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Thermodynamical free energies




The Polyakov loop

Polyakov loop in a color representation R

B ~ ~
L = Pexp (zg/ drA°(r, X)> (Lr) = (TrLg), Tr=
0

Thermodynamic relation to the free energy of a
(infinitely) heavy quark

(Lp) = e /T

McLerran Svetitsky PRD24 1981

Order parameter for the deconfinement phase
transition.

Extensively measured on the lattice



The Polyakov loop

SU(4), fundamental representation
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The Polyakov loop correlator

* Correlator of two Polyakov loops: (difference in) free energy
of a quark-an’uquark pair | - |
P. = (Tr L(x) Tr L'(0)) j - -
Gauge independent and well defined, but probes the octet
sector as well
[FODGN) sl
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e Perturbation theory at short

distances/EFT analysis
Brambilla JG Petreczky Vairo
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The singlet free energy

* Defined as
(Tr L(x)L'(0))

L = Pexp ('g /05 dr A°(r, x)>

Gauge dependent Coulomb gauge popular
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The cyclic Wilson loop

* A gauge invariant completion of the singlet free energy

W, = Ni<Tr U(tr =0;0,r)L(r)U" (1 = 0;0,r)LT(0))

-
A Y
-

* [t corresponds to two Polyakov lines connected by an

adjoint spacelike Wilson line



The cyclic Wilson loop

* A gauge invariant completion of the singlet free energy

W, = Ni<Tr U(tr =0;0,r)L(r)U" (1 = 0;0,r)LT(0))

-
A Y
-

* [t corresponds to two Polyakov lines connected by an
adjoint spacelike Wilson line

* The restored gauge invariance comes
at a price: no longer a simple QQbar
free energy and additional divergences




Motivation

* Understand the Polyakov loop correlator in

terms of singlet and octet contributions in the
EFT framework

* Renormalize the cyclic loop

* Future: program of comparison between
perturbation theory and lattice for quarkonium-
related quantities



The Polyakov loop correlator



Our perturbative calculation

* The correlator was computed by

Nadkarni in 1986 up to order g° within

EQCD, 1. e. 1/r ~mp
Nadkarni PRD33 (1986)
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Our perturbative calculation

* The correlator was computed by
1 Nadkarni in 1986 up to order g° within
r EQCD,1.e.1/r ~mp
Nadkarni PRD33 (1986)
T

* We performed instead our computation

assuming this hierarchy:

m 1 2
b ;>>T>>mD>>g7



Our perturbative calculation

* The correlator was computed by

Nadkarni in 1986 up to order g° within

EQCD,1.e.1/r ~mp
Nadkarni PRD33 (1986)

We performed instead our computation

assuming this hierarchy:

1 g2
;>>T>>mD>>7

rT is an additional expansion parameter,
we included terms up to go(rT)"



The perturbative result

e The hierarchy is implemented by separating the
contribution of each momentum region by appropriate
expansions and resummations in the integrals
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The perturbative result

e The hierarchy is implemented by separating the

contribution of each momentum region by appropriate
expansions and resummations in the integrals

P.(r,T) = Cpr(r,T) + L5 (T)

e Up to order g°(rT)? we have
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The EFT approach

e We proceed to create an EFT framework that

* enables us to re-obtain the same results in terms
of colour singlet and colour octet correlators

* gives a more transparent interpretation of the
previous result

e Obtained by integrating out 1/r, the largest scale,

yielding Euclidean potential non-relativistic QCD
(PNRQCD)



At the scale 1/r

* In pNRQCD the Polyakov loop correlator is given by

CpL(r,T) = % Zs(S(r,0, 1/T)ST(I‘,O,O)>—I—ZO<OO’(I‘,O,1/T)OCLT(I',O,O)>

+0 (a2(rT)*) | — (Lp)>.

Higher-dimensional operators with more gauge fields are suppressed.



At the scale 1/r

* In pNRQCD the Polyakov loop correlator is given by

1

Cpr(r,T) = —|Zs(S(r,0, 1/T)ST(I‘,O,O)>—I—ZO<Oa(I',O,1/T)OCLT(I',O,O)>

N2

+0O (ozg’('r'T)4)

— (Lp)°.

Higher-dimensional operators with more gauge fields are suppressed.

* If we match to the previous determination of Cpr(7,T) we get

Le=1ly,=1

(S(r,0,1/T)ST(r,0,0))|;/, = e V=(/T
<Oa(r7 07 1/CF)OCLT(I‘7 070)”1/7“ — (N2 _ 1)6—Vo(7°)/T

which is coherent with the spectral decomposition P, = Z e En/T
mn



At the scale 1/r

* In pNRQCD the Polyakov loop correlator is given by

CpL(r,T) = % Zs(S(r,0, 1/T)ST(I‘,O,O)>—I—ZO<OCL(I',O,1/T)OCLT(I‘,O,O)>

+0 (a2(rT)*) | — (Lp)>.

Higher-dimensional operators with more gauge fields are suppressed.

e If we match to the previous determination of Cpi(7,T) we get
Ls=12,=1
(S(r,0,1/T)S(r,0,0))|1/, = e~ V=)/T
(0%(r,0,1/T)0%¥(r,0,0)) |,/ = (N? — 1)e=Ve(r)/T

which is coherent with the spectral decomposition P, = Z e En/T
mn

e If we instead assume the spectral decomposition, then the matching
provides a non-trivial verification of the two-loop octet potential



Integrating out the temperature

(S(r,0,1/T)S"(r,0,0))|1/pp = e~ F~T/T

(0°(x,0,1/T)0 (r,0,0))|y jp = (N2 — 1)eFo(rTI/T




Integrating out the Debye mass

(S(r,0,1/T)S™(r,0,0))|1/r.1,mp, = e Ts"Tm2)/T
<Oa(r, 0, 1/T)OCLT(I.’ O, O)>‘1/T‘,T,mD — (N2 o 1)€—fo(r,T,mD)/T

* fsand f, may be interpreted as singlet and
octet free energies in pNRQCD

e They are obtained by evaluating loop
diagrams in pNRQCD




Integrating out T and mp

e For the singlet we have

fS(rv T, mD) — VS(T)
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Integrating out T and mp

e For the octet

fo(r, T.mp) = V,(r)
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Final results

¢ In the Polyakov loop correlator Cpi(7,T), large
cancellations occur between f;, f, and the
(fundamental) Polyakov loop

Cras mp N Cra? [CA < m4

1

5 CrCy ozg mp\ 2 -
+(30R_ 2 )24(T) +0(9").

* They lead to the previous result for Cpr(,T) to
order g°(rT).



Comparison with the literature

* Recently the singlet static potential at finite temperature
has been determined in a pNRQCD EFT framework in
real-time.

* The real-time potential has real and imaginary parts. The
singlet free energy f; we have introduced does not agree
completely with the real part of the real-time potential
ReVi(r) in the same hierarchy. The difference can be traced
back to the different boundary conditions in the two

cases, i.e. cyclic imaginary time vs. real large time.

Brambilla JG Petreczky Vairo PRD78 (2008)
Brambilla Escobedo JG Soto Vairo JHEP1009 (2010)



The cyclic Wilson loop



Renormalization of Wilson loops

e All Wilson lines have a linear UV divergence proportional

to their length: r@_ > |

L — —
= A Wilson loop with a smooth, nonintersecting contour is

finite in DR after charge renormalization TS

e Cusps in the contour introduce UV cusp divergences,
renormalized multiplicatively through the cusp anomalous
dimension, which only depends on the angle. Known in

QCD to NLO

NG vf% CEE (14 () coty)

Polyakov NPB84 (1980) Dotsenko Vergeles NPB169 (1980) Brandt
Neri Sato PRD24 (1981) Korchemsky Radyushkin NPB283 (1987)




Taxonomy of Wilson loops

Wolols Divergence Renormalization

Smooth, non-

intersecting linear multiplicative

rectangular,

non-cyclic linear+cusp (log) | multiplicative




The divergence in the cyclic loop

e Burnier Laine Vepsildinen computed the loop for ¥T'~1 in

JHEP1001. After charge renormalization the result was still

UV divergent at order g¢*
Vw(r)) _ 1| Crexp(—mgr) g*Cr N, exp(—2mgr)
ln( |¢P|2 ) ~ gDRET7TT> A7 Tr o (47.‘.)2 8T2742
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The divergence in the cyclic loop

e We perform a calculation for rT«1, focusing only on the
UV aspects and on the contribution from the scale 1/r.

Craog as | (31 20
In W, = fT {1 4 o (?CA — jTan) + Bo (In pa%r% + Z’YE)] }
ArCrog etk 1 T
T T /k (k2)?2 (_H(()O)CG(Oak)) + CpCac
ACpCaa2 [ e™ 1
n FTAOés / ek2 [E 41 4p +Inm +1n,u2’r2]
k

@)

n 20rC a0 Z (;(2;@12;&)) (rT)2n

n=1
The divergent terms agree. The divergence is UV and
cannot be renormalized multiplicatively



Taxonomy of Wilson loops

Loop Divergence Renormalization

Smooth, non-

intersecting linear multiplicative

rectangular,

non-cyclic linear+cusp (log) | multiplicative

cyclic (W¢) linear+22? (log) we




Origin of the divergence

* In Coulomb gauge the singlet free energy is finite

In(TrL(r)L'(0)) _Cras {1 42 [(%CA — @Tan) + Bo (Inpr? + 2yE)] }

r’l’ 47 9

ArCrog etk _ 1 T
T T /k (k2)2 (_HgO)CG (0, k))




Origin of the divergence

* In Coulomb gauge the singlet free energy is finite

In(TrL(r)L'(0)) :Cfﬁs {1 + = [(%CA — @TFTLJC) + Bo (In p?r® + Q’VE)] }

4 9
#20Cre [E (e 0.10)

* Add the strings: a lot of diagrams cancel because of
cyclicity (all those where the two strings are connected on
at least one side by the singlet component of a Polyakov
line) - . .
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Scheme-independent cancellation




Origin of the divergence

* In Coulomb gauge the singlet free energy is finite

In(TrL(r)L'(0)) _Cras {1 42 K%CA — @Tan) + Bo (Inpr? + 2yE)] }

r’l’ 47 9

ArCrog etk _ 1 T
T T /k (k2)2 (_H(()O)CG(Ov k))

* Add the strings: a lot of diagrams cancel because of
cyclicity (all those where the two strings are connected on
at least one side by the singlet component of a Polyakov

line)

- - L
e [N |
-¢

Scheme-independent cancellation

e The divergence is then given by these diagrams

| | - | -
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Renormalization

e The divergence is related to the cusp divergence, but not
quite the same. Indeed, thinking cylindrically, the cyclic
Wilson loop is topologically different from a regular one

I LT

e It does not have cusps, but a continuous set of intersections.




Renormalization

e The divergence is related to the cusp divergence, but not
quite the same. Indeed, thinking cylindrically, the cyclic
Wilson loop is topologically different from a regular one

I LT

e It does not have cusps, but a continuous set of intersections.

e Wilson loops with intersections are renormalized in matrix
form, by considering all possible choices of paths at the
intersection

(<

Brandt Neri Sato PRD24 (1981) Korchemskaya Korchemsky NPB437 (1995)



Renormalization

e The divergence is related to the cusp divergence, but not
quite the same. Indeed, thinking cylindrically, the cyclic
Wilson loop is topologically different from a regular one

I LT

e It does not have cusps, but a continuous set of intersections.

e Wilson loops with intersections are renormalized in matrix
form, by considering all possible choices of paths at the
intersection

(> (o) Wh=Z90)w?

Brandt Neri Sato PRD24 (1981) Korchemskaya Korchemsky NPB437 (1995)



Renormalization

e The procedure is the same in the case of n intersections.
In our case in principle n=co, but in practice there are
only two independent paths:

—_——
S



Renormalization

e The procedure is the same in the case of n intersections.
In our case in principle n=co, but in practice there are
only two independent paths:

I —

e They are the cyclic loop (W,) and the correlator of two
Polyakov loops (P.). The latter being finite, the
renormalization matrix reads

(% )=(0 ") (%)



Intermediate summary

e We have obtained that the cyclic Wilson loop is
not renormalized multiplicatively. Due to the
periodic boundary conditions, it mixes with the
Polyakov loop correlator under renormalization.

WiHt=ZW.+(1—2)P.

* Alternatively, diagonalize the matrix= W,-P. is

multiplicatively renormalizeable

* This renormalization prescription is valid at weak
and strong coupling



Perturbative renormalization

* The renormalization equation gives

Wt =ZW.+ (1 - Z)P. P. =1+ 0(g°)
Cra Cza? _
1 S ; Z =1+ 7 0.+
r’T 27272 L
A1 C . ir-k C .
I /ek2 ( = 4 Ziag + >+
k

e This implies g, = 4 (1 NI ln47r)

s €

* The renormalization procedure has been tested successfully
to order ¢, where P. matters

e Accounting for the different geometries and signatures, it
agrees with the result of Korchemskaya Korchemsky NPB437 (1995). Up

to this order Zint Ca Z/eusp
’ 2C F ’



Non-perturbative renormalization

e Dealing directly with W_.is probably complicated.
WP, instead is multiplicatively renormalizeable

e It has linear divergences proportional to r and 1/T
and intersection log divergences

 Ratios like this should be cutoff-independent
(We = Pe)(r) (We — P)(2r9 — 1)
(We — Pe)(ro) (We — Fe)(r0)

another way of comparing PT and lattice

* First measurements of W, in Bazavov Petreczky
1303.5500



Taxonomy of Wilson loops

Loop Divergence Renormalization

Smooth, non-

intersecting linear multiplicative

rectangular, linear+cusp (log) | multiplicative

non-cyclic
linear

cyclic (W) +intersection mixing with P
(log)

W-P. linear+int. (log) multiplicative



Conclusions

e The Polyakov loop correlator P,

* is a well defined, gauge invariant free energy

 at short distances it can be expressed in an EFT
framework

e The cyclic Wilson loop W.

e mixes under renormalization with P.. The difference is
multiplicatively renormalizeable

* is then another well-defined and gauge-invariant
operator. Comparisons with lattice are possible, as
well as EFT framework



