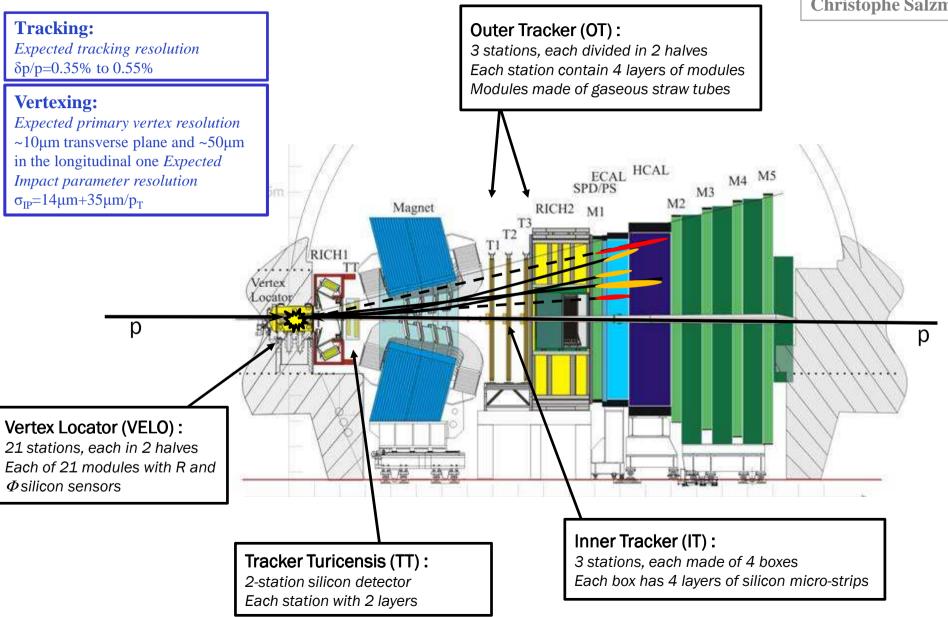


Eduardo Rodrigues On behalf of the LHCb Collaboration

LHC Detector Alignment Workshop CERN, 16 June 2009

Impact of misalignments on beauty Physics at LHCb

Random misalignments


Residual misalignments

Weak modes

- competing effects: B field

LHCb tracking detectors in short

See also the talks by: Marc Deissenroth Christophe Salzmann

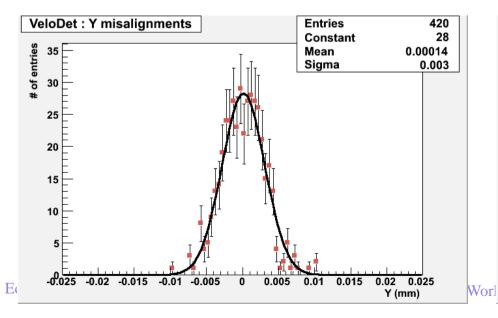
Random misalignments

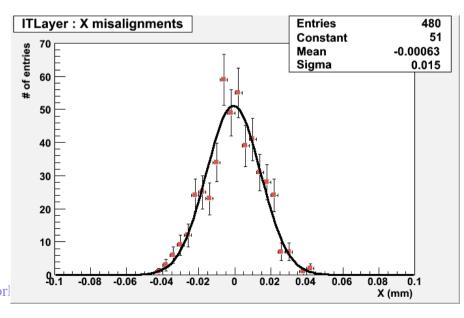
- ☐ Systematic study of effect of (random) misalignments purely based on their size
- ☐ Does not involve any assumptions on quality of metrology or alignment software

Study procedure

Goal of study

Study effects of misaligned tracking system on measurements of B \rightarrow hh' decays


- \Rightarrow B \rightarrow hh' mode important / interesting:
 - new physics sensitive extraction of CKM angle g


 $(h=\pi,K)$

- calibration channel for e.g. $B_s \rightarrow \mu\mu$ mode
- decay rather affected by misalignments given high momentum of B-daughers
 - □ Create random misalignments for VELO sensors/modules and IT and OT layers
 □ Choose scale (Gaussian sigma) to be ~1/3 of the detector's single hit resolution (called "1σ")
 □ Generate 10 sets of "1σ" misalignments and apply each to 2k B → ππ events (⇒ 20k sample suppressing potentially "friendly" or "catastrophic" misalignment sets)
 - Likewise, create similar sets with misalignment scales increased by factors of 3 (3 σ) and 5 (5 σ)
 - Misalignments applied at reconstruction level to events generated with perfect geometry

Scales for the 1σ misalignment set

SUB-DETECTOR	Translations (μm)			Rotations (mrad)		
	Δ_{x}	Δ_{y}	Δ_{z}	R_x	R_y	R_z
VELO sensor VELO module	3	3	10	1.00	1.00	0.20
IT layer	15	15	50	0.10	0.10	0.10
OT layer	50	0	100	0.05	0.05	0.05

Intermezzo: the B \rightarrow hh analysis cuts

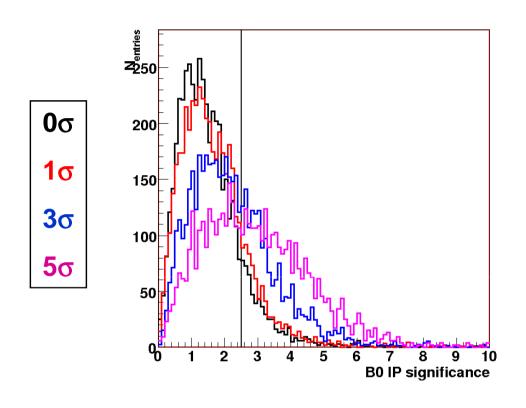
Selection cuts consist of various requirements:

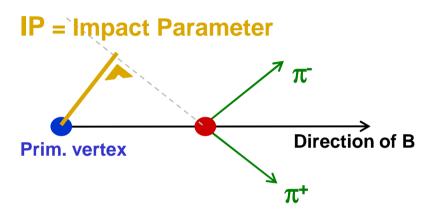
Particle identification:
K-π separation based on PID likelihood difference (Δ ln $\mathcal{L}_{\text{K}\pi}$)
Topological:
clear separation of primary vertex and B-decay vertex
B-daughters impact parameter (IP) and B-decay length significance
Kinematic:
minimal B-candidate and B-daughters transverse momentum
Vertexing:
χ^2 of vertex fit to B-daughters
Mass:
mass window cut on invariant mass of B-daughters

Impact of VELO misalignments (1/4) – no IT/OT misalign.

> Selected event numbers and pattern recognition

efficiencies *after* standard B → hh selection


ratteriffecogi	IILIOII
for "long" trac	ks,
i.e. tracks trav	ersing
the whole of L	HCb

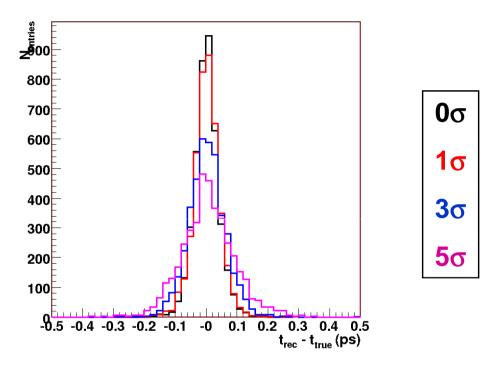

Pattorn recognition

	N _{selected B}	ε _{PatternReco} (%)
0σ	4229	85.9
1σ	3904	85.6
3σ	2241	83.1
5σ	1106	80.1

- ☐ Effect on tracking is small-ish
- Very significant loss of events, has to come from the selection itself ...
 - ⇒ misalignments have serious impact on some selection variables
 - ⇒ systematic check of all of them ...

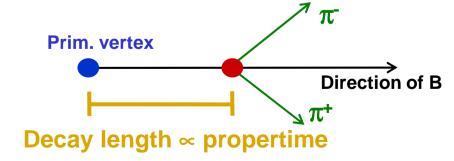
Impact of VELO misalignments (2/4)

- □ Biggest effect comes from tight upper cut on the
 B-candidate IP significance, IPS < 2.5
- □ Additional effect on lower IPS cut of B-daughters
- \square Also χ^2 of B-vertex fit is rather affected


Impact of VELO misalignments (3/4)

❖ Propertime resolution *after* standard B → hh selection

- crucial in time-dependent CP violation measurements


	τ resolution (fs)
0σ	37.7
1σ	39.4
3σ	58.1
5σ	82.0

(sigma of Gaussian fit)

2nd order effects:

- **□** B-daughters momentum resolution: $0.50 \rightarrow 0.52 \%$
- \square B mass resolution: 22.5 \rightarrow 23.5 MeV

Impact of VELO misalignments (4/4)

❖ Primary vertex and B-decay vertex resolutions in selected B → hh events

Resolution	Primary v	ertex (µm)	B-decay vertex (μm)	
	x/y	Z	x/y	Z
0σ	9	41	14	147
1σ	10	48	15	155
3σ	16	81	21	226
5σ	25	147	29	262

Impact of IT and OT misalignments – no VELO misalign.

- ☐ Effect on tracking is small
- Loss of events much smaller compared to the VELO case (~4% in the extreme 5σ case)
- **❖** Momentum and mass resolutions *after* standard B → hh selection

	p resolution (%)
0σ	0.50
1σ	0.50
3σ	0.54
5σ	0.59

	Mass resolution (MeV)
0σ	22.5
1σ	22.6
3σ	23.4
5σ	25.8

p dominated by multiple scattering, not single-hit resolution

> at most of order 10% effect

Impact of combined VELO, IT and OT misalignments (1/2)

ightharpoonup Selected event numbers, PR efficiencies and resolutions after standard B ightharpoonup hh selection

	N _{selected} B	ε _{PatternReco} (%)	τ res. (fs)	p res. (%)	Mass res. (MeV)
0σ	4229	85.9	37.7	0.50	22.5
1σ	3892	85.6	40.9	0.50	22.3
3σ	2086	83.3	58.0	0.56	25.1
5σ	1040	78.5	78.6	0.63	25.5

⇒ Effects are roughly the combined effects of VELO and IT+OT misalignments

If software alignment is of order or better than " 1σ " we are in business!

Impact of combined VELO, IT and OT misalignments (2/2)

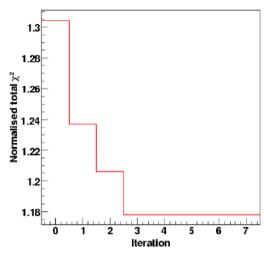
RESOLUTION	Affected by VELO misalignments	Affected by T misalignments
B-daughters momentum	no	yes
B mass	no	yes
B vertex	yes	no
B Impact Parameter	yes	no
B propertime	yes	no

no = very small/negligible effect yes = significant effect

Residual misalignments

- ☐ Study of remaining misalignment effects after application of alignment algorithms
- ☐ Identify potential problems/biases of alignment procedure

Study procedure


- □ Sample: 20k minimum bias events reconstructed with the nominal geometry
- □ Tracks refitted using a misaligned geometry database for IT & OT:
 - translations in x applied to IT boxes, IT&OT layers, and IT ladders individually (x=measurement direction) following a flat distribution with widths:

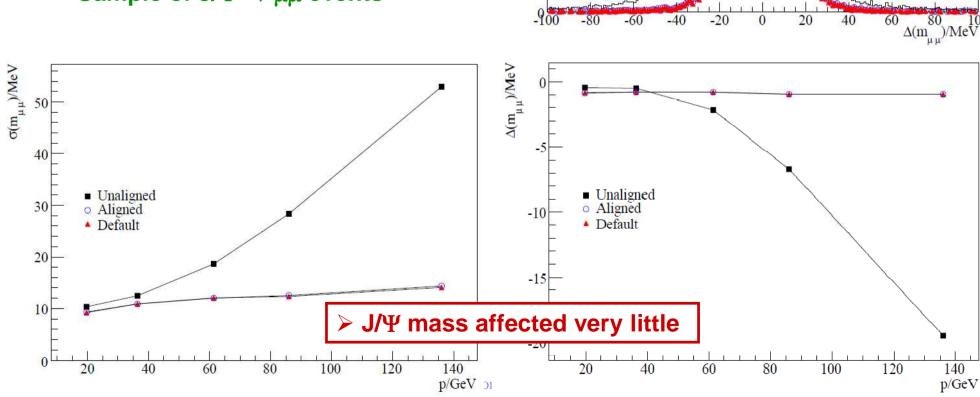
(408 degrees of freedom to align for)

Detector		DoF	Amplitude
	boxes	TX [mm]	1.0
IT	layers	TX [mm]	0.1
	ladders	TX [mm]	0.05 (*)
OT layers		TX [mm]	1.0
		RZ [mrad]	0.15

- Alignment procedure based on the minimisation of the tracks χ^2 using Kalman filter fitted tracks
- □ Translations in y and z, and rotations in y, are not aligned for as χ^2 of tracks not very sensitive to these movements

- □ The overall alignment of all IT & OT degrees of freedom followed an iterative procedure
 - 3 iterations are typically needed:

- □ E.g., after alignment, the distribution of residual misalignments for the IT has a Gaussian width ~20% the IT resolution (=60μm)
- ☐ After alignment, some weak modes may still be present


... but what is the impact on the physics studies?

Effect on 2-body decays

Comparison:

- Default: ideal geometry
- ☐ Unaligned sample: before alignment
- ☐ Aligned sample: after alignment job

Sample of $J/\Psi \rightarrow \mu\mu$ events

1000

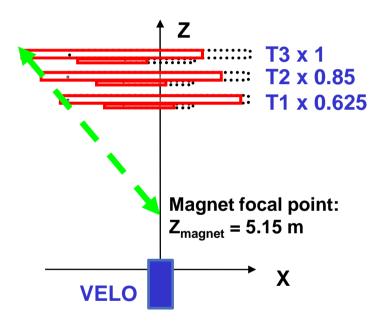
800

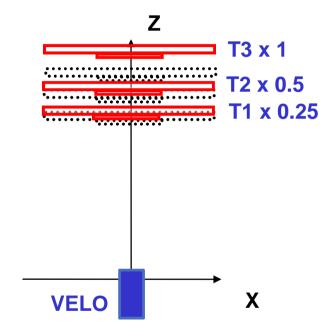
600

400

200

UnalignedAligned

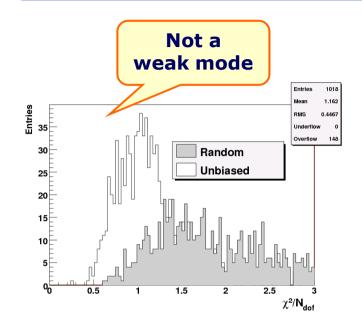

▲ Default


Weak modes

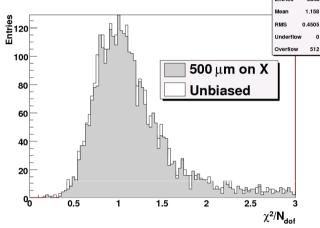
- Weak modes are linear combinations of alignment parameters that are insensitive to the alignment procedure
- ☐ Constraints are typically applied to avoid problems

T-stations weak modes

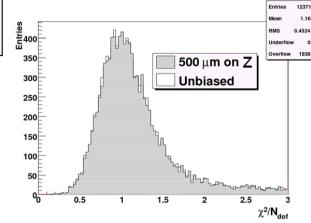
- **2** T-stations weak modes identified, relevant to *p* determination:
 - have no significant effect on the track fit χ^2


X-shearing (IT & OT) with a scale factor on Z

(e.g. 500 μm @ T3 \rightarrow 425 μm @ T2 & 312 μm @ T1)


Z-scaling (IT & OT) with a scale factor on Z

(e.g. 500 μm @ T3 \rightarrow 425 μm @ T2 & 312 μm @ T1)

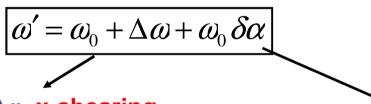

How weak are these weak modes?

Random misalignment of OT and IT of 500 microns

X-shearing with a scale factor of IT and OT

Z-scaling with a scale factor of IT and OT

- Very weak!
 - no impact on the track χ^2 !
 - reconstruction efficiency unchanged

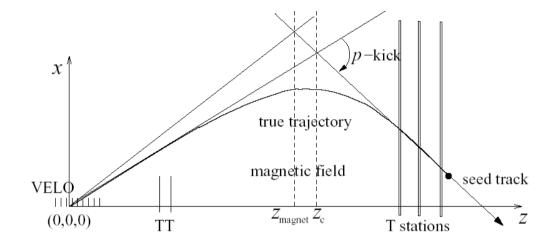

Momentum and mass - parametrisation

How we measure the momentum?

$$\omega = q/p$$

$$\Delta t_x \approx \frac{q}{\sqrt{p_x^2 + p_z^2}} \int B_y dz = \omega I_B$$

Generic bias parametrisation:



∆∞: x-shearing

$$p' \approx \frac{I_B q}{\omega_0 + \Delta \omega}$$

$$m'^2 \approx [1 + (p_1 - p_2)\Delta\omega]m^2$$

$$m' \approx \left[1 + \frac{(p_1 - p_2)}{2} \Delta \omega\right] m$$

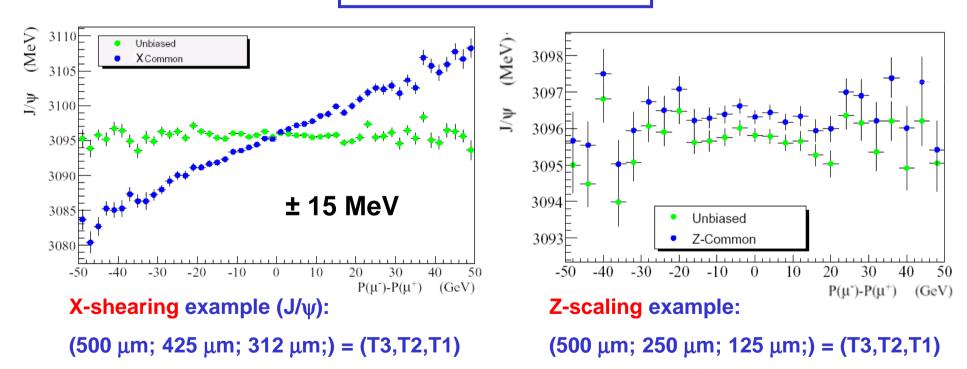
δα: z-scaling

$$p' \approx \frac{I_B q}{\omega_0 (1 + \delta \alpha)}$$

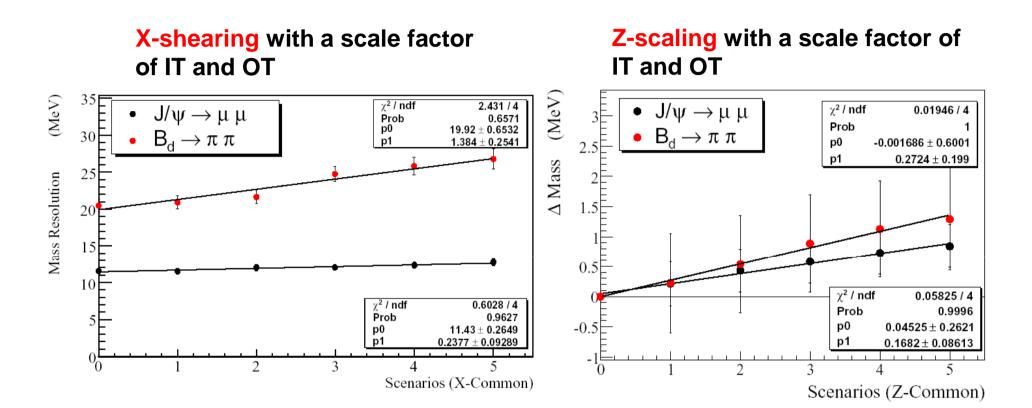
$$m' \approx (1 + \delta \alpha) m$$

Magnetic Field scale:

$$I_B \approx (1 + \delta k) I_B$$


$$m' \approx (1 + \delta k)m$$

Effect on mass of 2-body decays (1/2)


> Bias on the mass after alignment:

- One can use several 2-body decays $K_s \to \pi\pi$, $J/\psi \to \mu\mu$, $B_d \to \pi\pi$ and plot the mass versus the momentum difference of the daughters

Example with 40 000 J/Ψ

Effect on mass of 2-body decays (2/2)

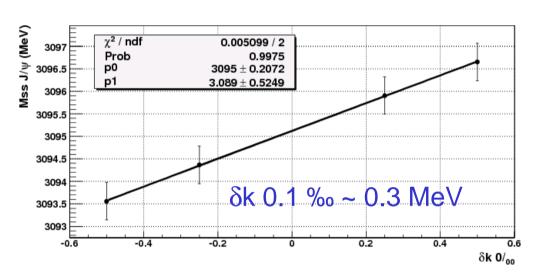
- ➢ For the B_d the mass resolution is rather sensitive
 - because of high momentum of B-daughters

Weak modes and B-field

$$\Delta t_x \approx \frac{q}{\sqrt{p_x^2 + p_z^2}} \int B_y dz = \omega I_B$$

Magnetic Field scale:

$$I_B \approx (1 + \delta k) I_B$$


$$m' \approx (1 + \delta k)m$$

... to compare with z-scaling:

$$m' \approx (1 + \delta \alpha) m$$

 □ T-stations Z-scaling induces a mass bias identical to rescaling the B field

☐ LHCb B-field map known to 0.3 ‰

Conclusions

- ☐ LHCb has studied the impact of tracking stations misalignments on the physics performance under various perspectives:
 - random and residual misalignments, weak modes
- □ Results are rather reassuring and give confidence that we can deal with the expected misalignments:
 - B-event selection particularly sensitive to VELO misalignments, but the latter are well under control
 - momentum and mass determination not very much affected by size of expected misalignments

References

LHCb 2008-012: Impact of misalignments on the analysis of B decays
LHCb 2008-065: First studies of T-station alignment with simulated data
LHCb 2008-066: Alignment of LHCb tracking stations with tracks fitted with a Kalman filter
Eduard Simioni, PhD Thesis, to be published

Back-up slides

LHCb

Forward spectrometer

Acceptance: $1.8 < \eta < 4.9$

Luminosity: 2•10³² cm⁻² s⁻¹

Nr of B's / 2fb⁻¹ (nominal year): 10¹²

Detector: excellent tracking

excellent PID

Reconstruction:

- muons: easy

- hadronic tracks: fine

- electrons: OK

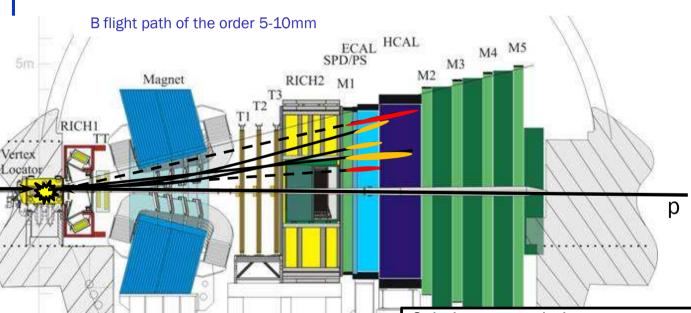
- π^0 's: OK, though difficult

- neutrinos: no

р

Tracking:

Expected tracking resolution δp/p=0.35% to 0.55%


Vertexing:

Expected primary vertex resolution ~10µm transverse plane and

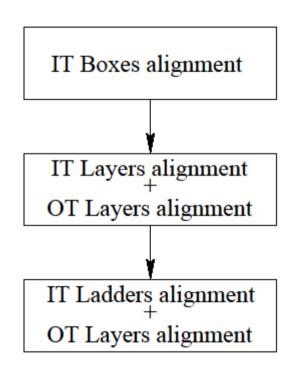
~50 μ m in the longitudinal one Expected Impact parameter resolution σ_{IP} =14 μ m+35 μ m/p_T

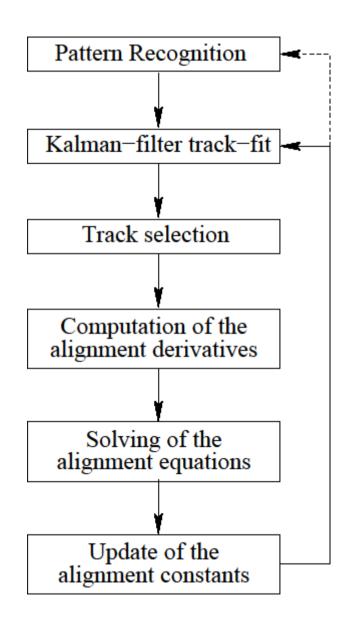
Mission statement

- Search for new physics probing the flavour structure of the SM
- Study CP violation and rare decays in the B-meson sector

RICH performance:

Cherenkov angle resolution 0.6-1.8 mrad Particle identification in p range 1-100 GeV π , K ID efficiency > 90%, misID<~10%


Calorimeter resolution:

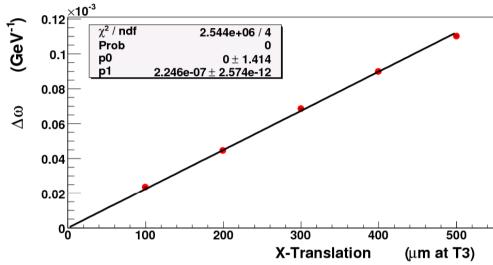

Design ECAL resolution $\sigma(E)/E = 10\%\sqrt{E} + 1\%$ (E in GeV) HCAL resolution from test-beam data $\sigma(E)/E = (69\pm5)\%\sqrt{E} + (9\pm2)\%$ (E in GeV)

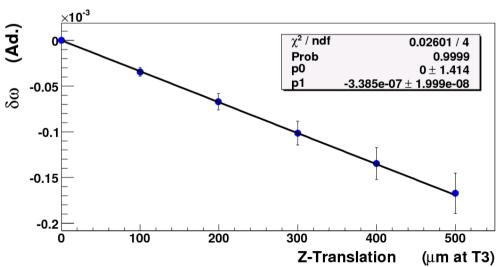
Eduardo I

28/26

IT & OT alignment procedure

Effect on reconstructed ω


☐ Reconstruction of high momentum & clean tracks with ideal/misaligned geometry


$$|\omega = q/p|$$

 \Rightarrow 2D distribution of ω - ω_0 versus ω

e.g. 500 μ m in x \Rightarrow absolute shift of ~10⁻⁴ GeV⁻¹ on the reconstructed ω

e.g. 500 μ m in z \Rightarrow ~0.15% $_0$ error on reconstructed ω

