0.016}$
$A_{CP}(K^{*+}\pi^-)$	-0.23 ± 0.08	$-0.121\substack{+0.005+0.126\\-0.005-0.160}$	-0.19-0.10 \	-0.443	-0.357	$-0.327^{+0.020+0.070}_{-0.008-0.016}$
$A_{CP}(K^{*0}\pi^0)$	-0.15 ± 0.12	$-0.108^{+0.018+0.091}_{-0.028-0.063}$	$-0.11^{+0.07+0.05}_{-0.05-0.02}(-0.60)$	0.012	-0.067	$-0.130^{+0.016+0.004}_{-0.028-0.019}$
$A_{CP}(\phi K^+)$	0.23 ± 0.15	$0.006\substack{+0.001+0.001\\-0.001-0.001}$	$0.01^{+0.00+0.00}_{-0.01-0.01}(-0.02)$	-0.022	-0.022	$-0.023^{+0.004+0.069}_{-0.002-0.010}$
$A_{CP}(\phi K^0)$	-0.01 ± 0.06	$0.009\substack{+0.001+0.001\\-0.001-0.001}$	$0.03^{+0.01+0.00}_{-0.02-0.01}(0.00)$	0	0	0^{+0+0}_{-0-0}

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).

pQCD: H. N. Li and S. Mishima, Phys. Rev. D 74, 094020 (2006).

Mode	Data[31]	QCDF[11]	pQCD(LO)[33]		this v	work
				LO	NLO+Vertex	$NLO(a^{eff}, \theta^a)$
$B^+ \to \rho^+ K^0$	8.0 ± 1.45	$7.8^{+6.3+7.3}_{-2.9-4.4}$	$8.7^{+6.8+6.4}_{-4.4-4.3}(3.6)$	4.2	5.2	$6.8^{+0.3+1.2}_{-0.2-1.1}$
$B^+ \to \rho^0 K^+$	3.81 ± 0.48	$3.5^{+2.9+2.9}_{-1.2-1.8}$	$5.1^{+4.1+3.6}_{-2.8-2.6}(2.5)$	2.3	3.0	$2.6^{+0.3+0.4}_{-0.2-1.0}$
$B^0 \to \rho^- K^+$	8.6 ± 1.0	$8.6^{+5.7+7.4}_{-2.8-4.5}$	$8.8^{+6.8+6.4}_{-4.4-4.3}(4.7)$	4.9	5.4	$7.3^{+0.8+2.0}_{-0.5-0.4}$
$B^0 \to \rho^0 K^0$	4.7 ± 0.7	$5.4^{+3.4+4.3}_{-1.7-2.8}$	$4.8^{+4.3+3.2}_{-2.3-2.0}(2.5)$	2.7	2.8	$5.0\substack{+0.6+1.7\\-0.4-0.3}$
$B^+ \to \omega K^+$	6.7 ± 0.5	$4.8^{+4.4+3.5}_{-1.9-2.3}$	$10.6^{+10.4+7.2}_{-5.8-4.4}(2.1)$	2.4	3.6	$5.3^{+0.6+1.2}_{-0.4-0.5}$
$B^0 \to \omega K^0$	5.0 ± 0.6	$4.1^{+4.2+3.3}_{-1.7-2.2}$	$9.8^{+8.8+8.7}_{-4.9-4.3}(1.9)$	1.9	3.2	$4.8^{+0.1+1.1}_{-0.3-0.5}$
$A_{CP}(\rho^+ K^0)$	-0.12 ± 0.17	$0.003^{+0.002+0.005}_{-0.003-0.002}$	$0.01^{+0.01+0.01}_{-0.01-0.01}(0.02)$	0.019	0.016	$0.014\substack{+0.001+0.017\\-0.001-0.015}$
$A_{CP}(\rho^0 K^+)$	0.37 ± 0.11	$0.454_{-0.194-0.232}^{+0.178+0.314}$	$0.71^{+0.25+0.17}_{-0.35-0.14}(0.79)$	0.726	0.635	$0.463\substack{+0.041+0.025\\-0.036-0.014}$
$A_{CP}(\rho^-K^+)$	0.15 ± 0.06	$0.319\substack{+0.115+0.196\\-0.110-0.127}$	$0.64^{+0.24+0.07}_{-0.30-0.11}(0.83)$	0.593	0.605	$0.290^{+0.021+0.012}_{-0.020-0.007}$
$A_{CP}(\rho^0 K^0)$	0.06 ± 0.20	$0.087\substack{+0.012+0.087\\-0.012-0.068}$	$0.07^{+0.08+0.07}_{-0.05-0.04}(0.07)$	-0.040	0.056	$-0.015\substack{+0.005+0.025\\-0.002-0.021}$
$A_{CP}(\omega K^+)$	0.02 ± 0.05	$0.221\substack{+0.137+0.140\\-0.128-0.130}$	$0.32^{+0.15+0.04}_{-0.17-0.05}(0.32)$	0.688	0.453	$0.091\substack{+0.031+0.020\\-0.038-0.073}$
$A_{CP}(\omega K^0)$	0.32 ± 0.17	$-0.047\substack{+0.018+0.055\\-0.016-0.058}$	$-0.03\substack{+0.02+0.02\\-0.04-0.03}(-0.03)$	0.065	-0.011	$0.026^{+0.001+0.054}_{-0.001-0.054}$

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).

pQCD: H. N. Li and S. Mishima, Phys. Rev. D 74, 094020 (2006).

Numerical Results: Branch Ratio & CP Violation for $B \rightarrow VV$

Table: Branching ratios for $B \rightarrow VV$ decay modes (in unit of 10^{-6}) which includes the contribution of effective Wilson coefficients and effect of different strong phase $\theta^a = 60^\circ \pm 15^\circ$) for annihilation diagram.

Mode	Data[HFAG]			This work		
		NLO+Vertex	NLO ^{eff}	NLO ^{eff} (45 ^o)	NLO ^{eff} (60 ⁰)	NLO ^{eff} (75°)
$B^+ \rightarrow \rho^+ \rho^0$	24.0 ± 2.0	13.4	16.8	16.8	16.8	16.8
$B^0 \rightarrow \rho^+ \rho^-$	24.2 ± 3.1	22.3	19.8	21.7	22.3	22.7
$B^0 \rightarrow \rho^0 \rho^0$	0.73 ± 0.27	0.4	0.92	0.67	0.61	0.57
$B^+ \rightarrow K^{*0} \rho^+$	9.2 ± 1.5	16.2	14.0	9.6	8.3	7.2
$B^+ \rightarrow K^{*+} \rho^0$	< 6.1	9.9	9.0	6.4	5.6	5.0
$B^0 \rightarrow K^{*+} \rho^-$	< 12	13.9	13.0	9.1	7.9	6.9
$B^0 \rightarrow K^{*0} \rho^0$	3.4 ± 1.0	5.6	5.2	3.6	3.1	2.7
$B^+ \rightarrow K^{*0}K^{*+}$	1.2 ± 0.5	0.9	0.8	0.6	0.5	0.4
$B^0 \rightarrow K^{*0}K^{*0}$	1.28 ± 0.35	0.8	0.6	0.5	0.5	0.5
$B^0 \rightarrow K^{*+}K^{*-}$	< 2	0.07	0.07	0.07	0.007	0.07
$B^+ \rightarrow \phi K^{*+}$	10.0 ± 1.1	19.4	15.2	10.9	9.5	8.4
$B^0 \rightarrow \phi K^{*0}$	9.8 ± 0.7	18.7	14.8	10.5	9.2	8.1
$B^+ \rightarrow \omega K^{*+}$	< 7.4	5.6	4.2	3.3	3.0	2.8
$B^0 \rightarrow \omega K^{*0}$	2.0 ± 0.5	6.2	4.1	2.8	2.5	2.2

Numerical Results: Branch Ratio & CP Violation for $B \rightarrow VV$

Mode	Data[31]			This work		
		NLO+Vertex	NLO^{eff}	$NLO^{eff}(45^{\circ})$	$\mathrm{NLO}^{eff}(60^{\circ})$	$NLO^{eff}(75^{\circ})$
$A_{CP}(\rho^+\rho^0)$	-0.051 ± 0.054	0.001	0.001	0.001	0.001	0.001
$A_{CP}(\rho^+\rho^-)$	0.06 ± 0.13	-0.002	-0.029	-0.041	-0.038	-0.033
$A_{CP}(\rho^0 \rho^0)$	-	0.702	0.177	0.350	0.417	0.475
$A_{CP}(K^{*0}\rho^+)$	-0.01 ± 0.16	-0.005	-0.006	-0.009	-0.009	-0.008
$A_{CP}(K^{*+}\rho^0)$	$0.20^{+0.32}_{-0.29}$	0.184	0.182	0.266	0.273	0.257
$A_{CP}(K^{*-}\rho^+)$	-	0.148	0.151	0.231	0.231	0.206
$A_{CP}(K^{*0}\rho^0)$	0.09 ± 0.19	-0.090	-0.101	-0.147	-0.155	-0.154
$A_{CP}(\bar{K}^{*0}K^{*+})$	-	0.081	0.085	0.141	0.143	0.128
$A_{CP}(\bar{K}^{*0}K^{*0})$	-	0	0	0	0	0
$A_{CP}(K^{*+}K^{*-})$	-	-0.261	-0.261	-0.261	-0.261	-0.261
$A_{CP}(\phi K^{*+})$	-0.01 ± 0.08	-0.003	-0.003	-0.0006	-0.007	-0.007
$A_{CP}(\phi K^{*0})$	0.01 ± 0.05	0	0	0	0	0
$A_{CP}(\omega K^{*+})$	0.29 ± 0.35	0.341	0.383	0.534	0.522	0.463
$A_{CP}(\omega K^{*0})$	0.45 ± 0.25	0.078	0.116	0.170	0.182	0.185

Numerical Results: Branch Ratio & CP Violation for $B \rightarrow VV$

The longitudinal polarization fraction

Mode	Data[31]	This work						
		NLO+Vertex	NLO^{eff}	$\mathrm{NLO}^{eff}(45^{\circ})$	$\mathrm{NLO}^{eff}(60^{\circ})$	$\mathrm{NLO}^{eff}(75^{\circ})$		
$f_L(ho^+ ho^0)$	0.950 ± 0.016	0.94	0.92	0.95	0.95	0.95		
$f_L(ho^+ ho^-)$	0.978 ± 0.023	0.95	0.95	0.95	0.95	0.95		
$f_L(ho^0 ho^0)$	0.75 ± 0.15	0.84	0.86	0.77	0.74	0.71		
$f_L(K^{*0}\rho^+)$	0.48 ± 0.08	0.85	0.82	0.57	0.45	0.32		
$f_L(K^{*+}\rho^0)$	$0.96\substack{+0.06\\-0.16}$	0.86	0.85	0.65	0.56	0.47		
$f_L(K^{*-}\rho^+)$	-	0.81	0.80	0.57	0.46	0.34		
$f_L(K^{*0}\rho^0)$	0.57 ± 0.12	0.78	0.75	0.48	0.36	0.22		
$f_L(K^{\ast 0}K^{\ast +})$	$0.75^{+0.16}_{-0.26}$	0.85	0.81	0.60	0.49	0.37		
$f_L(K^{\ast 0}K^{\ast 0})$	0.80 ± 0.13	0.83	0.63	0.60	0.53	0.46		
$f_L(K^{\ast +}K^{\ast -})$		0.99	0.99	0.99	0.99	0.99		
$f_L(\phi K^{*+})$	0.50 ± 0.05	0.87	0.83	0.58	0.45	0.31		
$f_L(\phi K^{*0})$	0.480 ± 0.030	0.87	0.83	0.58	0.45	0.31		
$f_L(\omega K^{*+})$	0.41 ± 0.19	0.90	0.86	0.68	0.58	0.48		
$f_L(\omega K^{*0})$	0.70 ± 0.13	0.93	0.89	0.67	0.53	0.37		

with $\tilde{\mu}_g = 0.52 \text{GeV}$ and $\theta^a = 60^\circ$. The first error arises from the varying for $\mu_{scale} = 1.4 \sim 1.6 \text{ GeV}$, the second one stems from the shape parameters of light mesons.

Mode	Data[31]	QCDF[11]	pQCD [47, 48]		t.	his work	
				LO	NLO+Vertex	$NLO(\theta^a)$	$NLO(a^{eff}, \theta^a)$
$B^+ ightarrow ho^+ ho^0$	24.0 ± 2.0	$20.0^{+4.0+2.0}_{-1.9-0.9}$	$17\pm2\pm1$	13.7	13.4	13.4	$16.8^{+9.9+1.2}_{-4.4-0.7}$
$B^0 \to \rho^+ \rho^-$	24.2 ± 3.1	$25.5^{+1.5+2.4}_{-2.6-1.5}$	$35\pm5\pm4$	21.1	22.3	24.9	$22.2_{-6.2-0.7}^{+14.0+1.3}$
$B^0 ightarrow ho^0 ho^0$	0.73 ± 0.27	$0.9^{+1.5+1.1}_{-0.4-0.2}$	$0.9\pm0.1\pm0.1$	0.3	0.4	0.4	$0.6^{+0.2+0.1}_{-0.1-0.0}$
$B^+ \to K^{*0} \rho^+$	9.2 ± 1.5	$9.2^{+1.2+3.6}_{-1.1-5.4}$	17 (13)	11.4	16.2	9.8	$8.8^{+3.4+3.5}_{-1.2-2.4}$
$B^+ \to K^{*+} \rho^0$	< 6.1	$5.5^{+0.6+1.3}_{-0.5-2.5}$	9.0(6.4)	7.3	9.9	6.2	$5.9^{+2.1+1.9}_{-1.0-1.2}$
$B^0 \to K^{*+} \rho^-$	< 12	$8.9^{+1.1+4.8}_{-1.0-5.5}$	13 (9.8)	10.2	13.9	8.5	$8.3^{+2.1+3.2}_{-1.0-2.5}$
$B^0 \to K^{*0} \rho^0$	3.4 ± 1.0	$4.6^{+0.6+3.5}_{-0.5-3.5}$	5.9(4.7)	3.9	5.6	3.4	$3.3_{-0.2}^{+0.5+1.7}_{-1.1}$
$B^+ \rightarrow \bar{K}^{*0} K^{*+}$	1.2 ± 0.5	$0.6^{+0.1+0.3}_{-0.1-0.3}$	0.48	0.7	0.9	0.6	$0.5^{+0.2+0.2}_{-0.1-0.1}$
$B^0 \rightarrow \bar{K}^{*0} K^{*0}$	1.28 ± 0.35	$0.6\substack{+0.1+0.2\\-0.1-0.3}$	0.35	0.5	0.8	0.6	$0.5\substack{+0.2+0.2\\-0.1-0.1}$
$B^0 \to K^{*+} K^{*-}$	< 2		$0.1\substack{+0.0+0.1\\-0.0-0.1}$	0.07	0.07	0.07	$0.07^{+0.01}_{-0.01}{}^{+0.00}_{-0.01}$
$B^+ \rightarrow \phi K^{*+}$	10.0 ± 1.1	$10.0^{+1.4+12.3}_{-1.3-6.1}$	15.96	15.9	19.4	12.4	$9.6\substack{+2.5+2.4\\-0.6-1.6}$
$B^0 \rightarrow \phi K^{*0}$	9.8 ± 0.7	$9.5^{+1.3+11.9}_{-1.2-5.9}$	$14.86(10.2^{+2.5}_{-2.1})$	15.4	18.7	11.8	$9.2^{+2.3+2.3}_{-0.5-1.6}$
$B^+ \rightarrow \omega K^{*+}$	< 7.4	$3.0^{+0.4+2.5}_{-0.3-1.5}$	7.9(5.5)	5.4	5.6	3.7	$3.0^{+1.0+2.1}_{-0.4-1.0}$
$B^0 \to \omega K^{*0}$	2.0 ± 0.5	$2.5^{+0.4+2.5}_{-0.4-1.5}$	9.6(6.6)	5.8	6.2	3.8	$2.5_{-0.3-1.5}^{+0.7+1.0}$

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).

pQCD: H. W. Huang, C. D. Lu, et. al. Phys. Rev. D 73, 014011 (2006). H. n. Li and S. Mishima, Phys. Rev. D 73, 114014 (2006).

Mode	Data[5, 42]		This work					
		NLO	NLO^{eff}	$\mathrm{NLO}^{eff}(-10^\circ)$	$\mathrm{NLO}^{eff}(5^{\circ})$	$NLO^{eff}(20^{\circ})$		
$B_s \rightarrow \pi^+ K^-$	5.0 ± 1.25	7.7	7.0	7.0	7.1	7.2		
$B_s \to \pi^0 \bar{K}^0$	-	0.2	1.1	1.1	1.1	1.1		
$B_s \rightarrow K^+ K^-$	$24.4\pm1.4\pm3.5$	20.8	20.5	17.5	22.0	26.2		
$B_s \to K^0 \bar{K}^0$	-	22.6	20.7	17.5	22.3	26.9		
$A_{CP}(\pi^+K^-)$	39 ± 17 Br	$(B_s \to I)$	$(K^-K^+) \approx 1$	$Br(B_d \to \pi^- K^+)$	27.8	24.7		
$A_{CP}(\pi^0 \bar{K}^0)$	-	77.6	61.6	56.0	64.4	72.1		
$A_{CP}(K^+K^-)$	-	-14.4	-15.4	-18.2	-14.2	-10.8		
$A_{CP}(K^0\bar{K}^0)$	-	0	0	0	0	0		

$$A(B_s \to K^-\pi^+) \approx A(B_d \to \pi^-\pi^+)$$
$$Br(B_s \to K^-\pi^+) \approx Br(B_d \to \pi^-\pi^+)$$
$$A_{CP}(B_s \to K^-\pi^+) \approx A_{CP}(B_d \to \pi^-\pi^+)$$

SU(3) symmetry

$$Br(B_s \to K^- K^+) \approx Br(B_d \to \pi^- K^+)$$

 $A_{CP}(B_s \to K^- K^+) \approx A_{CP}(B_d \to \pi^- K^+)$

M. Gronau, PLB 492, 297 (2000). X. G. He, J. Y. Leou and C. Y. Wu, PRD 62, 114015 (2000).

Numerical Results:

Branch Ratio & CP Violation for $B_s \rightarrow PP$

Table: Comparisons of predictions between our framework and other methods in $B_s \rightarrow PP$ decays.

Mode	Data	QCDF	pQCD	SCET		Т	his work
					LO	NLO	NLO(a ^{eff} , 0 ^a)
$B_{\rm S} \rightarrow \pi^+ K^-$	5.0 ± 1.25	$5.3^{+0.4+0.4}_{-0.8-0.5}$	$7.6^{+3.2+0.7+0.5}_{-2.3-0.7-0.5}$	$4.9 \pm 1.2 \pm 1.3 \pm 0.3$	7.2	7.7	$7.1^{+3.2+0.6}_{-1.8-0.2}$
$B_s \rightarrow \pi^0 \bar{K}^0$	-		$0.16 \substack{+0.05+0.10+0.02\\-0.04-0.05-0.01}$	$0.76 \pm 0.26 \pm 0.27 \pm 0.17$	0.2	0.2	$1.1^{+0.3+0.0}_{-0.2-0.1}$
$B_{\rm S} \rightarrow K^+ K^-$	$24.4\pm1.4\pm3.5$	$25.2^{+12.7+12.5}_{-7.2-9.1}$	13.6 + 4.2 + 7.5 + 0.7 - 3.2 - 4.1 - 0.2	$18.2 \pm 6.7 \pm 1.1 \pm 0.5$	16.6	20.8	$22.0^{+5.0+11.8}_{-3.4-3.0}$
$B_s \rightarrow K^0 \bar{K}^0$	-	$26.1^{+13.5+12.9}_{-8.1-9.4}$	$15.6^{+5.0+8.3+0.0}_{-3.8-4.7-0.0}$	$17.7 \pm 6.6 \pm 0.5 \pm 0.6$	18.2		22.3+4.3+12.2
$B_S \rightarrow \pi^+ \pi^-$	0.5 ± 0.5	0.26 + 0.00 + 0.10 - 0.00 - 0.00	0.57 ^{+0.16+0.09+0.01}		0.18	0.23	0.23 + 0.01 + 0.26
$B_s \rightarrow \pi^0 \pi^0$	-	$0.13^{+0.0+0.05}_{-0.0-0.05}$		tion processes	0.09	0.12	$0.12 + 0.01 + 0.13 \\ - 0.01 - 0.00$
$A_{CP}(\pi^+K^-)$	39 ± 17	$20.7^{+5.0+3.9}_{-3.0-8.8}$	$24.1^{+3.9+3.3+2.3}_{-3.6-3.0-1.2}$	$20\pm17\pm19\pm5$	21.5	24.3	$27.8^{+6.0+6.9}_{-2.0-4.1}$
$A_{CP}(\pi^{0}K^{0})$	-	$36.3^{+17.4+26.6}_{-18.2-24.3}$	$59.4^{+1.8+7.4+2.2}_{-4.0-1.3-3.5}$	$-58\pm39\pm39\pm13$		77.6	64.4 ^{+2.0+6.0} -1.8-11.0
$A_{CP}(K^+K^-)$	-	$-7.7^{+1.6+4.0}_{-1.2-5.1}$	$-23.3^{+0.9+4.9+0.8}_{-0.2-4.4-1.1}$	$-6\pm5\pm6\pm2$	-15.7	-14.4	-14.2 + 0.1 + 1.7 = -0.1 - 0.1
$A_{CP}(K^0\bar{K}^0)$	-	$0.4^{+0.04+0.10}_{-0.04-0.04}$	0	< 10	0.0	0.0	0.0^{+0+0}_{-0-0}
$A_{CP}(\pi^+\pi^-)$	-	0	$-1.2^{+0.1+1.2+0.1}_{-0.4-1.2-0.1}$		5.2	4.5	4.5+0.4+1.5
$A_{CP}(\pi^{0}\pi^{0})$	-	0	$-1.2^{+0.1+1.2+0.1}_{-0.4-1.2-0.1}$		5.2	4.5	$4.5^{+0.4+1.5}_{-0.2-0.5}$

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114026 (2009).

pQCD: A. Ali, G. Kramer, Y. Li, C. D. Lu, et. Al. Phys. Rev. D76, 074018(2007).

SCET: A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006).

$$B_s \to \pi K^*, \rho K$$
 $B_s \to V$ 45, 60, 75 $B_s \to P$ -10, 5, 20

Γ						
	Mode		_	This w	vork	
Tree		NLO	NLO^{eff}	$NLO^{eff}(45^{\circ})$	$\mathrm{NLO}^{eff}(60^{\circ})$	$\mathrm{NLO}^{eff}(75^{\circ})$
dominated	$B_s \to \pi^+ K^{*-}$	8.2	7.3	7.2	7.2	7.3
Color	$B_s \to \pi^0 K^{*0}$	0.2	0.3	0.3	0.3	0.3
suppressed	$A_{CP}(\pi^-K^{*+})$	-27.5	-28.3	-18.7	-12.8	-6.0
	$A_{CP}(\pi^0 \bar{K}^{*0})$	-29.3	66.5	15.4	-3.8	-22.7
		NLO	NLO ^{eff}	$\mathrm{NLO}^{eff}(-10^{\circ})$	$\mathrm{NLO}^{eff}(5^{\circ})$	$\mathrm{NLO}^{eff}(20^\circ)$
	$B_s \rightarrow \rho^+ K^-$	19.7	17.5	17.5	17.6	17.7
	$B_s \rightarrow \rho^0 \bar{K}^0$	0.4	0.6	0.5	0.6	0.6
	$A_{CP}(\rho^- K^+)$	17.9	18.9	19.2	18.5	16.4
	$A_{CP}(\rho^0 K^0)$	77.0	-29.7	-36.8	-25.8	-12.9

Mada				TL:	1.		
Mode			I	This wor	К		
	NLO	NLO^{eff}	$(5^{\circ}, 60^{\circ})$	$(-10^{\circ}, 60^{\circ})$	$(20^{\circ}, 60^{\circ})$	$(5^{\circ}, 45^{\circ})$	$(5^{\circ}, 75^{\circ})$
$B_s \to K^{*-}K^+$	5.8	6.6	7.8	7.8	7.8	7.7	7.8
$B_s \rightarrow K^- K^{*+}$	8.1	7.6	8.2	6.5	9.7	8.2	8.2
$B_s \to K^{*0} \bar{K}^0$	9.0	7.9	8.5	6.7	10.3	8.5	8.5
$B_s \rightarrow K^0 \bar{K}^{*0}$	5.6	7.5	7.1	7.1	7.1	7.4	6.6
$B_s \rightarrow \rho^- \pi^+$	0.04	0.04	0.008	0.006	0.014	0.014	0.006
$B_s \rightarrow \pi^- \rho^+$	0.04	0.04	0.006	0.003	0.011	0.011	0.003
$B_s \to \pi^0 \rho^0$	0.04	0.04	0.006	0.003	0.012	0.012	0.005
$A_{CP}(K^+K^{*-})$	54.0	48.8	23.2	23.1	23.2	31.4	14.0
$A_{CP}(K^{*+}K^{-})$	-32.6	-32.2	-29.5	-38.2	-22.0	-29.5	-29.5
$A_{CP}(K^0\bar{K}^{*0})$	0	0	0	0	0	0	0
$A_{CP}(K^{*0}\bar{K}^0)$	0	0	0	0	0	0	0
$A_{CP}(\rho^+\pi^-)$	-1.9	-1.9	-0.6	-0.2	-1.1	-1.1	-0.2
$A_{CP}(\pi^+\rho^-)$	-1.6	-1.6	-0.4	-0.3	-0.7	-0.7	-0.3
$A_{CP}(\pi^0 \rho^0)$	-1.7	-1.7	-0.6	-0.3	-0.9	-0.9	-0.3

Table: The branching ratios (in units of $\times 10^{-6}$) of $B_s \rightarrow PV$ decays. For comparison, we also quote the theoretical estimates of the branching ratios in the QCDF and pQCD frameworks.

Mode	QCDF	pQCD	This	s work
			LO NLO	NLO(a ^{ett} , θ ^a)
$B_{s} \rightarrow \pi^{+} K^{*-}$ $B_{s} \rightarrow \pi^{0} K^{*0}$	$7.8^{+0.4+0.5}_{-0.7-0.7}_{0.89^{+0.80+0.84}_{-0.34-0.35}}$	$7.6^{+2.9+0.4+0.5}_{-2.2-0.5-0.3}_{0.07^{+0.02+0.04+0.01}_{-0.02-0.01}}$	Tree dominated	$7.2^{+5.6+0.7}_{-2.2-0.5}$ $0.3^{+0.1+0.1}_{-0.1-0.1}$
$B_{s} \rightarrow \rho^{+} K^{-}$ $B_{s} \rightarrow \rho^{0} K^{0}$	$14.7^{+1.4+0.9}_{-1.9-1.3}$ $1.9^{+2.9+1.4}_{-0.9-0.6}$ +7.0+8.1	$17.8^{+7.7+1.3+1.1}_{-5.6-1.6-0.9}_{0.08^{+0.02+0.07+0.01}_{-0.02-0.03-0.00}}$	Color suppressed	$\begin{array}{r} 17.6 + 8.2 + 0.1 \\ -4.6 - 0.1 \\ 0.6 + 0.2 + 0.1 \\ \hline 0.6 + 0.3 + 1.5 \\ 7.8 + 0.3 + 1.5 \end{array}$
$B_{s} \rightarrow K^{*-}K^{+}$ $B_{s} \rightarrow K^{-}K^{*+}$	$11.3^{+7.0+8.1}_{-3.5-5.1}_{10.3^{+3.0+4.8}_{-2.2-4.2}}_{13.4+5.1}$	$4.7^{+1.1+2.5+0.0}_{-0.8-1.4-0.0}_{6.0^{+1.7+1.7+0.7}}_{-1.5-1.2-0.3}$	Penguin dominated,	-0.5-1.1 $8.2^{+1.3+2.1}$ $8.2^{-2.3-2.0}$
$B_s \rightarrow K^{*0} R^0$ $B_s \rightarrow K^0 R^{*0}$	$10.5^{+3.4+5.1}_{-2.8-4.5}_{10.1^{+7.5+7.7}_{-3.6-4.8}}$	$7.3^{+2.5+2.1+0.0}_{-1.7-1.3-0.0}_{4.3^{+0.7+2.2+0.0}}_{-0.7-1.4-0.0}$	4.6 5.6	$8.5^{+1.8+1.5}_{-2.1-1.6}$ $7.1^{+0.2+1.3}_{0.4-1.1}$
$B_{\rm S} \rightarrow \rho^- \pi^+ \\ B_{\rm S} \rightarrow \pi^- \rho^+ $	$0.02^{+0.00+0.01}_{-0.00-0.01}$ $0.02^{+0.00+0.01}_{-0.00-0.01}$	0.24 - 0.05 - 0.06 - 0.01	annihilation contributions	$0.01^{+0.00+0.01}_{-0.00-0.00}$ $0.01^{+0.00+0.01}_{-0.00-0.00}$
$B_s \rightarrow \pi^0 \rho^0$	$0.02 + 0.00 + 0.01 \\ -0.00 - 0.01$	0.23+0.05+0.05+0.00 -0.05-0.06-0.01	0.05 0.04	0.01 + 0.00 + 0.01 -0.00 - 0.00

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114026 (2009).

pQCD: A. Ali, G. Kramer, Y. Li, C. D. Lu, et. Al. Phys. Rev. D76, 074018(2007).

Table: The direct CP asymmetries (in %) in the $B_s \rightarrow PV$ decays.

Mode	QCDF	pQCD		Th	is work
			LO	NLO	NLO(a ^{eff} , θ ^a)
$A_{CP}(\pi^{-}K^{*+})$	$-24.0^{+1.2+7.7}_{-1.5-3.9}$	$-19.0^{+2.5+2.7+0.9}_{-2.6-3.4-1.4}$	-24.9	-27.5	$-12.8^{+7.0+4.9}_{-5.2-3.5}$
$A_{CP}(\pi^{0}K^{*0})$	$-26.3^{+10.8+42.2}_{-10.9-36.7}$	$-47.1^{+7.4+35.5+2.9}_{-8.7-29.8-7.0}$	40.1	-29.3	$-3.8^{+6.1+7.5}_{-6.7-7.4}$
$A_{CP}(\rho^{-}K^{+})$	$11.7^{+3.5+10.1}_{-2.1-11.6}$	$14.2^{+2.4+2.3+1.2}_{-2.2-1.6-0.7}$	17.2	17.9	18.5 + 3.0 + 2.9 2.6 - 2.7
$A_{CP}(\rho^0 \bar{K}^0)$	$28.9^{+14.6+25.0}_{-14.5-23.7}$	$73.4^{+6.4+16.2+2.2}_{-11.7-47.8-3.9}$	-22.4	77.0	$-25.8^{+4.1+4.5}_{-4.1-4.5}$
$A_{CP}(K^+K^{*-})$	$25.5^{+9.2+16.3}_{-8.8-11.3}$	55.3 + 4.4 + 8.5 + 5.1 - 4.9 - 9.8 - 2.5	52.5	54.0	23.2 + 1.4 + 2.7 -1.4 - 2.7
$A_{CP}(K^{*+}K^{-})$	$-11.0^{+0.5+14.0}_{-0.4-18.8}$	$-36.6^{+2.3+2.8+1.3}_{-2.3-3.5-1.2}$	-40.0	-32.6	$-29.5 + 8.5 + 4.3 \\ -8.5 - 4.9$
$A_{CP}(K^0\bar{K}^{*0})$	$0.10^{+0.08+0.05}_{-0.07-0.02}$	0	0	0	0 ⁺⁰⁺⁰ _0_0
$A_{CP}(K^{*0}R^{0})$	$0.49^{+0.08+0.09}_{-0.07-0.12}$	0	0	0	0+0+0
$A_{CP}(\rho^+\pi^-)$	$-11.1^{+0.7+13.9}_{-0.8-15.7}$	$-1.3^{+0.9+2.8+0.1}_{-0.4-3.5-0.2}$	-1.8	-1.9	$-0.6^{+0.1+1.1}_{-0.1-2.0}$
$A_{CP}(\pi^+\rho^-)$	$10.2^{+0.8+12.7}_{-0.7-12.8}$	$4.6^{+0.0+2.9+0.6}_{-0.6-3.5-0.3}$	-1.5	-1.6	$-0.4 \substack{+0.1+1.5\\-0.1-0.9}$
$A_{CP}(\pi^0 \rho^0)$	0	$1.7^{+0.2+2.8+0.2}_{-0.8-3.6-0.1}$	-1.6	-1.7	$-0.6^{+0.1+1.3}_{-0.1-1.2}$

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114026 (2009).

pQCD: A. Ali, G. Kramer, Y. Li, C. D. Lu, et. Al. Phys. Rev. D76, 074018(2007).

	Mode	Exp[35, 46, 47]		_	This	work	
Color			NLO	NLO^{eff}	$\mathrm{NLO}^{eff}(45^{\circ})$	$\mathrm{NLO}^{eff}(60^{\circ})$	$\mathrm{NLO}^{eff}(75^{\circ})$
suppressed	$B_s \to \rho^0 \bar{K}^{*0}$	< 767	0.6	0.8	0.7	0.7	0.7
Tree	$B_s \rightarrow \rho^+ K^{*-}$		23.6	21.0	20.7	20.6	20.6
dominated	$B_s \to K^{*-}K^{*+}$		13.4	12.8	11.0	10.4	9.8
Penguin	$B_s \rightarrow K^{*0} K^{*0}$	< 1681	15.0	13.1	10.6	9.8	9.1
dominated	$B_s \to \phi \phi$	24.0 ± 8.9	22.1	18.7	12.1	10.0	7.9
	$A_{CP}(\rho^0 \bar{K}^{*0})$		66.8	56.4	60.8	56.8	50.0
	$A_{CP}(\rho^+K^{*-})$		-10.1	-10.8	-11.3	-9.7	-7.2
	$A_{CP}(K^{*-}K^{*+})$		20.1	17.9	26.3	26.4	24.6
	$A_{CP}(K^{*0}K^{*0})$		0	0	0	0	0
	$A_{CP}(\phi\phi)$		0	0	0	0	0
	$f_L(ho^0 K^{*0})$		80	84	79	77	76
	$f_L(\rho^+K^{*-})$		96	96	96	95	95
	$f_L(K^{*-}K^{*+})$		72	71	54	48	43
	$f_L(K^{*0}K^{*0})$		76	72	50	41	32
	$f_L(\phi\phi)$	$34.8 \pm 4.1 \pm 2.1$	71	65	50	42	31

Numerical Results: Branch Ratio & CP Violation for $B_s \rightarrow VV$

Table: The comparisons in theoretical methods in $B_s \rightarrow VV$ decays. The central values are obtained with $\mu_g^a = 0.52 \text{GeV}$ and $\theta^a = 60^\circ$. The first error in our predictions arises from the varying for $\mu_{scale} = 1.4 \sim 1.6$ GeV, the second one stems from the shape parameters of light mesons.

Mode	Exp	QCDF	pQCD		This	work
				LO	NLO	$NLO(2^{eff}, \theta^a)$
$B_5 \rightarrow \rho^0 K^{*0}$	< 767	1.3	0.33	0.2	0.6	$1.0^{+0.3+0.3}_{-0.2-0.2}$
$B_{S} \rightarrow \rho^{+} K^{*-}$		21.6	20.9	22.3	23.6	$21.0^{+13.4+2.6}_{-6.2-1.8}$
$B_{\rm S} \rightarrow K^{*-}K^{*+}$		7.6	6.7	10.3	13.4	10.4 + 3.0 + 2.7 -2.5 - 1.6
$B_5 \rightarrow K^{*0} \overline{K}^{*0}$	< 1681	<u> </u>	7.0	10.0	15.0	9.8+3.1+2.5 -2.2-2.1
$B_S \rightarrow \phi \phi$	24.0 ± 8.9	<mark>, unc</mark>	lerstan	d from a	approx	$10.0^{+2.9+3.1}$
$B_S \rightarrow \rho^+ \rho^-$		SU((3) flav	or symr	netry	0.70 + 0.01 + 0.05 0.70 - 0.01 - 0.05
$B_s \rightarrow \rho^0 \rho^0$	< 320	0.34	0.51	0.28	0.35	$0.35 + 0.01 + 0.02 \\ -0.01 - 0.02$
$A_{CP}(\rho^{0}\bar{K}^{*0})$		46	61.8	52.2	66.8	$56.8^{+1.0+3.0}_{-0.5-2.9}$
$A_{CP}(\rho^+K^{*-})$		-11	-8.2	-10.0	-10.1	$-9.7^{+3.5+1.3}_{-3.0-1.3}$
$A_{CP}(K^{*}-K^{*+})$		21	9.3	16.1	20.1	26.4 + 2.4 + 2.1 -2.5 - 2.5
$A_{CP}(K^{*0}\bar{K}^{*0})$		0.4	0	0	0	0+0+0 -0-0
$A_{CP}(\phi\phi)$		0.2	0	0 ⁺⁰⁺⁰ _0_0		
$A_{CP}(\rho^+\rho^-)$		0	-2.1	5.8	5.0	$5.0^{+1.2+0.4}_{-2.5-0.4}$
$A_{CP}(\rho^0\rho^0)$		0	-2.1	5.8	5.0	$5.0^{+1.2+0.4}_{-2.5-0.4}$

Numerical Results: Branch Ratio & CP Violation for $B_s \rightarrow VV$

Mode	Exp	QCDF	pQCD		ork	
				LO	NLO	NLO(a ^{eff} , θ ^a)
$f_L(\rho^0 K^{*0})$		90	45.5	73	80	77^{+2+0}_{-1-0}
$f_{I}(\rho^{+}K^{*-})$		92	93.7	96	96	95-0-0
$f_L(K^* - K^{*+})$ $f_L(K^{*0}K^{*0})$		52	43.8	66	72	48^{+4+2}_{-4-2}
fL(K*0K*0)		56	49.7	69	76	41^{+3+1}_{-3-1}
f _L (φφ)	$34.8\pm4.1\pm2.1$	36	61.9	65	71	42^{+3+2}_{-3-2}
$f_L(\rho^+\rho^-)$		100	~ 100	~ 100	~ 100	~ 100
$f_I(\rho^0 \rho^0)$		100	~ 100	~ 100	~ 100	~ 100

QCDF: H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114026 (2009).

pQCD: A. Ali, G. Kramer, Y. Li, C. D. Lu, et. Al. Phys. Rev. D76, 074018(2007).

Approximate SU(3) Flavor Symmetry

M. Gronau, PLB 492, 297 (2000). X. G. He, J. Y. Leou and C. Y. Wu, PRD 62, 114015 (2000).

Our Theoretical Predictions

$$R_{Br} = \frac{Br(B_s \to K^- \pi^+)}{Br(B_d \to \pi^- \pi^+)} \approx 1.08, \quad R_{A_{CP}} = \frac{A_{CP}(B_s \to K^- \pi^+)}{A_{CP}(B_d \to \pi^- \pi^+)} \approx 1.07,$$

$$R_{Br} = \frac{Br(B_s \to K^- K^+)}{Br(B_d \to \pi^- K^+)} \approx 1.07$$

$$R_{A_{CP}} = \frac{A_{CP}(B_s \to K^- K^+)}{A_{CP}(B_d \to \pi^- K^+)} \approx 1.08,$$

Approximate SU(3) Flavor Symmetry

SU(3) symmetry relations

$$Br(B_s \to K^{*+}K^-) \approx Br(B_d \to K^{*+}\pi^-)$$

$$A_{CP}(B_s \to K^{*+}K^-) \approx A_{CP}(B_d \to K^{*+}\pi^-)$$

$$Br(B_s \to K^{*-}K^+) \approx Br(B_d \to \rho^-K^+)$$

 $A_{CP}(B_s \to K^{*-}K^+) \approx A_{CP}(B_d \to \rho^-K^+)$

Our Theoretical Predictions

$$\begin{split} R_{Br} &= \frac{Br(B_s \to K^{*+}K^{-})}{Br(B_d \to K^{*+}\pi^{-})} \approx 0.92, \qquad R_{A_{CP}} = \frac{A_{CP}(B_s \to K^{*+}K^{-})}{A_{CP}(B_d \to K^{*+}\pi^{-})} \approx 0.9, \\ R_{Br} &= \frac{Br(B_s \to K^{*-}K^{+})}{Br(B_d \to \rho^{-}K^{+})} \approx 1.06, \qquad R_{A_{CP}} = \frac{A_{CP}(B_s \to K^{*-}K^{+})}{A_{CP}(B_d \to \rho^{-}K^{+})} \approx 0.8. \end{split}$$

$$R_{Br} = \frac{Br(B_s \to \phi\phi)}{Br(B_d \to \phi K^{*0})} \approx 1.08.$$

Important to be tested

SUMMARY

The six-quark operator effective Hamiltonian approach based on the perturbative QCD, naïve QCD factorization and nonperturbative-nonlocal twist wave functions has been established to compute the amplitudes and CP violations in charmless two body B-meson decays.

With annihilation contribution and extra strong phase, $(\theta^a = 5^\circ)$ for B \rightarrow PP and $(\theta^a = 60^\circ)$ for B \rightarrow VV, our framework provides a simple way to evaluate the hadronic matrix elements of two body decays.

In the six-quark operator effective Hamiltonian approach, the factorization is a natural result and it is also more clear to see what approximation is made (such as the Type III diagrams), which makes the physics of longdistance contribution much understandable.

CONCLUSION

It is different from the QCDF as our method allows us to calculate the transition form factors from QCD calculation.

It is different from pQCD as our method includes both the perturbative QCD effects via the running coupling constant and the nonperturbative QCD effects via the dynamical infrared mass scale of gluon and quark in the nonlocal effective six quark operators.

It is different from the SCET as our method involves only the well-understood three physical mass scales: The heavy quark mass, the perturbative-nonperturbative QCD matching scale around 1.5 GeV, the basic nonperturnbative QCD scale around 0.4~0.5 GeV.

Our method should be applicable to the Charm meson two body decays by considering higher order mass correction of charm quark in HQEFT

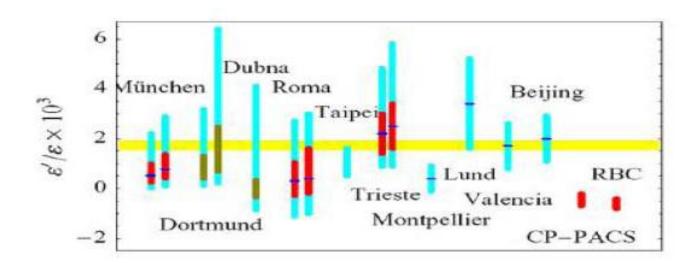
THANKS

Explicit CP Violation in SM

1973: 3 Generation Quarks in SM

Kobayashi-Maskawa Complex Yukawa Couplings

Direct CP violation in kaon decays $\epsilon'/\epsilon = (20 \pm 4 \pm 5) \times 10$ -4 (YL. Wu, Phys. Rev. D64: 016001,2001)



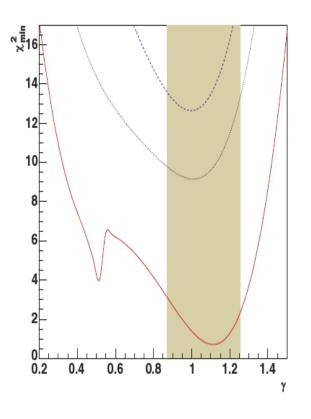
Explicit CP Violation in SM

Direct CP violation in B decays

$$a_{CP}(\pi^+K^-) = -0.11 \pm 0.02$$

$$a_{CP}(\pi^+\pi^-) = 0.46 \pm 0.13$$

Belle Collaboration, K. Abe *et al.*, Phys. Rev. D 68, 012001 (2003); BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. 93, 131801 (2004); Z. Ligeti, hep-ph/ 0408267; M. Giorgi, hep-ex/0408113; Y. Sakai, hep-ex/ 0410006.



CP violation in B decays YL.Wu & YF. Zhou, PRD71, 021701 (2005)