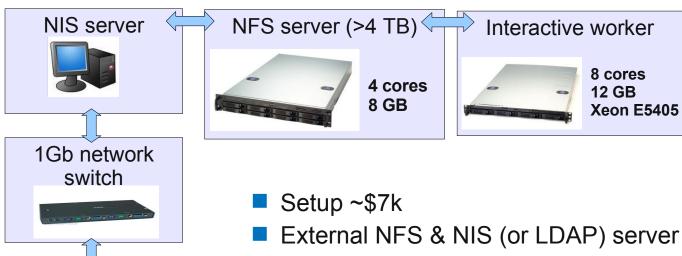


... for a brighter future

T3G example model

<u>Sergei Chekanov</u>, Rik Yoshida ANL

UChicago ► Argonne_{uc}


A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC More details: "A PC farm for ATLAS Tier3 analysis" S.C., R.Yoshida, ATL-COM-GEN-2009-016

Requirements of T3G cluster

- Allows "data staging" and "chaotic" job execution
- Allows interactive analyses (including PROOF)
- No resource allocation and file staging for each execution.
- Low cost: tens of \$k.
 - ~\$25k for processing power 0.5 TB/h of AOD files
- Off-the-shelf hardware.
- Small effort in management (0.2FTE)
- 1 Gb network
- Fully scalable, no I/O bottleneck

Initial setup. Scalable interactive worker node

- for scalability and security
- SL4.6 on interactive node (SL5.3 for the rest)
- NFS setup: /users home directories /data - data files /share - ATLAS release + OSG

What can be done with such setup?

KVM switch

Initial setup. Scalable interactive worker node

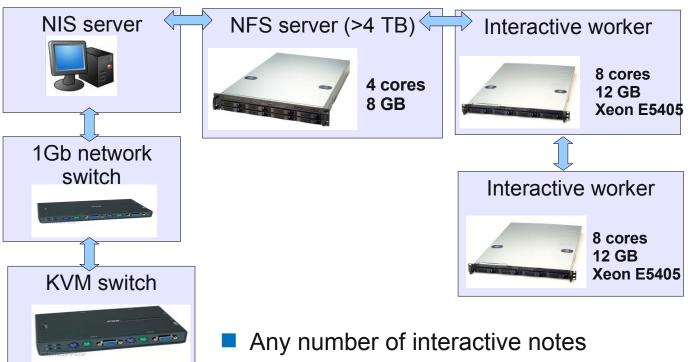
Using all 8 cores. Data are either on NFS or Interactive node:

- 200k AOD events/h (using all cores)
- Several 10⁶ evens/h for ROOT ntuples

Software required: Proof or

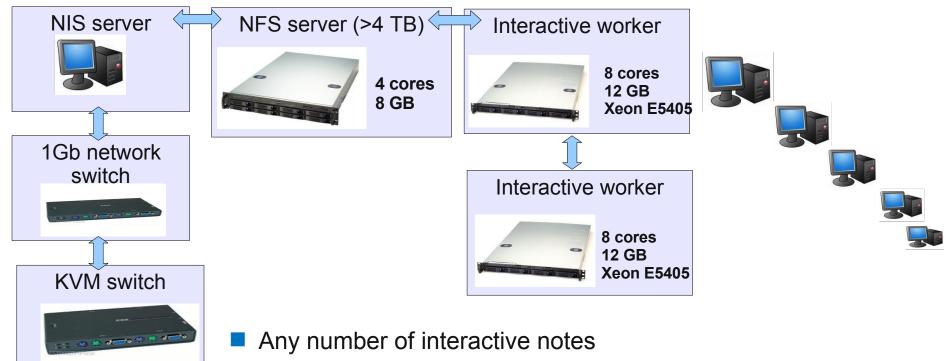
1) Condor (comes with OSG) on the interactive node

2) ArCond front-end (from ANL web page) for data discovery

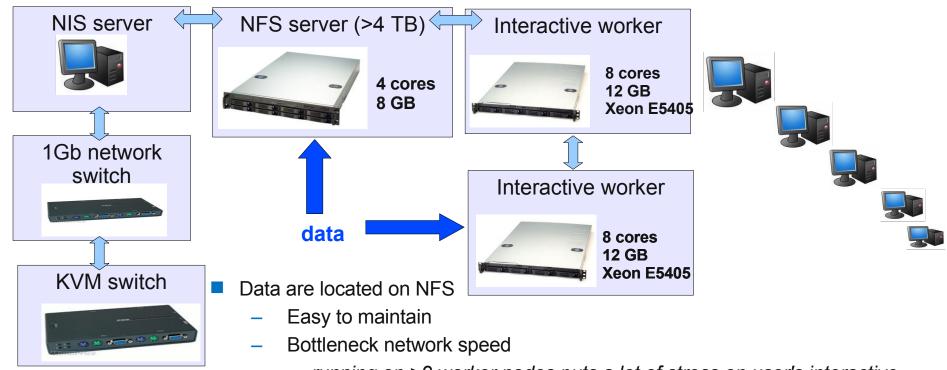

Why Condor? Probably the most reliable and best known cluster software (not only in HEP): See tutorials: Linux.com "Building a Linux cluster on a budget" 2005 LunuxJournal: "Getting Started with Condor"

Why ArCond?: Data discovery, splitting input files, submission athena jobs (or any other)

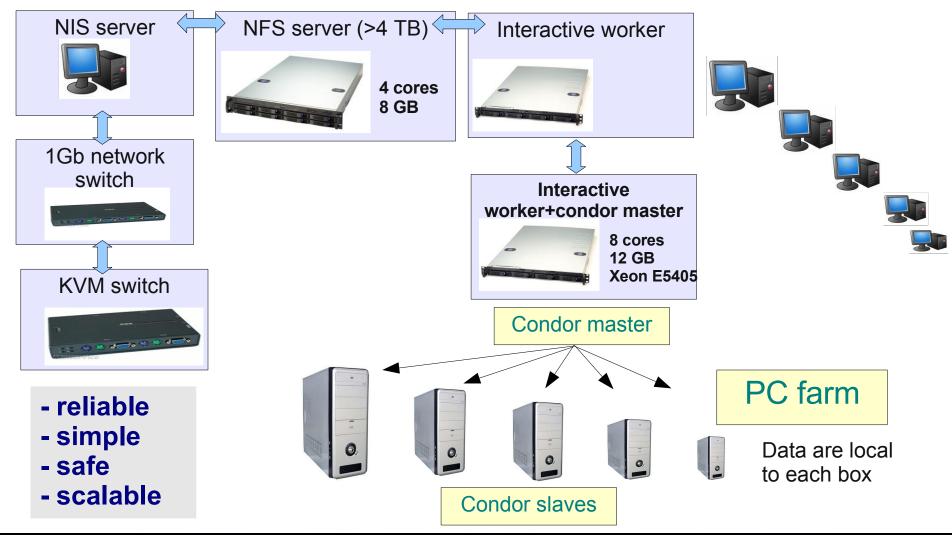
KVM switch


Expanding to a multi-user system

- \$3k per interactive node
- Condor & Arcond to use cores from all interactive nodes
- Any number of desktop PCs for user login
 - \$500 per user PC


Expanding to a multi-user system

- \$3k per interactive node
- Condor & Arcond to use cores from all interactive nodes
- Any number of desktop PCs for user login
 - \$500 per user PC


Two ways to run over data: NFS vs Local storage

- running on >2 worker nodes puts a lot of stress on user's interactive applications!
- Data are located on worker nodes
 - "Distributed" data model
 - ArCond will help to handle submissions
 - Bottleneck: put stress on CPUs for user's interactive jobs

Interactive worker nodes with a PC farm

Tier3 PC farm at ANL

- Jobs run 2 orders of magnitude faster compare to standard desktops (2-4 cores)
 - + takes out load from Tier1-2 by enabling high performance at Tier3
- Can deal with tens of TBs of data
- No resource allocation and file staging for each execution.
 - Can be faster than Tier1-Tier2s for multiple runs:
 - 3-4 factor faster for ATLAS input files (~100 GB)
 - >10 faster for small jobs (ROOT ntuples)
- Better interactivity and full local control of processing of large datasets
- Generating large MC sample & CPU-consuming NLO predictions

Characteristics:

- Cost effective tens of \$k, preferably commodity PCs
- Low maintenance max 0.5 FTE
- Scalability
- Low network load (assume commodity 1 Gb networking)
- Extension of the desktop rather than Tier2

ANL PC farm fulfills all these characteristics

Hardware configuration for condor slave PC

1	CUSTOMSERSERIAL	CYBERTRONPC		CUSTOM CONFIGURED SERVER	1
2	PRC-INT-X5410RA	INTEL	BX80574E5410A	XEON E5410 C4 2.33GHZ 771 RET	2
3	MBD-SPM-X7DVLE	SUPERMICRO	X7DVL-E BULK	771 V X8 6D2 2GL R DUAL XEON	1
4	MEM-GEN-2FB667	SUPERTALENT	MEM-SAM-2GEBA	2GB FB DDR2 ECC FB PC5400/667 MHZ	4
5				TOTAL 8 GB	
6	HDR-WDG-25AAKS	WESTERN DIGITAL	WD2500AAKS	250GB S2 7200 16MB	1
7				SYSTEM DISK	
8	HDR-SGT-1TBS2B	SEAGATE	ST31000340NS	1TB SATA2 7200RPM 32MB RAID EDITION	2
9				DATA DISKS	
10	CDR-LIT-16XDVDB	LITEON	DH-16D2P	1 6X DVD IDE BLACK	1
11	FLD-ALPS-144MBB	ALPS	DF35	1.44 MB FLOPPY DISK DRIVE BLACK	1
12	AD-VID-NOUPGRD			ONBOARD VIDEO	1
13	AD-NET6			DUAL 10/100/1000 GIGABIT NETWORK	1
14	SUP-CHN-BRKTNC	CHENBRO	84H312410-022	NACONA BRACKET SET OF 2	1
15	CAS-CHN-SR105	CHENBRO	SR105-BK(10569-BLACK)	SERVER TOWER BLACK	1
16	POW-SPK-460W	SPARKLE	FSP460-60PFN	460 WATT INTEL XEON CFT24 PIN	1
17	WARR-EXTENDED1			1 YEAR WARRANTY ON LABOR & PARTS	1
18				LIFETIME U.S. BASED TECHNICAL SUPPORT	
19	SHIPPFREE			FREE GROUND SHIPPING	1

CybetronPC quote: \$2000 per box (Jan 2009 update)

Summary: 8 Xeon 2.33 GHz cores 8 GB RAM, 2 TB disks+ 1 system disk

Time to bring to a full operational mode $\sim \frac{1}{2}$ day :

- SL4.6 installation
- starting necessary services (NIS, Condor, etc)
- configure condor home directory + iptables

Example performance for AOD

mc08.106070.PythiaZeeJet_Ptcut.recon.AOD.e352_s462_r541

- Release 14.2.21
- 200k events. 800 AOD files. 266/per box, 33GB
- Lumi=230 pb-1
- Data equally distributed among 3 PC slaves

Program accessing:

- Jets, Photons, Muons, Electrons
- Same for the truth level
- 100 histograms + fill a ntuple with all objects
- Processing time: 30 min + 4 min (compilation) on 24 cores (110 ev/sec, 5 ev. sec).

10 fb-1 data: ~1 day of running on 24 cores, 6h on 80 cores Data storage: 1.4 TB for data x4 MC = 6-7 TB for MC and data

If ATLAS release and data located on NFS (ReadyNAS), a low performance due to I/O bottleneck is observed:

- about 10 min to setup ATLAS release (24 cores hit NFS at the same time)
- factor ~2-3 slower during reading AOD events stored on NFS
- poor performance of desktops with NFS-based user home directories

PC farm prototype performance for AOD

- Estimates for 10 fb-1 assuming 80 cores + 20 TB (skimmed AOD)
 - Inclusive jets (PT>400-500 GeV)
 - Dijets (PT>200 GeV)
 - Z+jet, PT(jet)>40 GeV
 - .. all other processes with lower x-section (H->gg, etc..)
 - Inclusive direct photon analysis (PT(gamma)>50 GeV, signal ~ background)
 In all cases it is assumed that analysis data set consists of:
 - Data and MC are in form of AODs or DPDs
 - for worst- case scenario when DPDs size = AOD size
 - Monte Carlo samples have 4 times larger statistics than (signal) data

Estimates for 10 fb⁻¹:

- did not hit the limit ~10-20 TB for a single analysis
- processing time < 1 day for 80 cores in all cases</p>

Analyzing ntuples

- 200k events from the previous example analyzed using a compiled C++
- Ntuple structure and size:
 - Storing TLorentzVectors for:
 - Photons, Muons, Cone4Jets, 10 vectors with doubles (PID for photons)
 - Same for MC truth
 - Ntuple size: 75MB
- Processing 200k events takes 10 sec on one Xeon 2.33 CPU
 - Filling ~10 histograms with invariant masses (jet-jet, γ -jet, γ - γ)
- Similar checks where done for Z+jet analysis

Estimates for 10 fb-1:

- requires 3GB file storage
- processing time:
 - 7 min on one core
 - ~ 20 sec on 24 cores
 - (assuming no I/O bottleneck)

ArCond (Argonne's Condor)

http://atlaswww.hep.anl.gov/asc/arcond/

A Condor front-end:

- job submission
- data discovery
- checking job status
- merging outputs
- Does not require installation & Atlas release
- No maintenance or extra service
 - 1 cron job to build a static database with files (optional!)
- Minimum requirement: OSG-client (for condor) and standalone ROOT
- Designed for analysis of data flatly distributed over multiple PCs
 - Example:

/data1/GammaJet/AOD1.root - 33% of data on atlas1.cern.ch /data1/GammaJet/AOD2.root - 33% of data on atlas2.cern.ch /data1/GammaJet/AOD3.root - 33% of data on atlas3.cern.ch

Dataset name (used as a "metadata")

Stored data sets

Since Sep. 2008, we store 15422 AOD MC files

- ~ 4M Monte Carlo AOD events (+ few ESD sets)
- Corresponds to ~25% of the total capacity of the PC farm prototype

1) Data moved to each box after using dq2_get (ArCond provides such splitter).

2) "dq2_get" front-end is ready to get data directly on each box from Tier1/Tier2

/data1/mc/gamma_jet/pt17/AOD		gamma+jet samples, r14.2, pt>17 GeV. Also available: pt40, pt8 pt600
/data1/mc/pythia_gfilter/pt17/AOD	atlas51	Filtered background sample, r14.2, pt>17 GeV. Also available: pt pt400, pt600
/data1/mc/PythiaZeegam25/AOD	atlas51-52	Z+gamma+X samples, r14.2, pt>25 GeV
/data1/mc/BaurZeegam/AOD	atlas51	Z+gamma+X, Baur MC, r14.2, pt>25 GeV, X-section=463.622 p each file
/data1/mc/mc08.105802.JF17_pythia_jet_filter.recon.AOD.e347_s462_r541/AOD	atlas51-53	~1.5 M events, inc.Pythia after JetFilter, r14.2, pt>17
/data1/mc/mc08.106070.PythiaZeeJet_Ptcut.recon.AOD.e352_s462_r541/AOD	atlas51-53	Z->e+e- + jet events, r14.2.20, 250 events in each file, 797 files, 968.637 pb, efficiency = 0.90
/data1/mc/mc08.106071.PythiaZmumuJet_Ptcut.recon.AOD.e352_s462_r541/AOD	atlas51-53	Z->mu+mu- + jet events, r14.2.20, 250 events in each file, 791 file 968.637 pb, efficiency = 0.90
/data1/mc/mc08.106072.PythiaZtautauJet_Ptcut.recon.AOD.e352_s462_r541/AOD	atlas51-53	Z->tau+tau- + jet events, r14.2.20, 250 events in each file, 759 file 968.637 pb, efficiency = 0.90
/data1 /mc/mc08.106379.PythiaPhotonJet_AsymJetFilter.recon.AOD.e347_s462_r541/AOD	atlas51-53	250k events, gamma+jet, ckin(3)>15 GeV
/data1/mc/MC08/JS0/ESD	atlas53	also JS1, JS2, JS3, JS4, JS5, JS6, JS7 available. Talk to Belen a
/data1/mc/mc08.107141.singlepart_pi0_Et40.recon.AOD.e342_s439_r546/AOD	atlas51	200 files, r14.2.20.3, single pi0
/data1/mc/mc08.107041.singlepart_gamma_Et40.recon.AOD.e342_s439_r546/AOD	atlas51	189 files, r14.2.20.3, single gamma
/data1/mc/mc08.107680.AlpgenJimmyWenuNp0_pt20.recon.AOD.e349_a68/AOD	atlas51-53	1202 files, r14.2.20, W->e+nu+0 partons
/data1/mc/mc08.107681.AlpgenJimmyWenuNp1_pt20.recon.AOD.e349_a68/AOD	atlas51	242 files, r14.2.20, W->e+nu+1 partons
/data1/mc/mc08.107682.AlpgenJimmyWenuNp2_pt20.recon.AOD.e349_a68/AOD	atlas51	624 files, r14.2.20, W->e+nu+2 partons
/data1/mc/mc08.107683.AlpgenJimmyWenuNp3_pt20.recon.AOD.e349_a68/AOD	atlas51	165 files, r14.2.20, W->e+nu+3 partons
/data1/mc/mc08.107684.AlpgenJimmyWenuNp4_pt20.recon.AOD.e349_a68/AOD	atlas51	48 files, r14.2.20, W->e+nu+4 partons
/data1/mc/mc08.107685.AlpgenJimmyWenuNp5_pt20.recon.AOD.e349_a68/AOD	atlas51	22 files, r14.2.20, W->e+nu+5 partons

FDR2 reprocessed data: ||

/data1/mc/fdr08_run2.0052280.physics_Egamma.recon.AOD.o3_f47_r575/AOD	atlas51-53	FDR2 AOD o	lata, release 14.2.24
/data1/mc/fdr08_run2.0052280.physics_Egamma.recon.DPD_CALOJET.o3_f47_r575/AOD	atlas51-53	FDR2 DPD o	lata, release 14.2.24
/data1/mc/fdr08_run2.0052280.physics_Egamma.recon.DPD_EGAMMA.o3_f47_r575/AOD	atlas51-53	FDR2 DPD o	lata, release 14.2.24
/data1/mc/fdr08_run2.0052280.physics_Egamma.recon.DPD_PHOTONJET.o3_f47_r575/AOD	atlas51-53	FDR2 DPD o	lata, release 14.2.24
/data1/mc/fdr08_run2.0052280.physics_Jet.recon.AOD.o3_f47_r575/AOD	atlas51-53	FDR2 AOD o	data, release 14.2.24

Getting data on a PC farm

Data can be copied using using ArCond directly to each PC box:

- Calls dq2-ls, splits a list with files, calls dq2-get in parallel

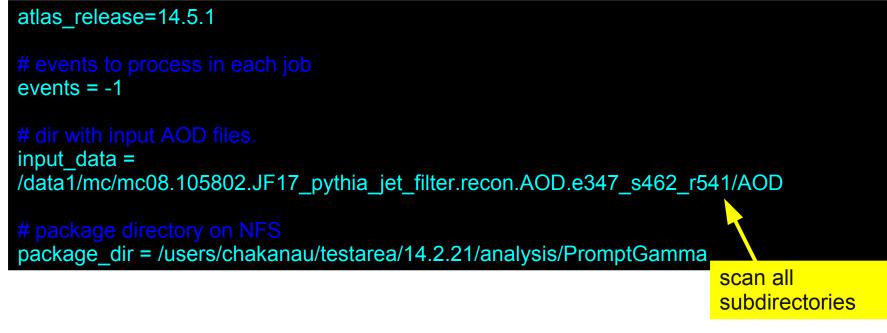
Performance: for 1 Gb connection between ANL and UChicago (Tier2):

- 15 MB/sec using single-box download
- 45 MB/sec using 3 parallel downloads directly on 3 PC farm boxes
- 50 MB/sec using 5 parallel downloads

~4 TB/day download rate

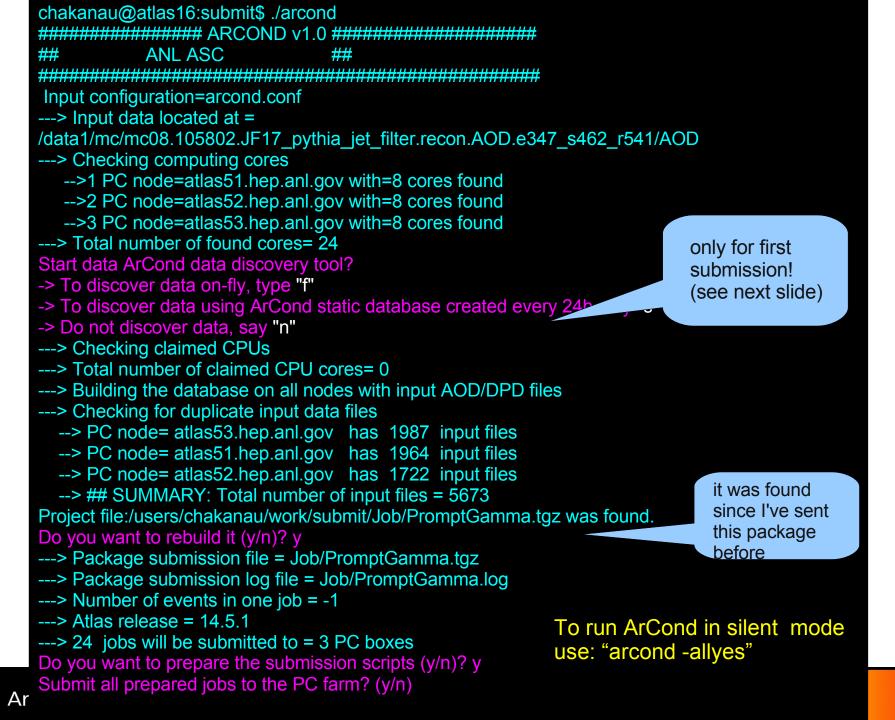
ArCond PC farm submission

Pure python & bash. Does not need installation. Requires OSG-client (Condor)


- > arcond

- Reads a configuration file (with atlas release version, input directory with AOD files on all boxes, package athena name)
- Splits jobs to be run in parallel: N=N(PC boxes) x N(cores)
- Data discovery using local storage. Builds a database with input files and associates each AOD file with specific box
- Splits data list, prepares shell scripts for submission. Can include:
 - Compilation statement "make from /cmt"
 - Multiple "athena" executions or anything
- Submits scripts, runs jobs using local condor home directory
- When jobs are ready, outputs are copied to the user submission directory
 - optional, depends what do you put in shell script
- Output root files merged automatically (arc_add command)

Running arcond


Before submitting a job, prepare a configuration file (" arcond.conf")

- Check data availability as:
 - arc_ls <dataset>

Ready to submit!

Data discovery

PC farm users have several choices for data discovery:

"s" - to discover data using a small flat-file database

- Updated every night
- Implementation: Each slave note runs a cron job
 - _ (based on find "/data1/ -type f > /users/condor/\$date.txt")
 - for 10000 AOD files, run time is 3-5 sec.
- Copied and stored on NFS
- When a user runs "./arcond", always the latest database is used
- Also can be used to recover data when PC box fails (do not have experience yet)
- "f" to discover data "on-fly"
- If data have been copied recently, the database may not exists
- Then arcond sends a small script on each PC boxes and brings data list back
- Usually takes ~20-30 sec (assuming that Condor is not busy)
- "n" if the user selected "s" and "f" from previous runs, there is no need to discover data (previous data list will be used)

Simple and robust. So far required no attention from admin.

Checking and getting jobs back

- Run condor commands: condor_status or condor_q
- Your jobs are in "idle" state?
 - check who is running on the farm as:
 - condor_status -submitters (OR) condor_q -global
- Check output files as: arc_check
- If arc_check tells that all output files "Analysis.root" are ready, combine output files to one file using arc_add. This creates "Analysis_all.root"

- To debug program and check errors:
 - ./Job/runXXX/Analysis.log
 athena log file
 - ./Job/runN_atlasXXX/Job.ShellScript.atlasXXX/job.local.out
 Condor log file

Summary

24-CPU PC farm prototype is fully functional

- ~\$6k investment last year
- Man power: 0.3 FTE, which dropped to 0.1 FTE after the setup

Since Sep 1, ~5000 jobs completed

- ~ 200x24-core completed jobs.
- Most of ANL results were done using the PC farm prototype

No any failures reported:

- Small problem if Condor master is busy (at present runs on the worker PC)
 - 1-2 cores are not identified correctly by Condor \rightarrow lower efficiency
 - a dedicated Condor master should be installed

With extra \$14k investment, the PC farm could be extended to ~T3g

• Goal: 80 CPUs with 20 TB data storage

Tutorials: How to use PC farm for athena and ROOT-ntuple type of jobs:

~chakanau/public/2009_jamb_may/15.1.0/Tutorials/arcond_athena ~chakanau/public/2009_jamb_may/15.1.0/Tutorials/arcond_ntuple

