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OUTLINE

Lecture 1 (today)

Basic concepts in Probability and Statistics

Lecture 2 (Tuesday)

Maximum Likelihood theorem
Multivariate techniques

Lecture 3 (Thursday)

An analysis example from BaBar
Hypothesis testing, limit settings

Disclaimer

Most, if not all of you, are already familiar with many of these topics...

for consistency, the scope spans from the very general concepts towards
more advanced developments...
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The PDG is a convenient source for quick reference :
J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)
(« Mathematical Tools » section)

“Must-have” in your bookmarks, and open during most of your working time :
The ROOT users' guide
The RooFit user's guide
The TMVA user's guide




PROBABILITY

Mathematical probability

abstract axiomatic concept, developed by Kolmogorov (1933)
Probability theory : the tool to quantify our knowledge of random processes
A process is called random if :

* its outcome (“an event”) cannot be predicted with complete certainty
* if repeated under the same conditions, the outcome can be different

In practice, the underlying sources of uncertainty can be :
 fundamental : quantum mechanics is not a deterministic theory
* particle physics is an excellent example !

* due to irreducible random measurement errors (i.e. thermal effects)

* due to reducible measurement errors (i.e. practical instrumental limitations)



MATHEMATICAL PROBABILITY

* Let Q be the total universe of possible outcomes (also called sample space)
* Let ®=A,B,... be elements of Q2

A probability function P is defined as a map into the real numbers :
P: {Q} — [0:1]

w — P(w)
The mapping must satisfy the following axioms :

P(Q) =1

if ANB = & , then P(AUB) = P(A) + P(B)
From which various useful properties are easily derived, i.e.

P(A) = 1-P(A)

P(AUA) =1

P(D) = 1-P(Q) = 0

P(AUB) = P(A) + P(B) — P(ANB)



CONDITIONAL PROBABILITY, BAYES’ THEOREM

Conditional probability : by restricting the sample space (2 to a subsample B
(with P(B)#0)

P(A|B) = probability of A given B

Independence : events A and B are said to be independent (that is, their
realizations are not linked in any way) if

P(ANB) = P(A)P(B)
If A and B are actually independent, P(A|B) = P(A)

Bayes’ theorem : since P(AMNB) = P(BMA) onehas

P(B|A)P(A)
P(B)

P(AIB) =

Useful situation: if 2 is divided into disjoint subsets A. (“a partition”),
P(BIA)P(A)

P(A|IB) =
AB Y P(BIA)P(A)




RANDOM VARIABLES, DENSITY FUNCTIONS

Numerical outcome of a random process (i.e. a measurement) : to each event X
corresponds a number x (can be a discrete or continuous number)

Probability density function (PDF) P(x) :

* For a discrete variable,

0.015F ]
P(X found in Xj) = pj, with Ep] =1 o.o1§~ E
* For areal-valued variable, J 0.005f E

P(X found in [x,x+dx]) = P(x)dx I S T e

Probability Density Function

with fdx'P(x') =1 5
. Useful definition: cumulative density (CDF) C(x) : 308_
C(x) = [dx'P(x)

Cumulative Density Function

Pla<X<b) = C(b)-C(a) = fde(x) o



MULTIDIMENSIONAL DENSITY FUNCTIONS

Several random variables as outcome : random vectors X = {X1 D, CHR Xn}

The multidimensional PDFis  P(x)dx = P(x,,x,,...,x, )dx, dx, ...dx,

b d
Example in two dimensions: P(q < X <b AND c<Y <d) = fdxf dy P(x,y)

Marginal density : b
P,(x)dx = P(Xin[x,x+dx]andY in[-%,+x]) = dxfdyP(x,y)
b

e Sothat P(x) = [dyP(x,)
4; - For a fixed value of Y, ’
2r f P(le) _ P(xay) _ P(-xay)

| [ayP(x.y)  P(y)

1 is a conditional density function for X

4

- . JHKXYareindependent: P(x,y) = P,(x) - P,(y)
B a2 0 2 4 6
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EXPECTATION VALUES

Consider a continuous random variable X with PDF P_(x). For a generic function
y(x), its expectation value is defined as
E[y] = [ y(x) P(x) dx

A few expectation values have their own name:
* Meanvalue: ¢ = E[x] = fx P(x) dx

. Variance o’ = V[x] =E[x*] - u* = E[(x-u)*]

« Covariance: Cov|x,y] = E[xy] - uu, = E[(X—Mx)(y—ﬂy)]
Cov[x,y]
0.0,

* The dimensionless linear correlation coefﬁcient:p(x,y) =
By construction, -1 = p(x,y) =1
Note : if X,Y independent, thatis P(x,y) = P.(x)- P, (y)

E[x)’] = ffxyP('x’y)dXdy = Mxluy and thus p('x7y) =0

(the converse needs NOT to be true!)




MORE ON CORRELATIONS

Correlated variables : p = + (0.9 Correlated variables , but p =0
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MEASUREMENTS . CHARACTERIZING A SAMPLE

Often, the PDF is not known, and only a finite-size sample is available (say /V events)
The expectation values can be estimated by means of a suitable choice of statistics
(a statistics is a generic function of the reduced-size sample)

Example : the empirical average is an estimator of the mean value,

and characterizes the sample location

— 1”
=E[x]=fo(x)dx , x=;2xl

1=
Another example : the RMS (squared) is an estimator of the variance,
and characterizes the sample dispersion

= JVIx] =E[¥*] - u> , RMS = \/_2—(})2

Even more : higher-order moments provide additional shape information :
the 3 and 4t reduced moments estimate the skewness and kurtosis of the sample

(definition of (reduced) moments x, (1 ;) follows from the Characteristic function



MEASUREMENTS . CHARACTERIZING A SAMPLE

— ‘Y1=0, ‘Y2=0

—_— y1<0
R y1>0
e Y >0
e -f.2<y <0
v :-1.é
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ESTIMATORS : BIAS AND ACCURACY

A “good” estimator should satisfy (some of) various conflicting properties :

* be consistent, lim6 = E|0]

n—>00

* be unbiased, or at least asymptotically unbiased
e Other properties : unbiased biased
efficiency, robustness ...

consistent

inconsistent




ESTIMATORS : BIAS AND ACCURACY

Two useful examples :

The empirical average is a convergent, unbiased estimator of the mean

— 1 n
E[x] = = Y E[x] =
[x] . 2 [x] = u

. 1 n (),2
Vix] = =) V[x] = —
[x] nE [x] = =

The RMS (squared) is a convergent, biased, asymptotically unbiased, estimator of
the variance

RMS* = %S(xi—;)z _ 1 n( i_M)z—(x—M)

E[RMS*] = 0*-V[x] = —o0



ESTIMATORS : ERROR PROPAGATION

Consider a sample of random vectors X = {X,,X,,..., X, }
for which their covariances V. = cov[x;, x;] are known.

We are interested in estimating the varlance of y(x)
in principle itis given by V[y]| = E[y ]- (E[y]) in practice, one can use

y(x) = y(u)+2[jy } (x-w) = Elyx)] =~ yuw

=1

x=u
2,7 2,7 — X\ -dy
E’ (] = y (@ +2y@ Y| —=| - Elx =]
i=1 L9 J5g
a| dy C -dy 2=y 0| Ay || dy
+E|[ ) 1==| (x-w)|| D51 (2 -—m)||= ¥y (w+ [—} -1 Y
121 dx; |- - )[;_dx] }=p( ! ])] ZJE=1 dx; || dx,; | ’
\ dy} dy
2
and thus o, = [ Vi
e dx; || dx, i




ESTIMATORS : ERROR PROPAGATION

X={X,X,5,....,% }

A few special cases :

n
_ 2 2 d
e ifthe {xl.} are all uncorrelated, V,-j = 0; 51']' and O, = E[—y} Vi
i=1 x=U

2 2 2
+ for y=x,+x,, — 0,=0,+0;+2cov[x,x,]

(add absolute errors in quadrature)

2 2 2
O, 0O, O) cov[x,x,]
e for Y=XX,, S=—0t—5+2
y X X X147

(add relative errors in quadrature)

e for y=x,-x,, and p=1, — ay=0



A SURVEY OF USEFUL DISTRIBUTIONS

Distribution/PDF UseinHEP

Binomial Branching Ratio

Poisson Event-counting analyses
Uniform MonteCarlo integration
Exponential Lifetime measurement
Gaussian Resolution

Breit-Wigner Mass of resonance

X2 Goodness-of-fit
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A DISCRETE DISTRIBUTION : BINOMIAL

Consider a situation with two possible outcomes : “yes” or “no”, with a fixed
probability p of obtaining “yes”.

If n trials are performed, 0<k<n produce “yes” as outcome; only & is interesting, the
sequence of trails irrelevant. This number of “yes” follows the binomial distribution,

n!

Pbinomial(k;n’p)= pk(l_p)n_k
k\(n—k)!
(k is the random variable, n and p are parameters) for which the expectation value
and variance are 2 T
A ;_-é p=0.6
E[k]=2kain0mial(k;n’p)=np 1o
n=0

VIk]= E[k*]-(E[k])’ = np(1- p)

Typical example : the number of events
in a specific sub-category (i.e. a branching ratio) T T
follows a binomial distribution. 0 z 4 6 8 10

Number of successes




A DISCRETE DISTRIBUTION . POISSON

Consider the binomial distribution for %, in the following limit

, Elk]l=np— A

n—=>o0 . p—0

The random variable % follows the Poisson distribution,

Are™*
(k;A) = X

(k is the random variable, 4 is the unique parameter) for which the expectatlon
value and variance are : L L B BN B

.
Elk] = V[k] =

Pozsson

Probability

Typical example :

the number of expected events in one
category, at a fixed number of expected

events (i.e. at a given luminosity) i R T R |I_'. =
0 2 4 6 8 10 12 14

Number of Counts



A REAL-VALUED DISTRIBUTION : UNIFORM

Consider a continuous random variable x, with PDF

1
I)Uniform(x;a’b)=< b-a
0

asx=<b

otherwise

9

for the Uniform distribution, the expectation value and variance are

a+b %

Elx] = g

[x] 5 :

2 3

Vix] = L= :
12

Typical usage: accept-reject techniqu
for MonteCarlo generation




A REAL-VALUED DISTRIBUTION : EXPONENTIAL

Consider a continuous random variable x, with PDF

-

PExponential ('x’ 5) = §

O , otherwise

"

for this exponential distribution, the expectation value and variance are

|||||||| L L L

E[x] = &
Vix] = &

Probability density

Typical examples : distribution of decay-lengths,
lifetimes.

The exponential is self-similar : g

PExponential (X — xO l x> xO) = P Exponential (X )



A REAL-VALUED DISTRIBUTION : GAUSSIAN

Consider a continuous random variable x, with PDF

1 _(X_M)z

2 e 20°
\NZITO

For the Gaussian (or Normal) distribution, the expectation value and variance are

PGauss (X, a, b) =

Elx] = u 2
Vix] = o’ z
3 o
£
2
The special case U4 = 0,0"=1 FWMH
is often called “reduced normal”.
Other parametrization often quoted:

Full Width at Half-Maximum, FWHM ~ 2.35¢

Gaussian distributions are the limit of many
processes. Examples abound!



CENTRAL LIMIT THEOREM

Consider n independent random variables x = {X,,X,,...,X, }
with mean x and variance ¢°

I X —u.
The sum of reduced variables C = _E_l H;

" P(c) =

converges to a reduced normal distribution,
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A REAL-VALUED DISTRIBUTION : CHI-<SQUARED (x2)

Consider a continuous random variable x, with PDF

n/2-1 _-x/2

P (x;n)=——
X 2n/2—1r(ﬁ)
2

can be obtained as the sum of squares of n normal-reduced variables,

-3()

i=1

TrTT T T T T T T T T T T T T T T T [TTTTTTTTTTTTTT [TTTTTTTTT

the expectation value and variance are
Elx] =n
Vix] = 2n

nis called “number of degrees of freedom”. o 1 2 3 4 5 6 7 8 9 10
A goodness-of-fit for least-squares fits should
follow a x2 distribution.



A REAL-VALUED DISTRIBUTION . BREIT-WIGNER

Consider a continuous random variable x, with PDF

( )
1 2
P, (x5, x,) =

b4 , (TY
(x—x,) +(2)

follows the Breit-Wigner distribution, for which neither the expectation value
nor the variance are well defined. The parameters are

x, — most probable value
I' = FWHM

The mass of a resonance follows a B.W. function,
for which x, is the mass, and I' is the decay rate




