
Chep 2007 Philippe Canal (FNAL) 1

Developments in

ROOT I/O and

Trees
BRUN, René (CERN),
CANAL, Philippe (FERMILAB),
FRANK, Markus (CERN),
KRESHUK, Anna (CERN),
LINEV, Sergey (GSI),
RUSSO, Paul (FERMILAB),
RADEMAKERS, Fons (CERN)

Philippe Canal (FNAL) 2Chep 2007

ROOT I/O History
� Version 2.25 and older

� Only hand coded and generated streamer function, Schema evolution done by hand
� I/O requires : ClassDef, ClassImp and CINT Dictionary

� Version 2.26
� Automatic schema evolution

� Use TStreamerInfo (with info from dictionary) to drive a general I/O routine.

� Version 3.03/05
� Lift need for ClassDef and ClassImp for classes not inheriting from TObject
� Any non TObject class can be saved inside a TTree or as part of a TObject-class

� Version 4.00/08
� Automatic versioning of ‘Foreign’ classes
� Non TObject classes can be saved directly in TDirectory

� Version 4.04/02
� Large TTrees, TRef autoload
� TTree interface improvements, Double32 enhancements

� Version 5.08/00
� Fast TTree merging, Indexing of TChains, Complete STL support.

� Version 5.12/00
� Prefetching, TRef autoderefencing

� Version 5.16/00
� Improved modularization (libRio)

Philippe Canal (FNAL) 3Chep 2007

Outline

� General I/O

�Major Enhancements

� libRIO

� STL and Double32_t

� File Utilities

� Asynchronous Open

� Consolidations

� ROOT and SQL

� Trees

� Autoderefencing

� Fast Merging

� Indexing of TChains

� TTree Interface
enhancements

� New Features

Philippe Canal (FNAL) 4Chep 2007

Major Enhancements

� Improved Modularity
� “Booting ROOT with BOOT” René Brun
� libTree and libRio no longer loaded by default.

� Improvement in support TSQLFile and TXMLFile
� Added support of ODBC
� postgres support of new functionality upcoming

� TEntryList
� A new class to support large and scalable event lists.

� Prefetching
� "Efficient Access to Remote Data in High Energy Physics." Leandro Franco

� XROOTD
� “Data access performance through parallelization and vectored access. Some

results.” Fabrizio Furano

Philippe Canal (FNAL) 5Chep 2007

libRIO

� New library containing all the ROOT classes to do basic
Input/Output (ROOT 5.15/04 and above)
� Includes TFile, TKey, TBufferFile, the Collection Proxies (for STL), etc.
� TDirectory, TBuffer are now a pure abstract interface.
� TDirectoryFile, TBufferFile are the concrete implementation
� TFile derives from TDirectoryFile instead of TDirectory.
� These change may be backward incompatible:

� If you creates a TDirectory
object, replace with
TDirectoryFile

� If you creates a TBuffer
object, replace with
TBufferFile

� Dictionaries are NO longer
dependent on any of the
classes in libRIO

#if ROOT_VERSION_CODE >= ROOT_VERSION(5,15,0)
#include <TBufferFile.h>
#else
#include <TBuffer.h>
#endif
#if ROOT_VERSION_CODE >= ROOT_VERSION(5,15,0)

TBufferFile b(TBuffer::kWrite,10000);
#else

TBuffer b(TBuffer::kWrite,10000);
#endif

Philippe Canal (FNAL) 6Chep 2007

Streamer code update
� Change calls to TClass object into calls to TBuffer

� Removes direct dependency on TClass.

void Myclass::Streamer(TBuffer &R__b)
{

// Stream an object of class Myclass.
if (R__b.IsReading()) {

Myclass::Class()->ReadBuffer(R__b,this);
} else {

Myclass::Class()->WriteBuffer(R__b,this);
}

} void Myclass::Streamer(TBuffer &R__b)
{

// Stream an object of class Myclass.
if (R__b.IsReading()) {

R__b.ReadClassBuffer(Myclass::Class(),this);
} else {

R__b.WriteClassBuffer(Myclass::Class(),this);
}

}

New

Old

Philippe Canal (FNAL) 7Chep 2007

Float, double and space…

� Math operations very often
require double precision, but
on saving single precision is
sufficient…

� Data type: Double32_t

In memory: double
On disk: float or integer

� Usage (see tutorials/io/double32.C):

� No nbits,min,max
� saved as float

� min, max
� saved as int 32 bits precision explicit

values or expressions of values known to
Cint (e.g. “pi”)

� nbits present
� saved as int with nbit precision higher

precision than float for same persistent
space

Double32_t m_data; //[min,max<,nbits>]

Philippe Canal (FNAL) 8Chep 2007

Float, double and space… (2)

Save space

Increase

precision

Philippe Canal (FNAL) 9Chep 2007

STL containers and Double32_t

� Support for Double32_t extended to the case where it is a template
parameter.
� Allow storing of the content of vector<Double32_t> as float instead of

double (and any other STL containers).
� Supported only for data members and when going via the “string based”

interfaced.
� Compilers and C++ RTTI can not distinguish between a mytemp<double>

and a mytemp<Double32_t>.
� Restriction could be lifted with the new C++ feature ‘opaque typedef’
� Dictionary for mytemp<double> and mytemp<Double32_t> must be in two

different dictionary files.

� Support schema evolution from a container of double to the same
container of Double32_t and vice et versa.

Event* eventptr; std::vector<Double32_t> *myvect;
tree->Branch(“event”,&eventptr);
tree->Branch(“myvect”,”vector<Double32_t>”,&myvect);

Philippe Canal (FNAL) 10Chep 2007

Remote File Utilities

� New static function TFile::Cp()
� Allows any files (including non-ROOT files) to be copied via any of the many

ROOT remote file access plugins.

� New Class TFileMerger
� Similar to hadd
� Easy copying and merging of two or more files using the many TFile plugins (i.e.

it can copy from Castor to dCache, or from xrootd to Chirp, etc.).
�

� The AddFile() and Merge() use the Cp() to copy the file locally before making the
merge, and if the output file is remote the merged file will be copied back to the
remote destination.

TFileMerger m;
m->AddFile("url1");
m->AddFile("url2")
m->Merge();

Philippe Canal (FNAL) 11Chep 2007

Remote File Utilities
� “CACHEREAD” option for TFile::Open()

� First use TFile::Cp() to copy the file locally to a cache directory
� Open the local cache file.
� If the remote file already exists in the cache this file will be used directly,

unless the remote file has changed.

� New interface TFileStager defining the interface to a generic stager.

stg = TFileStager::Open("root://lxb6046.cern.ch")
stg->Stage("/alice/sim/2006/pp_minbias/121/168/root_archive.zip")
stg->IsStaged("/alice/sim/2006/pp_minbias/121/168/root_archive.zip")

root [] TFile::SetCacheFileDir("/tmp/userid");
root [] TFile *f = TFile::Open("http://root.cern.ch/files/aleph.root",
"CACHEREAD");
[TFile::Cp] Total 0.11 MB |====================| 100.00 % [8.8 MB/s]
Info in : using local cache copy of http://root.cern.ch/files/aleph.root
[/tmp/userid/files/aleph.root]
root [] f->GetName();
(const char* 0x41dd2d0)"/tmp/userid/files/aleph.root“
root [] TFile::ShrinkCacheFileDir();

Philippe Canal (FNAL) 12Chep 2007

Asynchronous Open

� TFile::AsyncOpen never blocks
� returns an opaque handle (a TFileOpenHandle).

� Also support string base lookup.

� Active only for xrootd connection.

TFile::AsyncOpen(fname);

// Do something else while waiting for open readiness
EAsyncOpenStatus aos = 0;
while ((aos = TFile::GetAsyncOpenStatus(fname)) == TFile::kAOSInProgress) {

// Do something else
...

}
// Attach to the file if ready ... or open it if the asynchronous
// open functionality is not supported
if (aos == TFile::kAOSSuccess || aos == TFile::kAOSNotAsync) {

// Attach to the file
f = TFile::Open(fname);

}

Philippe Canal (FNAL) 13Chep 2007

Consolidations

� Improvement in hadd
� Compression level selections
� Option to copy only histogram (and no TTree).
� Use the new fast merge by default

� Thread safety tweaks
� Reduced reliance on gFile/gDirectory in the ROOT I/O inner code so

that only the first level routine (directly called by user code) access gFile
and gDirectory.

� We enhanced the STL container streaming code to make it thread-safe.

Philippe Canal (FNAL) 14Chep 2007

Consolidations

� Extended support for operator new in the dictionaries

� Implemented a proper 'destructor' for 'emulated objects'.
� This changes allow for proper allocation and deallocation of emulated objects in

all cases.

� Enabled I/O for C-style array of polymorphic array

� Enabled I/O for C-style array of strings.

� Add support for TBuffer’s operator<< and operator>> from the CINT
command line.

Int_t fN;
MyClass** fAry; //[fN]
fAry = new MyClass*[fN];
fAry[0] = new MyClass;
fAry[1] = new DerivedFromMyClass;

Philippe Canal (FNAL) 15Chep 2007

ROOT and SQL

� TSQLStatement
� Related SQL prepared statements
� Works with native data types: integer, double, date/time, string, null
� Introduces binary data support (BLOBs)

� Useful not only for SELECT, but also for INSERT queries
� Implementations for:

� MySQL, Oracle, PostgreSQL, SapDB

� Significant improvement in performance, especially for bulk operations, especially for Oracle
(factor of 25 - 100)

� Added support for ODBC

� TFileSQL
� Allow access to table via the well known TFile interface

� Supports both classes with and without custom streamer.

Philippe Canal (FNAL) 16Chep 2007

Autoderefencing

� TRef and TRefArray are now auto-dereferenced when used in TTree::Draw
� Requires to enable TRef autoloading (by calling TTree::BranchRef)
� For collections of references either a specific element of the collections may be specified or the

entire collection may be scanned. (example 2.)

� Same framework can be used for any Reference classes (eg. POOL Ref)

� The TTreeFormula operator @ applied to a reference object allows to access internals
of the reference object itself (example 3.)

� The dereference mechanism even works across distributed files (if supported by the
reference type) (example 4.)

� Caveat for TRefArray and TRef:
� To know the underlying type, the first entry of the TTree is read.

� Special Thanks To Markus Frank
� Special Thanks to DZero for testing the limits of the TRef mechanism

1: T->Scan("fLastTrack.GetPx()");
2: T->Scan("fMuons.GetPx():fMuons[0].GetPx()”);
3: T->Scan("fLastTrack.GetUniqueID():fLastTrack@.GetUniqueID()&0xFFFF");
4: T->Scan("fWebHistogram->GetRMS()");

Philippe Canal (FNAL) 17Chep 2007

Autoderefencing (2)

� New Abstract interface TVirtualRefProxy

� Generic interface to return referenced objects and their types.

� Support both single references and collection of references.

� Concrete implementation must be attached to the corresponding TClass.

TClass::GetClass("TRef")->AdoptReferenceProxy(new TRefProxy());

void* TRefProxy::GetObject(TFormLeafInfoReference* info, void* data, int)
{

if (data) {
TRef* ref = (TRef*)((char*)data + info->GetOffset());
// Dereference TRef and return pointer to object
void* obj = ref->GetObject();
if (obj) { return obj; }
... else handle error or implement failover

}
}

Philippe Canal (FNAL) 18Chep 2007

Fast Merge of TTrees.

� New option, "fast“ for CloneTree and Merge.

� No unzipping, no un-streaming.

� Direct copy of the raw bytes from one file to the other.

� Much higher performance.

� Only available if the complete TTree is being copied.

� Can also sort the baskets by branch or by sequential read order

myChain->CloneTree(-1,”fast”);
myChain->Merge(filename,”fast”);

Philippe Canal (FNAL) 19Chep 2007

New TTree Features

� Importing ASCII data
� Long64_t TTree::ReadFile(filename,description)

� ‘description’ gives column layout following ‘leaflist’ format

� TTree::GetEntries

� Number of entries passing the selection

TTree *T = new TTree("ntuple","data from ascii file");
Long64_t nlines = T->ReadFile("basic.dat","x:y:z");

Long64_t nevents = T->GetEntries(“fPx>2.5");

Philippe Canal (FNAL) 20Chep 2007

TTree Drawing
� TString and std::string can now be plotted directly.

� Object plotting

� If a class has a method named either AsDouble or AsString (AsDouble
has priority), it will be used for plotting.

� For example with a TTimeStamp object:

� Allow more formatting options for TTree::Scan.

tree->Draw("mybr.mystring");
tree->Draw("mybr.mystring.c_str()");
tree->Draw("mybr.mytstring.Data()");

tree->Draw("myTimeStamp");
tree->Draw("myTimeStamp.AsDouble()");

tree->Scan("val:flag:flag:c:cstr", "", "col=::#x:c:");

**
* Row * val * flag * flag * c * cstr *
**
* 0 * 0 * 1 * 0x1 * a * i00 *
* 1 * 1.1 * 2 * 0x2 * b * i01 *

Philippe Canal (FNAL) 21Chep 2007

TTree::Draw extensions

� TTree::Draw can execute scripts in a context where the name
of the branches can be used as a C++ variable.

// File hsimple.C
double hsimple()
{

return px;
};

tree->Draw(“hsimple.C”);

// File track.C
double track()
{
int ntrack = event->GetNTracks();
if (ntrack>2) {
return fTracks.fPy[2];

}
return 0;

};

tree->Draw(“track.C”);

Philippe Canal (FNAL) 22Chep 2007

TTree::MakeProxy
� Enables tree->Draw(“hsimple.C”);

� Generates a skeleton analysis class inheriting from
TSelector and using TBranchProxy.
� TBranchProxy is the base class of a hierarchy implementing an

indirect access to the content of the branches of a TTree.

� Main Features:
� on-demand loading of branches
� ability to use the 'branchname' as if it was a data member
� protection against array out-of-bound
� ability to use the branch data as an object (when the user code is

available)
� Gives access to all the functionality of TSelector

� Example in $ROOTSYS/tutorials:
h1analysisProxy.cxx , h1analysProxy.h and h1analysisProxyCut.C

Philippe Canal (FNAL) 23Chep 2007

TEntryList

� Goals:
� Replace TEventList

� TEventList is a simple list of the entries numbers
� Scale linearly with the number of entries selected!
� Not well suited for Proof

� Scalable, Modular, Small, Only partially loaded in memory

� Strategy:
� Use ‘block’ holding information on 64000 entries
� Information stored either as a bit field or a regular array of entry number

� Features:
� Can be stored/restored easily from (independent) files
� Can be combined and split

� To handle trees independently from their chain (This is essential for Proof)

tree->Draw(“>>elist”, “x<0”, “entrylist”);
…
tree->SetEntryList(elist);

Philippe Canal (FNAL) 24Chep 2007

TEntryList Storage Strategy

TEntryListBlock

UShort_t* fIndices;
Int_t fType;

Suppose that this block stores information that entries
0, 2, 4, 10, 12, 14

pass the selection criteria

Bits representation

Array representation

fIndices[0] fIndices[1] fIndices[2] fIndices[3] fIndices[4] fIndices[5]

0 2 4 10 12 14

1 0 1 01 1 1 100 0 0 0 0 0 0

fIndices[0]

fType=0

fType=1

It makes sense to switch to the array representation when less than 1/16 of entries
in the block pass the selection criteria

Philippe Canal (FNAL) 25Chep 2007

Upcoming Features

� Continue Consolidations ☺

� Splitting STL collection of pointers
� Schema Evolution

� Provision for Data Model Evolution
� To and From more combinations of containers (Double32 vs. double,

ROOT containers).

� MakeProxy
� Add support for CINT-interpretation

� TTree
� Indexing using bitmap algorithm (TBitMapIndex) from LBL.
� TTree::Draw performance

Philippe Canal (FNAL) 26Chep 2007

Conclusions

� Even after 12 years of ROOT:

� The I/O area is still improving

� There were quite a number of
developments

� Remote file performance

� SQL Suport

� Tree I/O from ASCII, tree indices

� Auto dereferencing

� Fast Merge

� There will be certainly some
developments in the I/O area

� The “classical” stuff however is
intended to be kept stable

� Main focus:
Consolidation (Thread Safety),
Data Model Evolution and more
STL support.

