Quench heater failure in dipole magnets

M. Bajko

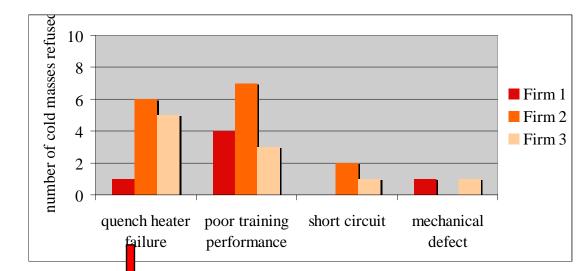
M. Bajko for the LHC Risk Review 6th of March 2009

Introduction

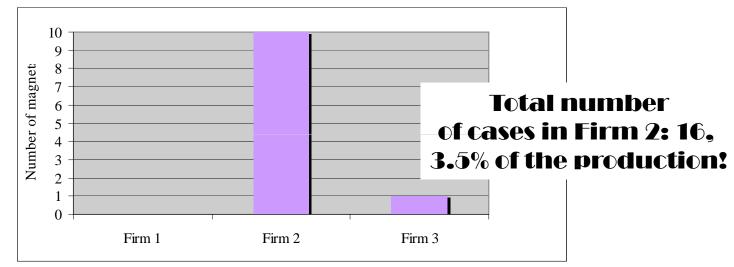
- In case of quench cold diodes will allow by-passing of the quenched magnet so that the energy dissipated as heat will be 'seen ' only by one magnet.
- To avoid the local effect of temperature and voltage rise, dipoles are equipped with the ' quench heaters' (QH).
- During the production and testing of the dipoles a number of magnets with failure on the QH circuits was detected.
- The detection of the failure results very difficult and the tests performed at warm and at cold could not give us 100% confidence on the integrity at long term of all circuits of the dipoles.

"Report on the Quench Heater Failures, AT MCS Technical Note"

Refused magnets after delivery to CERN

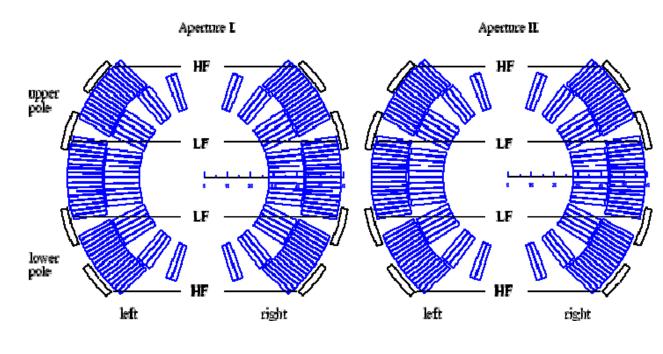

10	Arrived	Cold Test	Sent back	Back to CERN	Reason	Follow-up	
1005	Mar 02	May 02	May 02		unacceptable training performance (cold welds in the cable)		6
1019	Dec 02	Mar 03	Jan 04	Mar 04	short circuit QH/ground	new id 1519, TESTED OK	
1026	Mar 03	Jul 03	Oct 03	Jan 06	unacceptable training performance	new id 1526, TESTED OK	
1039	Aug 03	not tested	Sep 03	Oct 03	welds on M-lines - repair without dismounting	TESTED OK	≻Firm 1
1126	Jun 04	Sep 04	Nov 04	Fev 06	unacceptable training performance	new id 1626, TESTED OK	
1143	Aug 04	Sep 04	Nov 04	May 05	unacceptable training performance	new id 1643, TESTED OK	ļ
2002	Nov 01	Dec 01	Feb 02	Jul 03	insulation fault on three QH circuits detected at cold	TESTED OK	
2013	Sep 03	Feb 04	Mar 04	Jun 05	unacceptable training performance	new id 2513, TESTED OK)
2023	Jul 03	Aug 03	Nov 03	Jun 04	unacceptable training performance	new id 2523, TESTED OK	
2024	Sep 03	Oct 03	Nov 04	Jun 05	unacceptable training performance	new id 2524 : TESTED OK	
2025	Jul 03	Aug 03	Feb 04	Jan 05	unacceptable training performance	new id 2525, TESTED OK	
2032	Mar 04	Apr 04	May 04	Jul 05	short circuit between coll turns	new id 2532, TESTED OK	
2049	Apr 04	May 04	June 04	Apr 06	short circuit QH/ground	new id 2549, TESTED OK	
2051	Mar 04	Jul 05	Nov 06	Feb 07	unacceptable training performance	new id 2551	
2069	Mar 04	Mar 04	Sep 04	May 06	unacceptable training performance	new id 2569, TESTED OK	/ Firm
2098	Oct 04	Nov 04	Jan 05	Jan 07	unacceptable training performance pole D2-U	new id 2598	{ ■ ■■ ■■ ■
2124	Nov 04	Dec 04	Fev 05	Dec 06	defect on the guench heater	new id 2624	
2190	Jul 05	Aug 05	Jan 07		defect on the quench heater		
2239	Nov 05	Nov 05	Nov 06		short D2 upper pole		
2290	Apr 06	Jul 06	Sep 06	Dec 06	short between QHs and coll	new id 2790	
2368	Jul 06	Aug 06	Jan 07		quench heater and insulation problem		
3003	Feb 03	May 03	Aug 03	Dec 03	short circuit QH/coil and QH/ground	TESTED OK	/
3004	Aug 02	Oct 02	Jun 03	May 04	damaged (coil locally burnt) due to intertum short circuit	new id 3504, TESTED OK	h
3016	Apr 03	not tested	Jul 03	Sep 03	cold feet supports misaligned - repair without dismounting	TESTED OK	
3136	Jun 04	Aug 04	Sep 04	Mar 05	unacceptable training performance	new id 3636, TESTED OK	
3143	May 04	Nov 04	Fev 05	Sep 05	NC discovered at warm: Q.H. YT122 in short circuit with coll	new id 3643, TESTED OK	
3153	May 04	Fev 05	May 05	Oct 05	quench heater failure	new id 3653, TESTED OK	Firm
3208	Set 04	Oct 04	Apr 05	Oct 05	unacceptable training performance	new id 3708, TESTED OK	▏▎▏▋▋▋▋▋
3224	Set 04	Oct 04	Dec 04	Set 05	unacceptable training performance	new id 3724, TESTED OK	
3234	Oct 04	Oct 04	Fev 05	Set 05	NC appeared at cold: YT121 and YT122 connected to the coll	new id 3734, TESTED OK	
3388	Aug 05	Sep 05	Oct 05	Nov 05	HV test failed for YT121 and YT122	TESTED OK	

Firm 1: 6 magnets


Firm 2: 15 magnets

≻Firm 3: 10 magnets

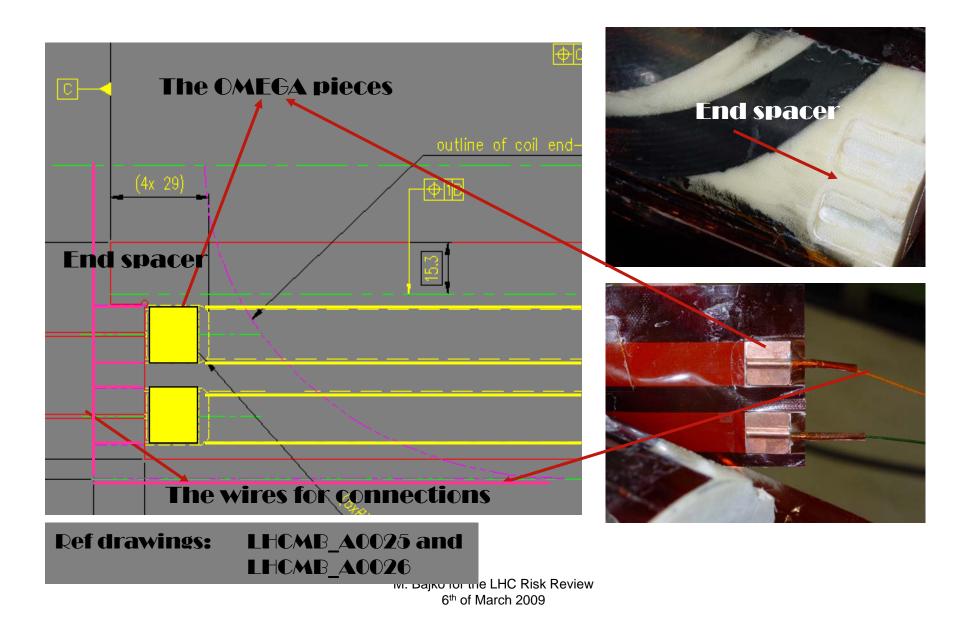
Refused magnets after delivery to CERN


Reworked magnets before delivery to CERN due to quench heater failure

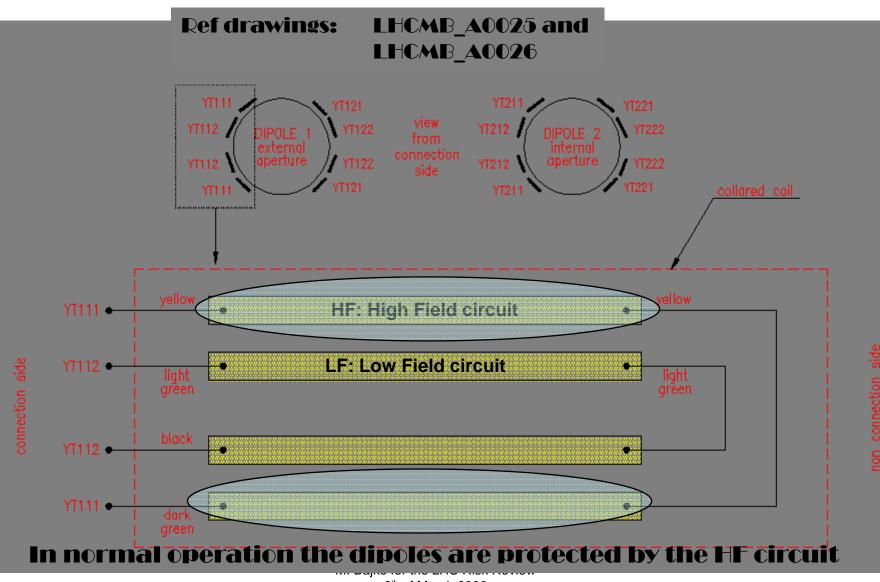
M. Bajko for the LHC Risk Review 6th of March 2009

QH and their position in the dipoles

The QH consist of **partially copper plated stainless steel** strips (AIS 304 or AISI 316L) of about **25** μ m thickness and 15 mm wide. They are sandwiched and bonded to **two layers of polyimide** electrical insulation foil. The thickness of both insulation foils is **75** μ m . A **25** μ m tick layer epoxy glue is added on one side of the foil to provide bonding during manufacturing of the QH.

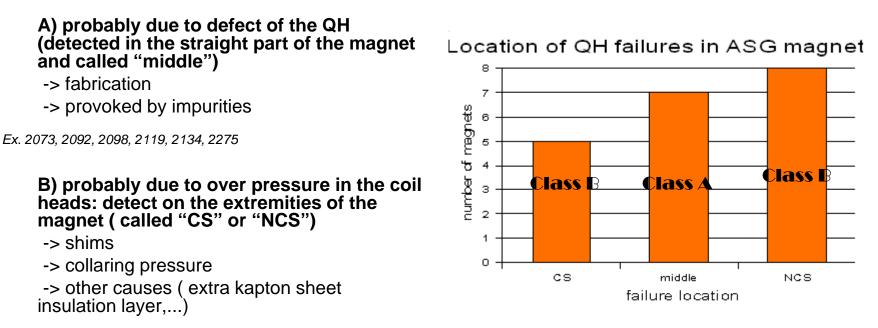


The QH covers the entire length of the coils (15m). For redundancy there are 2 strips / quadrant covering 13 turns.


HF: High Field

M. Bajko for the LHC Risk Review LF: LOW6: Field Arch 2009

Connection at the end of the coils


Quench heater wiring diagram

^{6&}lt;sup>th</sup> of March 2009

Failure location. Failure classes

Although the 100% of the failed QHs are coming from the same QH producer, it is possible to think that they arise from two different mechanisms:

Ex.2049,2121, 2190, 2303, 2368, 2382

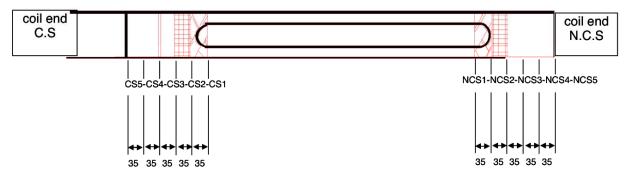
The idea of the existence of two different classes is supported by the observation that failures in the straight section occur with almost the same probability in the upper and lower part of the aperture; while they are located in the 85% of cases in the upper zone if they are going to happen in the coil ends.

6th of March 2009

Failure location. Class 2

Magnet nr.	Failed circuit	Failure location		Failure discovered at	
2002				cold	
2005	211 (HF)	CS/NCS		cold	
2011	211 (HF)	CS	D2 Up	warm	
2013	112 (LF)	CS	D1 Up/ D1	warm	
2049	211 (HF)	NCS	D2 Up	cold	
2121	221 (HF)	NCS	D2 Up	warm	
2124	211 (HF)	NCS	D2 Lo	cold	
2190	211 (HF)	CS	D2 Up	cold	
2290	122 (LF)	NCS	D1 Up	cold	
2303	121 (HF)	NCS	D1 Up	warm	
2368	221 (HF)	NCS	D2 Up	cold	
2368	111 (HF)	NCS	D1 Up	cold	
2382	111 (HF)	NCS	D1 Up	warm	
2382	111 (HF)	CS	D1 Up	warm	

Failed circuit	Failure location		Failure discovered at	
LF = 2 (16.7%)	CS = 4 (33.3%)	Up = 11(84.6%)	warm = 6(50%)	
HF = (0 (83.3%)	NCS = 8 (66.6%)	Lo = 2 (15.4%)	cold = 6 (50%)	
			• •	



In normal operation the dipoles are protected by the HF circuit

Failure origin?

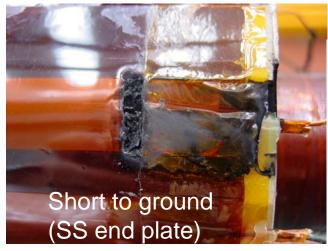
Coil head shimming

Shims are used to control the pressure profile in the coil ends. QH failures observed in the coil ends are likely to be due to over pressure in the same region. Therefore it is possible to think of a correlation between QH failures and coil ends shims. Extra thickness of the shims can cause over pressure and consequently damage of the QH strips.

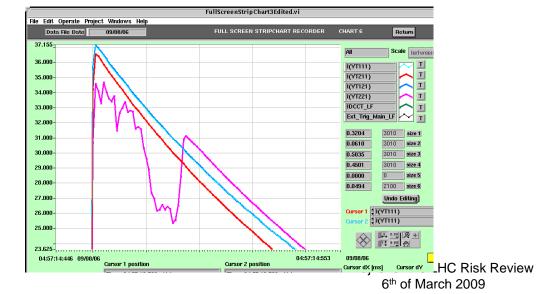
As a result of the analysis, it can be stated that thick shims <u>cannot be neither identified as the main source of QH failures</u> in the coil ends <u>nor excluded</u> from the list of parameters that can cause the problem in a combined way.

Collaring pressure

For each one of the four circuits of the press it has been calculated **\$**


- the average value of the maximum applied pressure (corresponding to the nominal locking rods insertion)
- the average time of its application
- the average value of the peak of pressure necessary to the insertion of the small locking rods

These values have been compared to those of magnets in which QH failures in the coil ends have been detected.


No correlation with QH failures can be established

How were the failures detected?

1. Electrical insulation fault after successful discharge test

1. During discharge

Short to ground (SS collars)

Why this failure is a risk for the LHC?

1. It is difficult to detect before damaging a coil

A metallic strip partially open (90% of its width) is still electrically continue, no variation of its resistance can be seen and it withstands also a high voltage discharge test several times before it burns and maybe damage the coil.

2. We already discovered failures without having seen it at any test

••••case that could not be detected by any of the electrical tests but it was seen after disassembling of the magnet. Although a failure was detected at cold on the QH in question, it was localised on the opposite side.

3. The failures are mostly on the circuit that is the operational one HF

Cases detected during HC?

sector	dipole		
12	2395	1372	
23	3708		
34	-	Courte	sv of
45	2214		EIQA
56	-		
67	1263		
78	2007		
81	-		
	Q4L8		

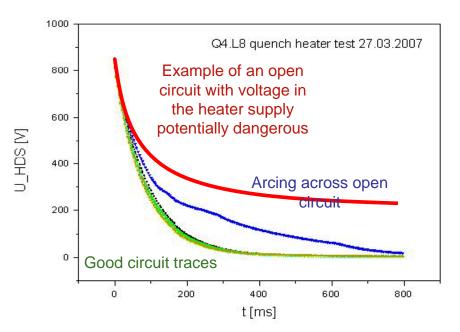
To be remarked that in all cases the problem was in the instrumentation wires of the QHs.

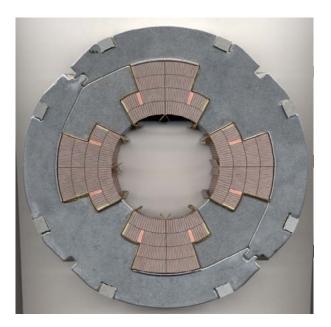
Courtesy of G. D'Angelo

(EIQA team)

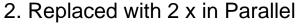
I his problem however was also seen during the production of the MQY magnets but CURED

From aperture 21 (so magnet 10) onwards the design changed

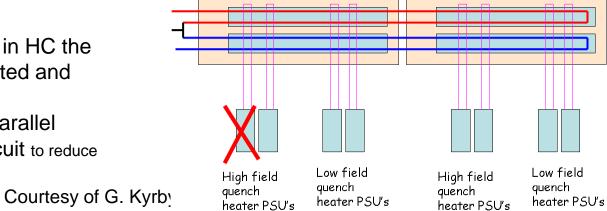

So magnets 1 to 9 could have problems!

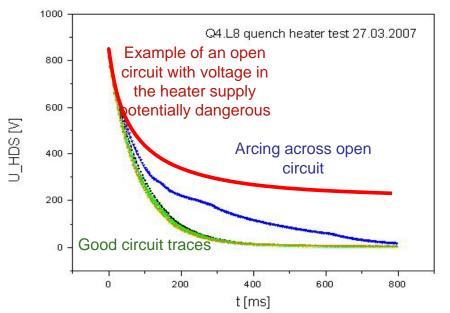

Courtesy of J.C. Perez

Courtesy of G. Kyrby


M. Bajko for the LHC Risk Review 6th of March 2009

What we saw during HC?




1. For all cases detected in HC the HF circuit was disconnected and insulated and

symmetrically two LF circuit to reduce Miits and DirVoltages

What has been prepared and proposed?

A dedicated tool for AUTOMATIC data analysis

There was a proposal for an implementation of a system with a low current flowing in the QH circuit looking after any opening of the circuit.

The solution was abandoned as it was jugged of a reduced efficiency.

Meanwhile : the systematic analysis of the discharge is mandatory!!!

M. Bajko for the LHC Risk Review 6th of March 2009