Top Quark Production at the LHC Andrew Ivanov Kansas State University On behalf of the ATLAS and CMS Collaborations

FPCP 2012

University of Science and Technology of China, Hefei, AnHui, China

Large Hadron Collider

pp collisions at $\sqrt{s} = 7.0 \text{ TeV}$ Max. Inst. Lumi (2011) ~ 3.5 x 10³³ cm⁻²s⁻¹ Recorded Integrated Luminosity ~ 5.2 fb⁻¹ CMS

ATLAS

ATLA

Large Hadron Collider

pp collisions at √s = 7.0 TeV Max. Inst. Lumi (2011) ~ 3.5 x 10³³ cm⁻²s⁻¹ Recorded Integrated Luminosity ~ 5.2 fb⁻¹

CMS

NOW: pp collisions at $\sqrt{s} = 8.0 \text{ TeV}$ Max. Inst. Lumi (2012) ICb ~ 5.5 x 10³³ cm⁻²s⁻¹ Recorded Integrated Luminosity ~ 2 fb⁻¹

Goal : 20 fb⁻¹ by the end of 2012 ATLAS Higgs Boson !..

ATLAS Detector

ATLAS

5

May-21-2012

Top Quark Production at LHC

Top Quark Pair Production

165⁺¹¹ pb, Aliev, M. et al arXiv/hep-ph:1007.1327

Single Top Production

Top Pair Events at LHC

- Trigger
 - Single/double (isolated) leptons (plus hadronic activity)
- Jets
 - Anti- k_T algorithm with cone 0.4 ^{ATLAS} (0.5 ^{CMS})
 - $p_T > 20$ ATLAS (30 CMS) GeV,
 - $|\eta|$ < 2.5 $_{\text{ATLAS}}$ (2.4 $_{\text{CMS}}$)
 - B-tagging (optional)
- Leptons (e, μ, τ)
 - with p_T > 20 ^{ATLAS} (30 ^{CMS}) GeV, | η| < 2.5
 - Isolation: Calo/Track ATLAS , Particle Flow CMS
- Missing transverse energy
 - optional m_{TW}

Particle Identification

B-tag algorithms based on

Jet

- Secondary vertex reconstruction
- Track impact parameter significance
- JetFitter(ATLAS) decay chain reconstruction
 - Combination

 $\tau_{\text{h}} \text{ ID}$

- **Boosted Decision Tree** (ATLAS)
- Hadron + Strip -٠ particle flow (CMS)

CMS employs Particle Flow algorithm by performing global e, μ , γ , charged or neutral hadron reconstruction

Lepton + Jets Channel

- Simultaneous likelihood fit across different jet multiplicities
- CMS: Secondary vertex mass, split into # of jets(1-4,>=5), b-tags(1,>=2)
- ATLAS: Likelihood discriminant (lepton η , leading jet p_{T} , aplanarity, etc.), split into # of jets (3,4,>=5)
- Main background: W+jets (light/heavy flavor)

Andrew Ivanov, KSU

Dilepton Channel

ATLAS

- Clean channel, small backgrounds: DY + jets, W+jets via mis-idenitified second lepton
- Likelihood fit using different di-lepton categories: ee, $\mu\mu$, e μ , (ATLAS also eTL, μTL) with and without b-tagging

- Hadronic τ identification (ATLAS: BDT, CMS: hadron+strips HPS τ ID)
- ATLAS eliminates ``fake τ'' background from gluon and b-jets by subtracting OS-SS events
- Use W+1 jet and 0 b-tag control regions to evaluate "fake τ'' from quark jets
- Extract cross section from BDT shape separately for one and three-prong τ .
- CMS. Matrix method evaluate $n_{-}\eta$ -dependent fake rate from multi-jets and W +>=1 jet events

$\tau_{\text{h}}\text{+}\text{jets}$ Channel

- CMS: HPS τ ID, train ANN: H_T, Aplanarity, q(τ) . $|\eta(\tau)|$, E_T^{miss} , $\Delta \varphi$ (τ , E_t^{miss}), M(jets, τ), χ^2 , constraining W and top quark masses
- ATLAS: Clean sample by requiring large met significance, >= 5 jets, >=2 b-tags
- Discriminate τ_{h} from jets based on charged track multiplicity
- QCD multi-jet (gluons) shape is obtained from data side-band region, lower met significance; ttbar(μ +jets) from data used to obtain quark-jet shape

All-hadronic Channel

- Multi-jet trigger, >=2 b-tags using combination of high purity taggers
- Fit to reconstructed top quark mass using χ^2
- Multi-jet shape is taken from 0 b-tag region, corrected for b-tag $\textbf{p}_{\text{T}},\,\eta$ dependent efficiency

Cross Section Combination

- CMS: Dil and All-Had channels added to single lepton channel likelihood
- ATLAS: Single lepton channel likelihood is approximated as multi-variate Gaussian •
- Combined likelihood is formed from single lepton, dil and all-had channels •

Andrew Ivanov, KSU

COMPACT Tool and the second se

Differential Cross Section

- Measure cross section as a function of transverse momentum, (pseudo-)rapidity, invariant mass of final state leptons, reconstructed top quarks, tt system
- tt events are reconstructed by imposing kinematic constraints
- In DIL channel due to under-constraint, correct solution is found by most probable neutrino energy spectrum and prioritizing b-tagged jets over un-tagged
- Differential distributions are obtained by unfolding using Singular Value Decomposition method (A. Hoecker, V. Kartvelishvili, NIM A 372 (1996) 469)

May-21-2012

Andrew Ivanov, KSU

16

 $d\sigma_{t\bar{t}}$

Jet Multiplicity Measurement

- Measurement performed in $e(\mu)$ +jets channel
- Jet multiplicities are reconstructed with 40 and 60 GeV thresholds
- No deviation from MC@NLO
- Jet multiplicity spectrum is cross-checked wrt different MC ISR variations using AcerMC
- Within current uncertainties no distinction between ISR models can be made

Charge Asymmetry

• QCD predictions: $A_c^{\Delta y} = 0.0115 \pm 0.0006$

- CDF reported ~ 3.4 sigma deviation in forward-backward asymmetry for m(tt) > 450 GeV
- At LHC the charge asymmetry manifests itself in different rapidity widths of top/anti-top quarks
- Explore

 $\Delta |y| = |y_t| - |y_{\bar{t}}|$

- tt events are reconstructed by imposing W/top mass constraints and requirement that b-tagged jet matches jet from top decay
- Reconstructed distributions are corrected to true distributions via a regularized unfolding procedure ^{CMS} (Blobel arXiv: hep-ex/0208022), Bayesian unfolding ^{ATLAS} (Agostini NIM A 362 (1995) 487), which correct for bin-tobin migration and efficiency effects

Charge Asymmetry

$A_c = 0.004 \pm 0.010 (stat.) \pm 0.012 (syst.)$

$A_c = -0.018 \pm 0.028 (stat.) \pm 0.023 (syst.)$

May-21-2012

Andrew Ivanov, KSU

- Weak Interaction : Test of Wtb Vertex
- Measurement of V_{tb}
- Can be used to measure the b-quark parton distribution function (PDF)

AT

Single Top t-Channel

- Event Selection: = 1 isolated lepton (e or μ)
- 2 (and 3 :ATLAS) jets (= 1 b-tagged)

₹W*

b

 $N^{N} W^+$

b

- Missing $E_T > 25(35)$ GeV and $m_T(W) > 60(40)$ GeV
- Other jet and b-tagging multiplicities used as control regions
- CMS: Max Likelihood fit to pseudo-rapidity of the light (untagged jet)
- ATLAS: Construct ANN from pseudo-rapidity of the light (untagged jet), reconstructed top quark mass, transverse energy of the light jet

Single Top tW-Channel

- Selection: 2 leptons
- Missing E_T , = 1 b-tagged jet
- Z-veto, reject ee, $\mu\mu$ in m_{ll} = [81,101]
- Main Backgrounds: Z+jets, ttbar
 - ttbar is measured in the control regions (> =2 jets, 1 or 2 b-tags) and extrapolated into the signal region
- Z+jets is estimated using data-driven method by evaluating the number of events in MC "leaking" out of Z-mass window

May-21-2012

Single Top s-Channel

Selection:	1	leptons
	Selection:	Selection: 1

- Missing E_T >25 GeV, 2 jets >= 1 b-tagged
- m_{TW} > 60 GeV E_T^{Miss}
- Cut-Based Analysis: Signal significance is improved
 Tfter each step

σ, **< 26.5 pb**

ATLA

Selection	Signal	Background	S/\sqrt{B}
Preselection Only	104	153802	0.26
Number of tagged jets=2	18	415	0.88
$30 < m_{top, jet2} < 247 \text{ GeV/c}^2$	17	349	0.91
$p_T(jet1, jet2) < 189 \text{ GeV/c}$	17	346	0.91
$m_T(W) < 111 \text{ GeV/c}$	17	318	0.95
$0.43 < \Delta R(b - jet1, lepton) < 3.6$	17	308	0.97
$123 < m_{top,jet1} < 788 \text{ GeV/c}^2$	17	302	0.98
$0.74 < \Delta R(b - jet1, b - jet2) < 4.68$	16	269	0.98

- Final Selection:
- S-chan: 16 ± 6
- Total Exp. 285 ± 17
- Obs. 296

1 (

Conclusions

- CMS and ATLAS performed many precision inclusive and differential ttbar cross section measurements using various channels including all-hadronic and taus
- Measurements are systematically limited, starting to constrain theory
- Charge asymmetry measurement is consistent with SM

- Single Top:
 - Precision measurement of t-channel cross sections
 - Measurement of $|V_{tb}|$ at 10% level
 - Significance of tW-channel is close to 3 σ
 - First upper limit on s-channel

Conclusions

- CMS and ATLAS performed many precision inclusive and differential ttbar cross section measurements using various channels including all-hadronic and taus
- Measurements are systematically limited, starting to constrain theory
- Charge asymmetry measurement is consistent with SM

- Single Top:
 - Precision measurement of t-channel cross sections
 - Measurement of $|V_{tb}|$ at 10% level
 - Significance of tW-channel is close to 3 σ
 - First upper limit on s-channel

Thank You!