Towards simulation of anti-ion - ion interactions

A. Galoyan, V. Uzhinsky 01.12.2010

For the first time a good description of Pbar D interactions was reached in the paper by V. Franco, R.J. Glauber, Phys. Rev. 142 (1966) 1195 High-energy deuteron cross-sections.

$$
F_{f i}(\mathbf{q})=\langle f| \exp \left(\frac{1}{2} i \mathbf{q} \cdot \mathbf{s}\right) \frac{i k}{2 \pi} \int \exp (i \mathbf{q} \cdot \mathbf{b}) \Gamma_{n}(\mathbf{b}) d^{(2)} \mathbf{b}+\exp \left(-\frac{1}{2} i \mathbf{q} \cdot \mathbf{s}\right) \frac{i k}{2 \pi} \int \exp (i \mathbf{q} \cdot \mathbf{b}) \Gamma_{p}(\mathbf{b}) d{ }^{(2)} \mathbf{b}
$$

Application of the Glauber theory to Pbar A interactions

Scattering Of Low-Energy Anti-Protons From Nuclei.
O.D. Dalkarov, V.A. Karmanov Nucl.Phys.A445:579-604,1985.

In the Glauber approximation the amplitude of elastic scattering from a nucleus A without Coulomb effects can be represented in the standard form ${ }^{3}$)

$$
F_{i i}(q)=i k \int_{0}^{\infty} \Gamma(b) J_{0}(q b) b \mathrm{~d} b
$$

where $J_{0}(q b)$ is a Bessel function,

$$
\begin{aligned}
\Gamma(b) & =1-\exp \left(i \chi_{\mathrm{N}}(b)\right) \\
\chi_{\mathrm{N}}(b) & =\frac{A}{2 \pi k} \int \mathrm{e}^{-i q \cdot b} f_{\mathrm{N}}(q) \phi(q) \mathrm{d}^{2} q
\end{aligned}
$$

$\phi(q)$ is the elastic nuclear form factor, parametrized (at $4 \leqslant A \leqslant 16$) in the form

$$
\begin{gathered}
\phi(q)=\left(1-\frac{A-4}{6 A} R^{2} q^{2}\right) \exp \left(-\frac{1}{4} R^{2} q^{2}\right) \\
f_{\mathrm{N}}(q)=\frac{k \sigma(i+\varepsilon)}{4 \pi} \mathrm{e}^{-B q^{2} / 2}
\end{gathered}
$$

Theoretical Anti-Deuteron Nucleus Absorptive Cross-Sections W.W. Buck , J.W. Norbury, L.W. Townsend, J.W. Wilson Phys.Rev.C33:234-328,1986

From eikonal scattering theory, the absorption (reaction) cross section is

$$
\sigma_{\mathrm{abs}}=2 \pi \int_{0}^{\infty}\{1-\exp [-2 \operatorname{Im} \chi(b)]\} b d b
$$

where the complex phase function is (with $\hbar=1$)

$$
\chi(b)=-(2 k)^{-1} \int_{-\infty}^{\infty} U(b, z) d z
$$

with k the projectile momentum wave number and b denoting the impact parameter. The reduced potential is then obtained from the optical potential as

$$
\begin{aligned}
& U(x)=2 m A_{P} A_{T}\left(A_{P}+A_{T}\right)^{-1} W(x), \\
& W(x)=A_{P} A_{T} \int d^{3} z \rho_{T}(z)
\end{aligned}
$$

$$
\times \int d^{3} y \rho_{P}(x+y+z) \widetilde{t}(e, y)
$$

Generator of inelastic nucleus-nucleus interaction diagrams Computer Physics Communications, V 54, 1989, Pages 125-135 S. Yu. Shmakov, V. V. Uzhinskii, A. M. Zadorozhny

As is well known, the scattering amplitude of two nuclei with the mass numbers A and B in the impact parameter representation is given by [3-6]

$$
\left.F(b)\right|_{\substack{\mathbf{A}(\mathrm{i} \rightarrow \mathrm{f}) \\ \mathbf{B}(\mathrm{i} \rightarrow \mathrm{f})}}=\left\langle\psi_{\mathrm{A}}^{\mathrm{f}} ; \psi_{\mathrm{B}}^{\mathrm{f}}\right| 1-\prod_{j=1}^{\mathrm{A}} \prod_{k=1}^{\mathrm{B}}\left[1-\gamma\left(b-s_{j}+\tau_{k}\right)\right]\left|\psi_{\mathrm{B}}^{\mathrm{i}} ; \psi_{\mathrm{A}}^{\mathrm{i}}\right\rangle
$$

where b is the impact parameter vector. The angle brackets mean the average over the initial $\psi_{A}^{i}, \psi_{B}^{i}$ and final $\psi_{A}^{f}, \psi_{B}^{f}$ state wave functions of nuclei A and B. $\gamma(b)$ is the amplitude of elastic nucleon-nucleon (NN) scattering in the impact parameter representation

$$
\gamma(b)=\frac{1}{2 \pi i p} \int \mathrm{e}^{\mathrm{i} q \cdot b} f(q) \mathrm{d}^{2} q
$$

P is the momentum of nucleus A per nucleon in a system where the target nucleus B is at rest. $f(g)$ is the NN - elastic scattering amplitude in the momentum representation.
$\left\{s_{A}\right\}$ and $\left\{\tau_{B}\right\}$ are the coordinates of the nucleons with regard to the centers of mass of nuclei A and B, respectively, in the plane of the impact parameter (i.e. in the plane perpendicular to the momentum p).

Using (1) one can find different nucleus-nucleus interaction characteristics. For example, on the simple assumption * that

$$
\begin{aligned}
& \left|\psi_{\mathrm{A}}^{\mathrm{A}}\right|^{2}=\prod_{j=1}^{\mathrm{A}} \rho_{\mathrm{A}}\left(s_{j}, z_{j}\right), \quad\left|\psi_{\mathrm{B}}^{\mathrm{B}}\right|^{2}=\prod_{j=1}^{\mathrm{B}} \rho_{\mathrm{B}}\left(\tau_{j}, \xi_{j}\right), \\
& \boldsymbol{\sigma}_{\mathrm{AB}}^{\mathrm{tot}}=\left.2 \operatorname{Re} \int \mathrm{~d}^{2} b F(\boldsymbol{b})\right|_{\underset{\mathrm{A}(\mathrm{i} \rightarrow \mathrm{i})}{ }} \\
& =2 \operatorname{Re} \int \mathrm{~d}^{2} b\left\{1-\prod_{i=1}^{\mathrm{A}} \prod_{j=1}^{\mathrm{B}}\left[1-\gamma\left(b-s_{i}+\tau_{j}\right)\right]\right\}\left\{\prod_{i=1}^{\mathrm{A}} \rho_{\mathrm{A}}\left(s_{i}, z_{i}\right) \mathrm{d}^{3} r_{i}\right\}\left\{\prod_{i=1}^{\mathrm{B}} \rho_{\mathrm{B}}\left(\tau_{i}, \xi_{i}\right) \mathrm{d}^{3} t_{i}\right\}, \\
& \sigma_{\mathrm{AB}}^{\mathrm{in}}=\int \mathrm{d}^{2} b\left\{1-\prod_{i=1}^{\mathrm{A}} \prod_{j=1}^{\mathrm{B}}\left[1-\gamma\left(\boldsymbol{b}-s_{i}+\tau_{j}\right)-\gamma^{*}\left(\boldsymbol{b}-s_{i}+\tau_{j}\right)+\gamma\left(\boldsymbol{b}-\boldsymbol{s}_{i}+\tau_{j}\right) \gamma^{*}\left(\boldsymbol{b}-\boldsymbol{s}_{i}+\tau_{j}\right)\right]\right\} \\
& \times\left\{\prod_{i=1}^{A} \rho_{\mathrm{A}}\left(s_{i}, z_{i}\right) \mathrm{d}^{3} r_{i}\right\}\left\{\prod_{i=1}^{\mathrm{B}} \rho_{\mathrm{B}}\left(\tau_{i}, \xi_{i}\right) \mathrm{d}^{3} t_{i}\right\} .
\end{aligned}
$$

Ingredients of Glauber model

1. Nuclear density
$R(H e 3)=1.81 \mathrm{fm}, \quad R(\mathrm{He} 4)=1.37 \mathrm{fm} \quad$ Deutron - Hulthen wave function. W. Broniowski, M.Rzyczynski, P. Bozek, CPC, 180, (2009), 69

$$
n_{e}(r)=c \frac{4 \pi r^{2}\left(1+W_{e} \frac{r^{2}}{R_{e}^{2}}\right)}{1+\exp \left(\frac{r-R_{e}}{a_{e}}\right)}, \quad \begin{array}{ll}
\left.1.113 A^{1 / 3}-0.277 A^{-1 / 3}\right) \mathrm{fm} \\
& a=0.45 \mathrm{fm} \quad(d=0.4 \mathrm{fm})
\end{array}
$$

2. New parametrisation of total and elastic cross-sections of pbar-p interactions J.R. Cudell et al. (COMPLETE collab.) Phys. Rev. D65 (2002) 074024; W.-M. Yao et al. (PDG),
J. Phys. G33 (2006) 337;
M. Ishida and K. Igi,

Phys. Rev. D79 (2009) 096003.

$$
\begin{gathered}
\sigma_{a b, a s m p t}^{t o t}=Z_{a b}+B\left(\log \left(s / s_{\mathrm{O}}\right)\right)^{2} \\
B=0.3152, s_{0}=34.0(C O M P L E T E, 2002) \\
B=0.308, \quad s_{0}=28.9 \quad(P D G, 2006) \\
B=0.304, s_{0}=33.1(\text { M.Ishida, K.Igi, 2009) } \\
\text { Low energy extension }
\end{gathered}
$$

A.A. Arkhipov, hep-ph/9909531 (1999), hep-ph/9911533 (1999)

$$
\begin{gathered}
\sigma_{\bar{p} p}^{t o t}=\sigma_{a s m p t}^{t o t}\left[1+\frac{C}{\sqrt{s-4 m_{N}^{2}}} \frac{1}{R_{0}^{3}}\left(1+\frac{d_{1}}{s^{0.5}}+\frac{d_{2}}{s^{1}}+\frac{d_{3}}{s^{1.5}}\right)\right] \\
\sigma_{a s m p t}^{t o t}=36.04+0.304(\log (s / 33.0625))^{2}
\end{gathered}
$$

New parameterization of PbarP cross sections

$$
\begin{array}{cc}
\sigma_{\bar{p} p}^{t o t}=\sigma_{a s m p t}^{t o t}\left[1+\frac{C}{\sqrt{s-4 m_{N}^{2}}} \frac{1}{R_{0}^{3}}\left(1+\frac{d_{1}}{s^{0.5}}+\frac{d_{2}}{s^{1}}+\frac{d_{3}}{s^{1.5}}\right)\right] & \sigma_{\bar{p} p}^{e l}=\sigma_{a s m p t}^{e l}\left[1+\frac{C}{\sqrt{s-4 m_{N}^{2}}} \frac{1}{R_{0}^{3}}\left(1+\frac{d_{1}}{s^{0.5}}+\frac{d_{2}}{s^{1}}+\frac{d_{3}}{s^{1.5}}\right)\right] \\
\sigma_{\text {asmpt }}^{t o t}=36.04+0.304(\log (s / 33.0625))^{2} & \sigma_{a s m p t}^{e l}=4.5+0.101(\log (s / 33.0625))^{2} \\
R_{0}=\sqrt{0.40874044 \sigma_{a s m p t}^{t o t}-B} & R_{0}=\sqrt{0.40874044 \sigma_{a s m p t}^{t o t}-B} \\
B=11.92+0.3036\left(\log (\sqrt{s} / 20.74)^{2}\right. & B=11.92+0.3036\left(\log (\sqrt{s} / 20.74)^{2}\right. \\
C=13.55, d_{1}=-4.47, d_{2}=12.38, d_{3}=-12.43 & C=59.27, d_{1}=-6.95, d_{2}=23.54, d_{3}=-25.34
\end{array}
$$

$\sigma_{\mathrm{el}} / \sigma_{\text {tot }}=1 /\left(2 \mathrm{C}_{\text {sh }}\right) \approx 1 / 3$, according to the quasi-eikonal approach of the reggeon field theory (K.A. Ter-Martirosyan, A.B. Kaidalov)

New parameterization of PbarP cross sections

Chi²/NoF =6652/440~15 (total), without 15 points $-4371 / 429 \approx 10$
$\mathrm{Chi}^{2} /$ NoF $=148 / 137 \approx 1$ (elastic)

Calculation results in Glauber approach, light nuclei

Total and inelastic cross sections

Annihilation, elast+Qelast cross sections

Calculation results in Glauber approach, light nuclei

Inelastic (absorption) cross sections

A.B. Larionov, , I.A. Pshenichnov, I.N. Mishustin, W. Greiner, Phys. Rev. C80(2009)021601,2009
 Anti-proton - nucleus collisions simulation within a kinetic approach with relativistic mean fields

Calculation results in Glauber approach for Pbar + A

A.B. Larionov, , I.A. Pshenichnov, I.N. Mishustin, W. Greiner, Phys. Rev. C80(2009)021601,2009

Anti-proton - nucleus collisions simulation within a

Calculation results in Glauber approach for heavy nuclei

Parameterization of Anti-Ion-lon cross-sections

A simplified Glauber model for hadron-nucleus cross sections. V.M. Grichine Eur.Phys.J. C62: 399-404, 2009.

A simple model for integral hadron-nucleus and nucleus-nucleus cross-sections. V.M. Grichine, Nucl.Instrum.Meth. B267: 2460-2462, 2009
$\sigma_{\text {tot }}^{h A}=2 \pi R^{2} \ln \left[1+\frac{A \sigma_{\text {tot }}^{h N}}{2 \pi R^{2}}\right], \quad \sigma_{\text {tot }}^{A_{p} A_{t}}=2 \pi\left(R_{p}^{2}+R_{t}^{2}\right) \ln \left[1+\frac{A_{p} A_{t} \sigma_{\text {tot }}^{\mathrm{NN}}}{2 \pi\left(R_{p}^{2}+R_{t}^{2}\right)}\right]$,
$\sigma_{\mathrm{in}}^{h A}=\pi R^{2} \ln \left[1+\frac{A \sigma_{\text {tot }}^{h N}}{\pi R^{2}}\right]$.

$$
\sigma_{\text {in }}^{A_{p} A_{t}}=\pi\left(R_{p}^{2}+R_{t}^{2}\right) \ln \left[1+\frac{A_{p} A_{t} \sigma_{t o t}^{N N}}{\pi\left(R_{p}^{2}+R_{t}^{2}\right)}\right],
$$

Parameterizations of radii

Total cross section parameters

Inelastic cross section parameters

$$
\begin{array}{rlrlrll}
\bar{p} A & R_{A} & =1.34 A^{0.23}+1.35 / A^{1 / 3} & (m b) & \bar{p} A & R_{A}=1.31 A^{0.22}+0.90 / A^{1 / 3} & (m b) \\
\bar{d} A & R_{A} & =1.46 A^{0.21}+1.45 / A^{1 / 3} & (m b) & \bar{d} A & R_{A}=1.38 A^{0.21}+1.55 / A^{1 / 3} & (\mathrm{mb}) \\
\bar{t} A & R_{A}=1.40 A^{0.21}+1.63 / A^{1 / 3} & (m b) & \bar{t} A & R_{A}=1.34 A^{0.21}+1.51 / A^{1 / 3} & (\mathrm{mb}) \\
\bar{\alpha} A & R_{A}=1.35 A^{0.21}+1.10 / A^{1 / 3} & (\mathrm{mb}) & \bar{\alpha} A & R_{A}=1.30 A^{0.21}+1.05 / A^{1 / 3} & (\mathrm{mb})
\end{array}
$$

Comparison of the Glauber calculations and the parameterization

GEANT4

Class:

Base class

G4VComponentCrossSection

New class

G4ComponentAntiNucINuclearXS

ComputeTotalCrossSection(Particle, Ekin,Z,A)
GetTotalZandACrossSection(Particle, Ekin,Z,A) ComputeInelasticCrossSection(Particle, Ekin,Z,A) GetInelasticZandACrossSection(Particle, Ekin,Z,A)

Compute ElasticCrossSection(Particle, Ekin,Z,A) GetElasticZandACrossSection(Particle, Ekin,Z,A)

Derived methods

Summary

1. New parametrization of pbar-nucleon total and elastic cross sections is proposed
2. With new parameterization calculations of pbar - nucleus cross sections in Glauber approach and comparison with exp.data were performed. It is shown that the Glauber theory works well.
3. With new parameterization anti-nucleus nucleus cross sections were calculated in Glauber approach.
4. According to Grichine formulae, anti-nucleus nucleus cross sections have been parameterized using new nuclear effective radii.
5. Class for calculation of anti-nucleus nucleus cross sections is created in Geant4

Plans

Implementation of simulation of Pbar - P multi-paticle production in Geant4; Implementation of simulation of Pbar - A interactions in Geant4; Implementation of simulation of AntiA - A interactions in Geant4

