Charged-particle multiplicities in pp interactions at $\sqrt{s} = 900$ GeV

W. H. Bell Université de Genève

On behalf of the ATLAS Collaboration

Preliminary results

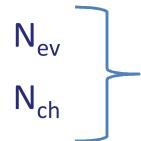
Overview

- Introduction
 - Goals and distributions
- Event selection
 - Trigger
 - Vertex
- Corrections
- Results
- Systematics
- Conclusion

Introduction

- Measure charged particle multiplicity distributions from inelastic events.
 - Require N_{ch} ≥ 1 (|η|<2.5 & p_T > 500MeV).
 - Removes model dependence from trigger and vertex corrections.
 - No removal of Single Diffractive component.
- Kinematic range $|\eta| < 2.5 \& p_T > 500 MeV$
- Correct reconstructed-track distributions back to hadron level for all detector effects.
 - Measure trigger and vertex corrections from data.

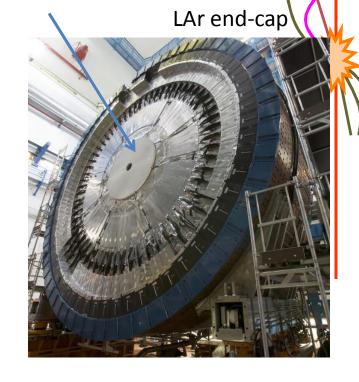
Distributions


$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}$$

$$\frac{1}{N_{ev}} \cdot \frac{1}{2\pi P_T} \cdot \frac{d^2N_{ch}}{d\eta dp_T}$$

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dN_{ch}}$$

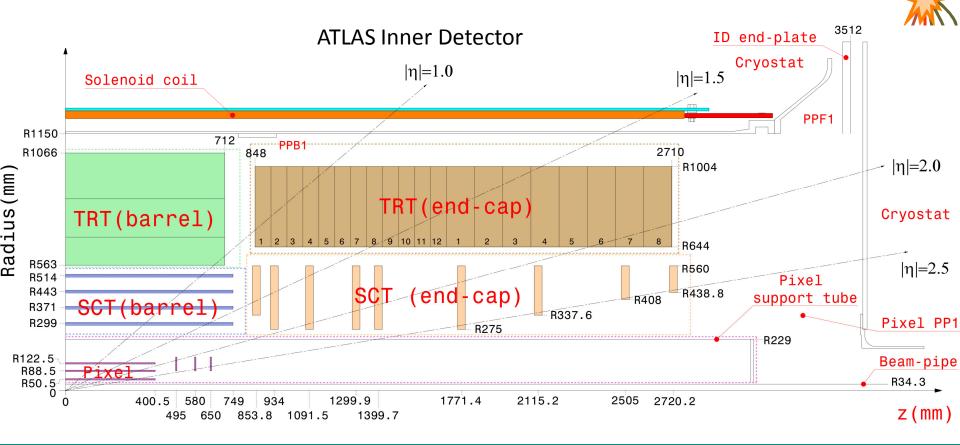
$$\langle p_{\scriptscriptstyle T}
angle$$
 vs. $N_{\scriptscriptstyle Ch}$



for events with $N_{ch} \ge 1$ ($|\eta| < 2.5 \& p_T > 500 MeV$)

Analysis Trigger: L1 MBTS

Minimum Bias Trigger Scintillators (MBTS)

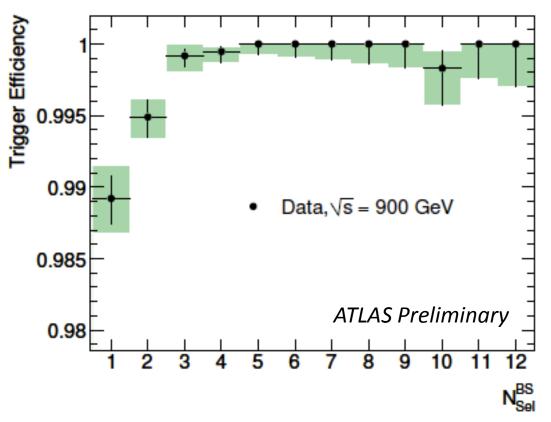

- Require 1 or more counter from either side above threshold.
- 455593 events were selected using the L1 MBTS trigger.
 - Data quality selection requiring fully operational Inner Detector, trigger and solenoid B-field.

z = ±3560 mm, 8 units in ϕ , 2 units in η (2.09 < η < 2.82, 2.82< η < 3.84)

Control Trigger

• L1 Beam-pickup, filtered by L2 Pixel and Silicon microstrip (SCT) spacepoints, and EF track.

Trigger Efficiency


- Measured from data using Inner Detector trigger (mbSpTrk) sample.
 - Efficiency of the L1 MBTS trigger for inelastic events with a track within ID acceptance and offline selection.

$$\varepsilon(L1_MBTS_1) = \frac{L1_MBTS_1 \& offline \& mbSpTrk}{offline \& mbSpTrk}$$

L1 MBTS Trigger Efficiency

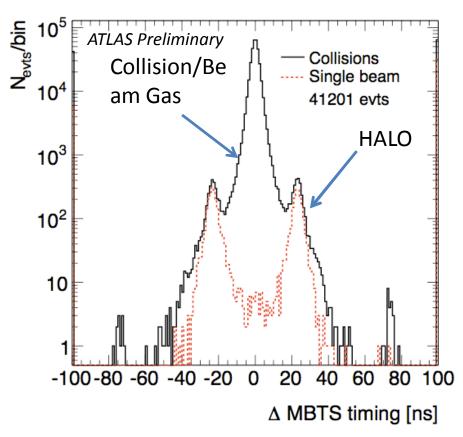
Measured from data using control trigger. No affect on p_T and η spectrum within statistical uncertainties.

- Efficiency is close to 1 for offline selection.
 - Selected tracks, but dropping
 - $|d_0^{PV}| < 1.5$ mm
 - $|z_0^{PV} \sin(\theta^{PV})| < 1.5$ mm
 - Using $|d_0^{BS}| < 4$ mm
- Small systematic error contributions:
 - Trigger correlation
 - Different track selection.
 - Statistical limit on p_T and n bias

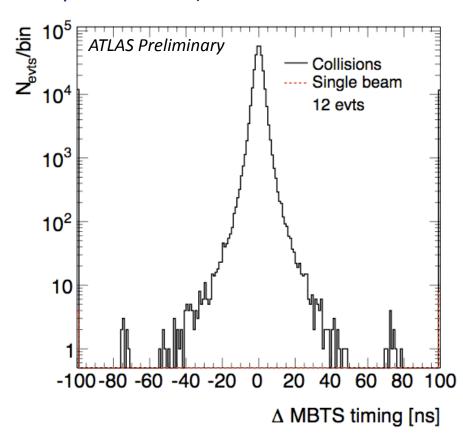
Offline Selection

Track Selection:

- $p_{T} > 500 MeV$
- $|\eta| < 2.5$
- Number of Pixel Hits ≥ 1
- Number of SCT Hits ≥ 6
- $|d_0^{PV}| < 1.5 \text{ mm}$
- $|z_0^{PV} \sin(\theta^{PV})| < 1.5 \text{ mm}$
- Inside out track reconstruction

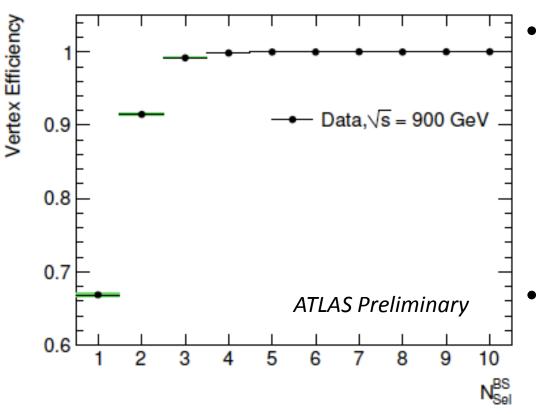

Event Selection:

- L1 MBTS trigger
- Primary vertex without beam-spot constraint and including three tracks ($p_T > 150 MeV$).
- Number of selected tracks ≥ 1



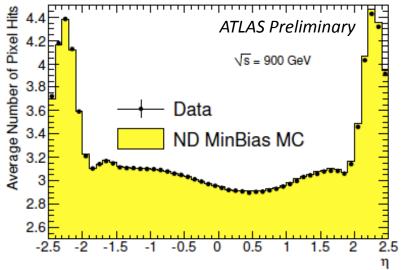
Beam Background

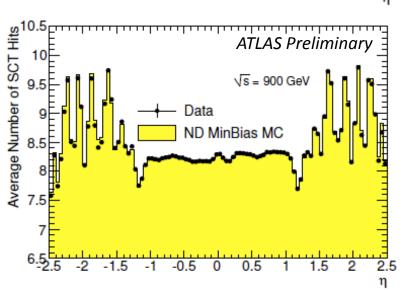
Measure time difference from offline readout of MBTS (Time cut is not used in analysis selection.)

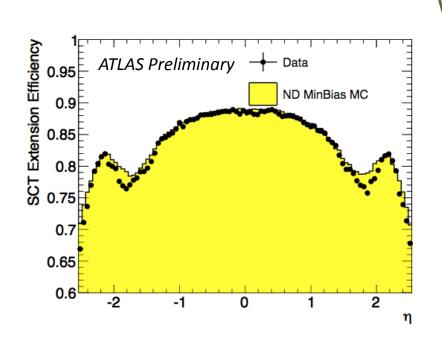


Trigger Selection

Full Offline Selection

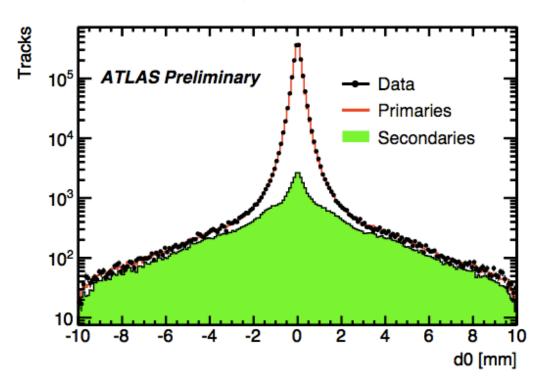

Vertex Efficiency




- Measured from data:
 - L1 MBTS selected events.
 - Selected tracks, but dropping
 - $|d_0^{PV}| < 1.5$ mm
 - $|z_0^{PV} \sin(\theta^{PV})| < 1.5$ mm
 - Using $|d_0^{BS}| < 4$ mm
- Tiny systematic from beam background.

No affect on p_T spectrum within statistical uncertainties. Shaping of η for $N_{Sel} = 1$ corrected for.

Validating Inner Detector Simulation



Detailed study of material, alignment, and resolution.

Particles from Secondary Interactions

- Sources of secondary interactions:
 - Nuclear interactions
 - Weakly decaying particles (K_s, Lambda etc.)
 - Pion decays

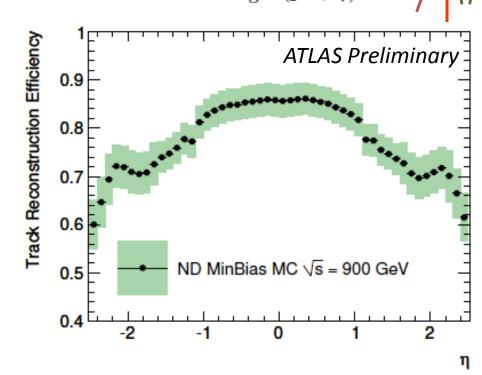
Compare Monte Carlo and data.

Fit Monte Carlo to data within $2.0 \text{ mm} < |d_0^{PV}| < 10 \text{ mm}$

Determine fraction of tracks inside $|d_0^{PV}| < 1.5 \text{ mm}$ $|z_0^{PV} \sin(\theta^{PV})| < 1.5 \text{ mm}$ to be

 2.20 ± 0.05 (stat.) ± 0.11 (sys.) %

Tracking Efficiency



Global systematic dominated by conservative material estimate.

Higher systematic error in regions with more material

Best match between track and MC particle within a cone of 0.05

$$\epsilon_{\rm bin}(p_{\rm T}, \eta) = \frac{N_{\rm rec}^{\rm matched}(p_{\rm T}, \eta)}{N_{\rm gen}(p_{\rm T}, \eta)}$$

Correction Procedure

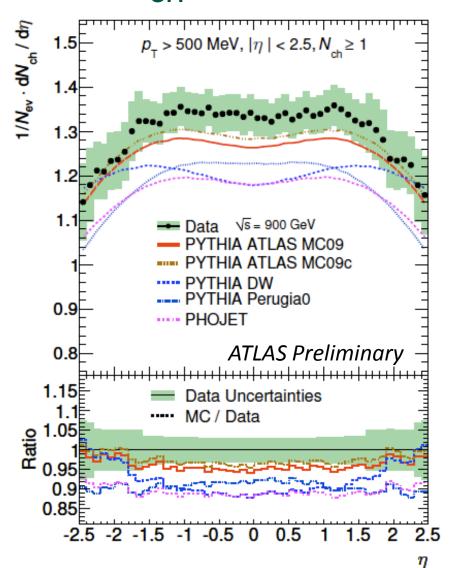
• Correct for the effect of the trigger and primary vertex reconstruction efficiency on an event-by-event basis:

$$w_{\text{ev}} = \frac{1}{\epsilon_{\text{trig}}(N_{\text{Sel}}^{\text{BS}})} \cdot \frac{1}{\epsilon_{\text{vtx}}(N_{\text{Sel}}^{\text{BS}})}$$

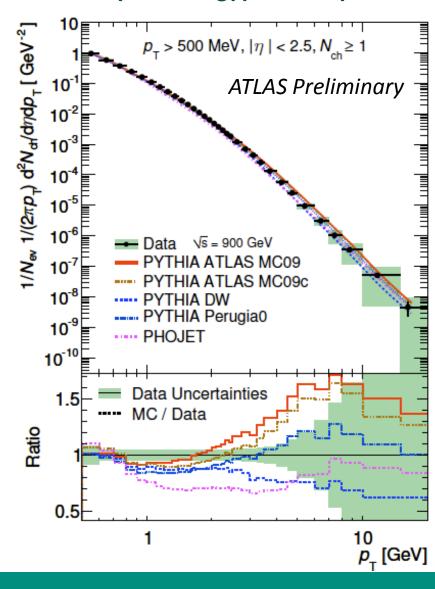
• Correct for track-reconstruction efficiency (P_T , η) on a track-by-track basis:

$$w_{\text{trk}} = \frac{1}{\epsilon_{\text{bin}}(p_{\text{T}}, \eta)} \cdot (1 - f_{\text{sec}}(p_{\text{T}})) \cdot (1 - f_{\text{okr}})$$

- Correct N_{sel} to N_{ch} using M_{ch,sel}
 - Filled from MC, applied, refilled, converges after 4 iterations.
- Correct for events with N_{sel} = 0 and N_{ch} > 0 using:

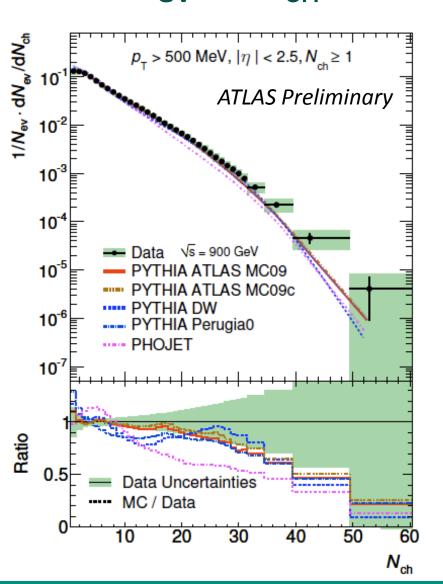

$$1/(1-(1-\epsilon(N_{\rm ch}))^{N_{\rm ch}})$$

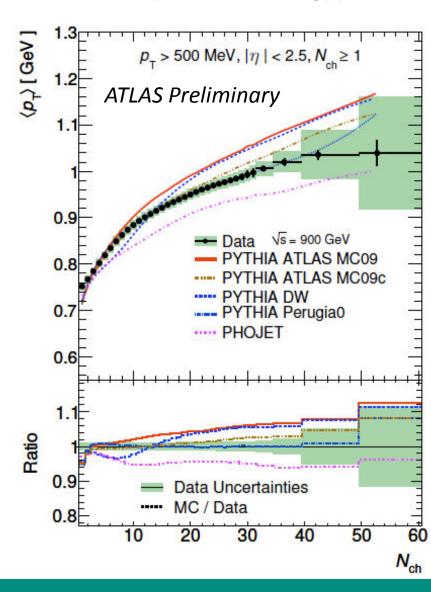
Mean track reconstruction efficiency

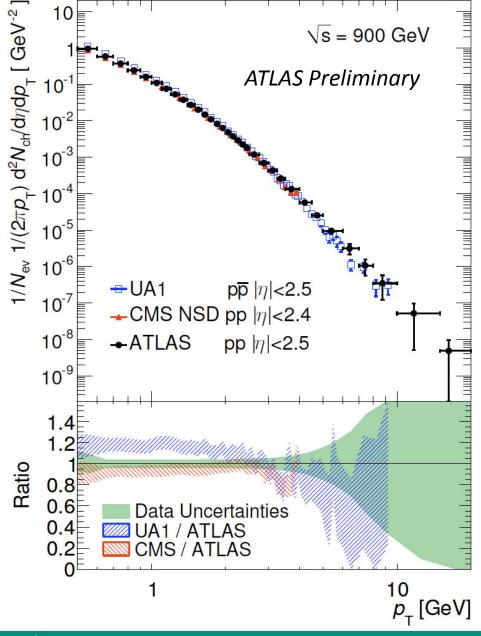


effect

$dN_{ch}/d\eta$


$1/p_T dN_{ch}/dp_T$




dN_{ev}/dN_{ch}

$< p_T > vs N_{ch}$

Comparison: $1/p_T dN_{ch}/dp_T$

- p_T spectrum similar to CMS NSD result.
 - Agree within uncertainties when ATLAS is converted to CMS NSD.
- Interpreted UA1 data are higher at low p_T
 - Expect this is a measurement definition difference.

Table of Systematic Uncertainties

ATLAS Preliminary

Systematic uncertainty on the number of events, N_{ev}	
Trigger efficiency	< 0.1%
Vertex-reconstruction efficiency	< 0.1%
Track-reconstruction efficiency	1.1%
Different MC tunes	0.4%
Total uncertainty on N_{ev}	1.2%

Systematic uncertainty on $1/N_{\mathrm{e}v}\cdot\mathrm{d}N/\mathrm{d}\eta$ at $\eta=0$	
Track Reconstruction	4.2%
Trigger and vertex efficiency	< 0.1%
Secondary fraction	0.2%
Total uncertainty on N_{ev}	-1.2%
Total uncertainty on $1/N_{ev} dN/d\eta$ at $\eta = 0$	3.0%

Conclusions

- Minimized model dependencies.
- The charged-particle multiplicity per event and unit of pseudorapidity at $\eta=0$ is measured to be 1.333±0.003(stat.)±0.040(syst.).
 - 5-15% higher than Monte Carlo models.
- Differences between Monte Carlo predictions and measured data are most pronounced as a function of η and in $\langle p_T \rangle$ vs. N_{ch}