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Plan of talk

m LHC as a heavy-ion collider

- LHC orientation

- Injectors

- Design parameters, performance limits
m HI2010 run

- Plan, performance different, limits
m Future runs

- Higher performance with Pb-Pb

- Hybrid collisions p-Pb

- Lighter ions

- Deuterons
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Injection region screens

First beam to re-
awaken LHC after the
September 2008

incident
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LHC AS A HEAVY-ION

OLLIDER

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010



Luminosity of a hadron collider

N k‘f "N k fyF:
4nc,0,  Axg B

L =

(6,)

Hour glass factor: F = 1/\/1+(e(j j

26

m Parameters in luminosity
- Number of particles per bunch
- Number of bunches per beam
- Relativistic factor
- Normalised emittance
- Beta function at the IP

- Crossing angle factor
m Full crossing angle
m Bunch length
m Transverse beam size at the IP

Equal amplitude functions:
B. =B, =B

Geometric and normalised emittance:

LIS MH X X =
*

* * G* |:| B 8n
Y
(N.B. LHC uses RMS emittances.)
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m Mainly p-p running for elementary particle
physics

m 1 month/year for heavy-ion programme, initially
208pH82+- 208ppH82+

- Later p-Pb, lighter A-A, ...

m Even at initial half-nominal energy, pushes the
energy frontier for laboratory nuclear collisions a
factor 13.7 (later up to 28) beyond RHIC,

- Biggest energy step ever made by any collider
over its predecessor ?

m The first Pb-Pb run is planned for 2 November
- 7 days setup, then 28 days physics
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LHC schematic for orientation
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O o5 LHC Ion Injector Chain
jLHe

o ECR ion source (2005)

- Provide highest possible
intensity of Pb2°+

« RFQ + Linac 3

Already delivers
“Early” beam, partly
- Adapt to LEIR injection energy SPS commissioned for

— strip to Pb>4+
« LEIR (2005)
- Accumulate and cool Linac3

more complex
“Nominal” beam.

.. LHC

— Will start setup for
beam ) first Pb-Pb run in
~ Prepare bunch structure for. P& August.
« PS (2006)

- Define LHC bunch structure
— Strip to Pb82+

« SPS (2007)
- Define filling scheme of LHC

LINAC 3
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LHC Pb Injector Chain:

Design Parameters for luminosity 1027 cm2 s!

——

2 Same physical emittance as protons,

e =g, =4y° —1g,, is Uinvariant in ramp.
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ECR Source—>Linac3 _4__ LEIR »PS13128 _ .SPS 12 LHC
Output energy 2.5 KeV/n 4.2 MeV/n 72.2 MeV/n 5.9 GeV/n 177 GeVIn | 2.76 TeV/n
208Ply charge state 27+ 27+5> 54+ 54+ 54+ > 82+ 82+ 82+
Output Bp  [Tm] 2.28%> 1.14 4.80 86.7 :->57.1 1500 23350
bunches/ring - 2 (1/8 of PS) 4 (or-4x2)4 52,48,32 592
ions/pulse 910° 1.1510° 1) 9108 4.8 108 <4.710° 4.1 1010
ions/LHC bunch 910° 1.15 10° 2.25 108 1.2108 9107 7107
bunch spacing [ns] 100 (or 95/5)* 100 100
g*(nor. rms) [um]? ~0.10 0.25 0.7 1.0 1.2 1.5
Repetition time [s] 0.2-04 0.2-0.4 3.6 3.6 ~50 ~10°fill/ring
€|ong PEr LHC bunch?® 0.025 eVs/n 0.05 04 1eVs/n

L EURENe58H 1081 finac3 output after stripping 200 39 165 :3tripping foi




Design Parameters for Pb-Pb (~2001) @

Parameter Units Early Beam Nominal
Energy per nucleon TeV 2.76 2.76
Initial ion-ion Luminosity L, cm2 sl ~ 5 %1025 1 x1027
No. bunches, & 62 592
Minimum bunch spacing ns 1350 99.8
B* m 1.0 0.5/0.55
Number of Pb ions/bunch 7 x107 7 x107
Transv. norm. RMS emittance um 1.5 1.5
Longitudinal emittance eV s/charge 2.5 2.5
Luminosity half-life (1,2,3 expts.) h 14, 7.5, 5.5 8,4.5, 3
Do something Probably
At full energy, luminosity lifetime like this at unattainable
is determined mainly by collisions reduced without “cryo-

(“"burn-off” from ultraperipheral
electromagnetic interactions) o =~ 520 barn
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energy in 2010

collimators” at
least
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On Luminosity with Lead Ions

m Luminosities quoted for lead ions may seem low
compared to pp or ete-

m But one can/should also quote nucleon pair
luminosities

L =1.0x10*" (Pb)(Pb)cm™s™
— =6.7x10% (p)(p) cm™s™ —
=4.3x10% (nucleon)(nucleon) cm™s™
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Ultra-Peripheral Collisions

m Electromagnetic Yorge =27 —121.7x10’

Interactions In encounters
which are not close enough
to overlap nuclear A
densities
—-Extremely Lorentz-
contracted Coulomb fields
(equivalent quasi-real
photons in Fermi- b
Weizsacker-Williams
method)

-In this sense, LHC is a yy
collider.

-Frequency spectrum of
FWW photons depends on
impact parameter, b.

Coupling Za=——
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Pair Production in Heavy Ion Collisions

Racah formula (1937) for free pair production in heavy-ion collisions

- +
L +2,>7 +e +e +2Z,

Opp =

2.x10*b for Pb-Pb LHC

TT

Z°Z,a’r’ ] 224 3 1.7x10"b for Au-Au RHIC
= : log(2yey ) +---| =

Cross section for Bound-Free Pair Production (BFPP) (several authors)

Zl+Zz—>(Zl+e') +e' +7Z,

1815 5...

has very different dependence on ion charges (and energy)
Opp € Zy°Z, [Alogyey + B]
« Z'[Alogye, +B] forz,=z,  WeuseBFPP values from Meier et al, Phys.

Rev. A, 63, 032713 (2001), includes detailed
0.2 b for Cu-Cu RHIC calculations for Pb-Pb at LHC energy

~ <114 b for Au-Au RHIC
281 b for Pb-Pb LHC

BFPP can limit luminosity in heavy-ion colliders, S. Klein, NIM A 459 (2001) 51

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010 13



Secondary Pb81+
beam (25 W at
design luminosity)
emerging from IP
and impinging on
beam screen.

Hadronic shower
into
superconducting
coils can quench
magnet.

Luminosity Limit from bound-free pair production

208
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Distinct EMD process (similar rates) does not form spot on beam pipe

208
208Pb82+ +208 Pb82+ GDR s Pb82+ +207 Pb82++n
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Test of LHC methodology at RHIC

m Parasitic measurement
during RHIC Cu-Cu
run in 2005

- Loss monitors setup
as for LHC

— Just visible signal!

m Compared predictions
and shower
calculations as for LHC

- Reasonable

agreement

m R. Bruce et al, Phys. Rev.
Letters 99:144801, 2007

m We still need to benchmark
quench limit (in LHC!)
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Luminosity limit from collision products

Physical Review Special Topics—

Accelerators and Beams

Home Browse Search Subscriptions
Page/Article

< Previous Article | Next Article =

Citation Search: Phys. Rev. Lett v Vol

AFS » Journals = Phys. Rev. ST Accel. Beams = Volume 12 » Issue 7

Phys. Rev. ST Accel. Beams 12, 071002 (2009) [17 pages]

Beam losses from ultraperipheral nuclear collisions
between 2°®Pb%2* jons in the Large Hadron Collider and

their alleviation

References

Download: PDF (3,720 kB}, One-celumn PDF (3,733 kB) Export: BibTeX or EndNote (RIS}

R.Bruce® ", D. Bocian? T, S. Gilardoni’, and J. M. Jowett’

'CERN, Geneva, Switzerland )

2Fermi National Accelerator Laboratory, Batavia, [llincis 60510, USA AlSO theS|S Of R- Bruce,
Univ. Lund in CDS).

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010

16



Propensity to quench

_.‘:{1'[:]'2?!.3]‘1]_25_]]
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3T TeV]eg. fo=1.1m

6.503 7T TeV eq. fo=3m
6.3037 TeV eq. Bo=10m

Various operating conditions, see paper for details.
Elaborate chain of calculations with several uncertainties.

Some improvement might be possible with orbit bump method.
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Collimation of heavy ions

m LHC proton collimation principle:

- Errant protons encounter primary collimator
and are diffractively scattered to larger
betatron oscillation amplitude, cleaned by
secondary collimators

m Collimation of heavy ions is very different from
protons

- Nuclear interactions (hadronic fragmentation,
EM dissociation) in primary collimator material.

- Staged collimation principle does not work.

- Single stage system, reduced collimation
efficiency
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LHC design (primarily for p beam) principle: diffractive scattering of errant
particles on primary collimator towards absorption in secondary collimators

Nuclear physics different for heavy ions!

Hadronic fragmentation:

Large variety of daughter nuclei, specific

cross sections Hadronic Fragmentation
cross sections for 2°®Pb on 12C

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/1

Electromagnetic dissociation:

Mainly loss of 1 (59%) or 2 (11%)
neutrons = 207pPb, 206pp

Electromagnetic Dissociation
cross sections for 2°8Pb on 12C

19



Cleaning efficiency
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Collimators tend to
put fragments on

| trajectories with

large effective

| momentum errors

1 (Z/A) and small

| betatron amplitude
| = but the secondary
1 collimators are

1 designed to cut

| betatron amplitudes

The probability to convert a 2°8Pb nucleus into a neighboring nucleus.

Impact on graphite at LHC collision energy.
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From Hans Braun
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Beam1, betatron collimation
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Other limits on performance

m Total bunch charge is near lower limits of
visibility on beam instrumentation, particularly
the beam position monitors

- Must always inject close to nominal bunch
current and not lose too much!

- Rely on ionization profile monitors more than
with protons ,etc

m Intra-beam scattering (IBS)

- Multiple Coulomb scattering within bunches is
significant but less so than at RHIC where it
dominates luminosity decay

m Vacuum effects (losses, emittance growth,
electron cloud ...) should not be significant
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THE 2010 LEAD-LEAD RUN
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Early (2010/11) Nominal
Vsyy (per colliding nucleon pair) |TeV 2.76 55
Number of bunches 62 592
Bunch spacing ns 1350 99.8
S* m 2—>35 0.5
Pb ions/bunch 7 x 10/ 7x10/
Transverse norm. emittance mm 1.5 1.5
Initial Luminosity (L,) cm?s?t |(1.25— 0.7) 10% 10%
Stored energy (W) MJ 0.2 3.8
Luminosity half life (1,2,3 expts.) |h Tigs=7-30 8,4.5,3

Caveat: assumes design emittance

Initial interaction rate: 50-100 Hz (5-10 Hz central collisions b = 0-5 fm)

~108 interaction/10%s (~1 month)

In 2010: anticipated integrated luminosity 3-10 pb-!
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Strategy for switch to Pb from p

m Make the absolute minimum of changes to the
working p-p configuration

- Magnetically identical : Transfer, injection,
ramp, orbits, optics, tunes, chromaticity...

- Same beam sizes : aperture, collimators, ...

- Collimation and machine protection to be
checked out

- Reduce crossing angle to zero in CMS and
ATLAS.

— Real zero crossing angle in ALICE
m Differences in basic setup

- RF frequency (Pb mass), energy matching to
SPS
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Heavy ion commissioning plan (1)

No. OF ESTI]r;II'Ir:]I::E (in COMMENT Beaml Beam2
BUNCHES/BEAM . '
shift)
LHChb switch off till noon  [ACCESS and recovery oK oK THU M
Calibrate BCTs oK oK
Check with protons after Injection of high intensity proton bunch |OK oK
acfess protons 1h : ¢ ve op THU M
Injection of low intensity proton bunch  [OK oK
switch injector chain to ions oK oK
Injection of Icu.n.s (to establish the ox ox ae
reference orbit)
o J circulati Rough Bl check oK oK =] G
In_|ect|0nbaenamcs|rcu sting 1 (non colliding) 1 Resteering of transfer lines (if needed) |OK oK ABT B THU &
RF capture {at -5 kHz frequency shift) oK oK F PB
check injection ascillation (8 ]4 (8]4 op
check 450 GeV dump ok oK [8]4 ABT BG
450 Z GeV commissioning _ Wire-scanner for 1 beam OK 0K G THU N
. 1 {non colliding) 0.5 Bl
(Bl setup) Bl 15 THU N
450 Z GeV optics check . beta-beating. »0.4 inal b h
SEVORLES ENECES | 1 (non colliding) 0.5  [oooToealne ThaneminalBune oK |ox ABP RT THU N
with two beams intensity
) _ o Collimation check oK oK ) _
Collimation 1 {non colliding) 1 COLL SR, RA, DW FRI M
Loss maps Ok oK
LBDS 1 {non colliding) 0.25 Asynchronous beam dump oK (8]4 ABT B FRI A
Blow ff - TFB off - OFB - QFB -
° .MP ° G. : on Q. i Gn. OK OK Op, COLL RA
Collimators ramp if no issues at injection
Ramp 1 {non colliding) 1 FRI A
Collimator check, NO squeeze, loss maps |OK (8]4 OP, ABP RT
check 3.5 TeV dump ok oK (8]4 ABT BG
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ion commissioning plan (2)

test models and prepare future runs

e e e e e [ "y o
Ramp THEM squeeze, optics check oK oK W, GV,
RANP and SQUEEZE 1 (non colliding) 0.5 2 = = COoLL RA, DGI; G FRIN
LBDS 1 {non colliding) 0.25 Asynchronous beam dump oK oK ABT BG FRIM
Squeeze, find collision, and transition to
o o zero real crossing angle in ALICE, CMS & op
Setup for collisions 2 (colliding) 2 ATLAS. LHCh separated, squeezed. SAT M,A
Collimation setup. CoLL RA, RE, DW,
Collimation 2 (colliding) 1 Loss maps op 5B SATM
LBDS 2 (colliding) 0.25 Asynchronous dump ABT BG SUN M
R with two b ] . checks,
First collisions + PHYSICS 2 colliding lorz amp wi /O DEAMS, SQUEEZE, CNECES okt ok SUN M
Stable beams.
. I bunch berto 17 (16 collidi
Increase intensity (1) 17 lord .ncre.ase u,nc ﬂum erto 17{16 colli mgO{ )4
inlP1,2,5+1 probe)
Increase intensity {1.5] 69 1 New scheme, 65 or 68 collisions/turn ()4 (14 WED A
Increase intensity (2) 121 1 Increase bunch number to 128 oK [8]4
Parasitic measurements during physics
Physics 121 {luminosity evolution, BFPP, etc, ...)to  [OK oK

Last updated:

16/11/2010 11:56

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010
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Thursday evening — ions to the LHC

m Adjustment of the offsets LHC-SPS to place ions
bunch on the MKI of Beam 1

m No threading or corrections

m 20:20 First 75+ trajectories in the LHC
Beam 1 turn 1 compared to proton closed orbit — very close !!

YASP DV LHCRING / RAMP_ 3.5TeV 10Aps_Extended IONS@0_[START] / beam 1

[, Yiews | [||H3| (o0 | 888 [CEES| [ |EB More | A4S
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e
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100
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Circulating Beam 1

m 20:30-22:00 RF : placing bunch into correct bucket.
m 22:00 :Beam 1 captured and circulating for many seconds.
m 01:50 : both beams circulating.

Beam 1 Pb orbit compared to proton orbit — no steering !

= YASP DV LHCRING / RAMP_3.5TeV_10Aps_Extended IONS@0_[START] / beam 1
[B,views | [ || m| 8]==| T B More | 14S
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Beam 1 (and RF) progress

VLC media player

Fle View Settings Audio Video Navigation Help

a n m HOE 44 » M = {0
LHC Pagel Fill: 1470 E: 450 GeV 04-11-2010 22:27:11

BEAM SETUP: INJECTION PROBE BEAM

i EPiE 0.00e+00 QICGCINA 1.27e+10 BCT TI8: [EeNelel-Eleloly |(B2): RERCPA-LH0OL

TED TI2 position: EA TDI P2 gaps/mm up: 9.97 down: 7.97

TED TI8 position: TDI P8 gaps/mm up: 8.71 down: 8.83

)
w
=
v
-
=

Comments 04-11-2010 22:06:07 . BIS status and SMP flags Bl B2
Ions setup - Injecting Bl Link Status of Beam Permits
B1 circulating 1111 Global Beam Permit
Setup Beam  true W true |

Beam Presence true
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Ion Commissioning: Thursday & Friday

05-Nov-2010 21:48:18 Fill #: 1473 Energy: 3500 Z2-Gev I{B1): 9.86e+09 I(B2): 1.02e+10
ATLAS ALICE CM5 LHCb

E)(periment Status STANDBY STANDBY STANDBY STANDBY

Instantaneous Lumi (ub.s)"~-1 0.000 0.000 0.000 0.000
BRAN Luminosity (ub.s)™-1 0.000 0.000 0.000 0.000

Inst Lumi/CollRate Parameter 1.00e+00 0.00e+00
BKGD 1 0.002 0.244 0.000 0,122

BKGD 2 0.000 0.000 0.000 0.407
BKGD 3 0.000 1.628 0.098 0.044

Performance over the last 24 Hrs

Updated: 21:48:16

1.4E1l]: .L\ L
o SRR NN
5 e i 2000 :
] :Eg: \‘ ﬁ —10005

2E9 : | 1 - | ot I b i | u
— 181 _ 182) — Energy. . . . . ' '
Beam 1 Beam 2 Optics Checks First Ramp
Inj., Circ. Inj., Circ. BI Checks Collimation Checks

J.M%%wgt%klﬁglgggor Precision %siggtpeth‘!:rgNHE ParisCOI | I matl On CheCks Sq ueeze

, 17/12/2010
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Friday afternoon: first ramp — no losses

World first: observation of synchrotron
light from nuclei

Appears around 0.55 Z TeV (later if
filtered)

History

=) [&]] [
Legend
o 1.8 Beam 1
Beam 2
1.6
w
=
2 1.4+
=]
=
=
3 1.2
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!
=
& 1-
0.8
T T T T T T T T
16:10:00 16:15:00 16:20:00 16:23:00 16:30:00 16:33:00 16:40:00 164501
Time

Bunch length increasing at injection (IBS), down during the ramp,
increasing again at 3.5 TeV (IBS)
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Beam envelopes around ALICE experiment

Collision conditions

fO r p- p in 20 1 O . (704 70,,50, ) exvelope for €,=1.00529 x 1010, €,,=1 00529 x 1010, o, =0.000306

How sizes of beam bunches
are squeezed by focusing
magnets.

0.01
rin

0.00

-0.01

Yellow planes indicate where
bunches have long-range

i Beam pipe is about beam-beam interactions on
twice transverse their way in and out of the
size of box. collision point (75 ns bunch

spacing).
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0.01

yin

0.00

-0.01

Beam envelopes around ALICE experiment

Collision conditions
for Pb-Pb in 2010.

(?ox,?oy,SO',) envelope for €, =1.00529 x 10'9m, €y =1.00529 x lﬂ'gm, Ty =0.0001137

xin
How sizes of beam bunches M
are squeezed by focusing e M
magnets. )

- 100

Zero crossing angle at IP (external crossing angle
compensates ALICE spectrometer magnet bump).

Beam pipe is about twice transverse size of box.
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Sunday early morning — first collisions !

m 00:30: Colliding in all IPs with TCTs at 250.
- With proton settings for crossing angles and luminosity scan
knobs (ALICE separation to 0).
m 2 bunches / beam.

m Optimized orbit and beam overlap.
- Luminosity ~ 2 x 1023 cms! (1 colliding pair / IP)
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Experiment Status STANDBY STANDBY STANDBY STANDBY

Instantaneous Lumi (ub.s)"-1 0.000 0.000 0.000 0.000

0.003 0.000
Inst Lumi/CollRate Parameter 2.40e+01 9,.46e+00 5.75e+01
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Loss maps in collisions —-Beam 1V
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Monday morning: First Stable Beams for Pb-Pb

VLC media player

Fle View Settings Audio Video Navigation Help

<
08-Nov-2010 11:20:58 Fill #: 1482 Energy: 3500 Z GeVY I(Bl): 1.92e+10 I(B2): 1.89e+10
ATLAS
Experiment Status STANDRY STANDRY STANDRY
Instantaneous Lumi (ub.s)~-1 3.16e-07 2.48e-07 2.74e-07 0.00e+00
BRAN Luminosity (ub.s)~-1 0.008 0.000 0.004 0.000
Inst Lumi/CollRate Parameter 42.1 92.4 41.1
BKGD 1 0.002 0.244 0.000 0.122
BKGD 2 3.000 0.000 0.000 1.308
BKGD 3 19,000 1.780 0.098 0.040

3 nm n e <« » M
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Filling schemes

m First week: no two fills with same number of
bunches

-2,5,17,69, then 121 per beam (475 ns basic
spacing)

Collision schedule for ALICE
~ LMHC revolution period >
Bunch pattern Ring 1 (clockwise)

| T T IRl | | R
Bunch pattem Ring 2 (counter-clockwise)

Collision schedule for CMS
- LHC revolution period -
Bunch pattern Ring 1 (clockwise)

| | I LRI ?

Bunch pattem Ring 2 (counter-clockwise)
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Losing ions from the RF bucket

m No losses from the bucket in the first few hours at
3.5 TeV

B Bunch Length & Amplitude vs Trace.vi
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Predicted IBS and debunching at injection

Phys. Rev. 3T Accel. Beams 13, 091001 (2010) [16 pages]

Time evolution of the luminosity of colliding
heavy-ion beams in BNL Relativistic Heavy
lon Collider and CERN Large Hadron
Collider
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Predicted non-gaussian
profile from IBS
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RF voltage modulation

m Required voltage for
injection matching 3.5
MV

m Increased voltage
would reduce IBS and
debunching

m Solution: keep at 7
MV between injections
with adiabatic
reduction to 3.5 MV
for 3 s at each
injection
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Injection with VRF modulation, ramp
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Pb Betatron Collimation Leakage
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Pb Collimation Losses vs Simulations

Preliminary comparison loss maps with simulations
- Beam 1: hardly any losses seen in simulations
- Beam 2: magnitude and certain positions compare well
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Bound-free pair pro

pr— " a N ———— Wy Sl

duction at all IPs

BLMEIL.11R5

P ENNEENEEN l‘llml_lll._ﬂ B l HENRENT

Perfect correlation of BLM
at Q11 with luminosity

208
208Pb82+ _|_208 Pb82+ Y f Pb82+ _|_208 Pb81+_|_e+

Secondary Pb8+ beam (25 W at design
luminosity and energy) emerging from IP
and impinging on beam screen.

Hadronic shower into superconducting
coils can quench magnet.

Effective luminosity monitor ?

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010 45



I njectors for last LHC ion fill of the year

800
m 8 bunches x 17 x 2 from-SPS to LHC
m Despite shorted source intermediate electrode
«o-m Thanks to LEIR double injection
> m 1.15x108% ions/bunch (64% above design)
i megy = 0.5um (<design/2) ; &, = 1.1um |(<design)
= 400
_ |l
200 1460~
NI ; ‘
| * 1 |
5000 10000 s  /‘ | *1
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Peak luminosity in fills

Peak performance reached
very quickly.

Interrupted twice by source
refills (+ “parasitic” proton
MD), some time to recover
source performance.

Last few days, bunch number
increased again to 137 with
8-bunch/batch from SPS.

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010
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Integrated nucleon—-nucleon luminosity for LHC beam species in 2010

—

p—-p(ATLAS)
p-p(CMS)

Pb-Pb (ATLAS) p-p(LHCDb)
Pb-Pb (ALICE)

Pb-Pb (CMS)
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FUTURE NUCLEAR BEAMS

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010

49



0:.)) Steps to higher Pb-Pb energy and luminosity
LHC

| m 2011: continue at beam energy 1.38 A TeV or a
bit more .

— increase number of bunches (injector
operation for "Nominal” ?)

- Reduce pB*
m LHC shutdown in 2012/2013

- Upgrade of quench protection system, etc,
towards full beam energy 2.76 A TeV

- Hope to equip IR3 with the first cryo-
collimators — a major intervention, moving
dipole magnets

m Later shutdowns

- Equip IR2 with cryo-collimators to raise Pb-Pb
luminosity limit for ALICE, IR7,

J.M. Jowett, Challenges LPNHE Paris, 17/12/201 50



- Green rays are ions that almost reach collimator

m Blue rays are 29Pb rays with rigidity change
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hN

L

Beam pipe in
IR7 of LHC

more collimators here!

(also vital for p-p).

“Obvious” solution is to put

So-called “cryo-collimators”

Optical functions
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= : P RR(ERRR)
| VPR (maing : : *Pb (EMD-2n) -
n a4l ipgpa==
Cryo-collimators around Optimal position for
experiment(s) are almost one cryo-
sy certainly needed to approach collimator/beam

L design luminosity for Pb-Pb

collisions.
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Synchrotron Radiation

m LHC is the first proton storage ring in which
synchrotron radiation plays a noticeable role,
(mainly as a heat load on the cryogenic system)

m At full energy, it will be the first heavy ion
storage ring in which synchrotron radiation has
significant effects on beam dynamics.

— Surprisingly, perhaps, some of these effects
are stronger for lead ions than for protons.

— Nucleus radiates coherently:

Synchrotron radiation loss per turn

U 4'T[:r.lon E|on _4TEZ rpElon

) E —
3cmionp 30A4

/
ion K p
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Synchrotron Radiation

m Nuclear charge radiates

coherently at relevant
wavelengths (~ nm)

Scaling with respect to
protons in same ring, same
magnetic field

- Radiation damping for
Pb is twice as fast as for
protons

m Many very soft photons

m Critical energy in
visible spectrum

m This is fast enough to

overcome IBS at full
energy and intensity

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010

1| Radiation damping
S e enhancement for all
05} oo :
o 5 stable isotopes
L ~.
IP.. ................. 7
20 40 60 80

Lead is (almost) best, deuteron is worst.
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Luminosity evolution: Nominal scheme
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| m Dual purpose (as d-Au at RHIC and p-A at SPS):

- baseline measurements for the nucleus-
nucleus program (J/W¥-suppression, jet
quenching,...)

— unique possibilities for particular QCD
investigations (parton saturation, gamma-p,
gamma-gamma, ...)

m Special machine physics issues

- Twin-aperture magnet: determines
experimental conditions

m See forthcoming CERN report, edited by Carlos
Salgado
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Critical difference between RHIC and LHC

|
RHIC: Independent bending field LHC: Identical bending field in
for the two beams both apertures of
two-in-one dipole




Relation between Beam Momenta

m LHC accelerates protons through the momentum
range

10.45 TeV (injection from SPS) < p, <7 TeV (collision)|

- Use this as reference, measure of magnetic
field in main bending magnets

m The two-in-one magnet design of the LHC (unlike

RHIC) fixes the relation between momenta of
| L .

Pey _
Q
where Q =2 =82, A=208 for fully stripped Pb in LHC

Po

No “"DX-magnet” issues.
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Kinematics of colliding nucleon pairs

Centre - of - mass energy and velocity/rapidity for nucleon pairs in collisions of
lons of charges Z,, Z, in rings with magnetic field set for protons of momentum p

7,7 v Z,IA-Z,1A, Z,A,
s ~2c 172 CMNN <1 2 ’ _ 1
" P, c  ZJIA+Z,IA Y = 2 Alz

15

V SNN /TeV

p, =7TeVic Sign change w.r.t. CM of whole ion
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Kinematics of colliding nucleon pairs

p-p Pb-Pb p-Pb d-Pb
E/TeV 7 574 (7,574) (7,574)
E,/TeV 7 2.76 (7,2.76) | (3.5,2.76)
Js/Tev 14 1148 126.8 126.8
S / TEV 14 5.52 8.79 6.22
Yem 0 0 2.20 2.20
Y 0 0 -0.46 -0.12

m Maximum values, corresponding to proton
equivalent momentum (<= magnetic bending
field) of 7 TeV/c

m Relations between these numbers are a simple,
direct consequence of the two-in-one magnet
J.M. Jowett, (ﬁll@gfirqﬁon. Physics at the LHC, LPNHE Paris, 17/12/2010 60



The Revolution Period Problem

Synchrotrons and storage rings are based on the
existence of a closed orbit, length C, that an ion
of the right momentum, mass m, charge Q, will

follow.

m The Hamiltonian is periodic if arc-length s along
the closed orbit is used as independent “time”
variable.

m The frequencies of small oscillations around the
closed orbit (in units of revolution period) are
called the tunes.

m Revolution period on the closed orbit depends on

ion mass (speed): c e 2
T(pp’m’Q):C\/l-'_(Qp)
P

J.M. Jowett, Challenges for Precision Physics at the LHC, LPNHE Paris, 17/12/2010
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RF Frequency

hRF
T(p,m.Q)
where the harmonic number h,. €, hy. =35640 in LHC

RF frequency f,. =

RF frequencies needed
to keep ions on stable 4078 b~ //7//_
central orbit of o yaV4
constant length Care o / /’
quite different at low £ 40077 | / // -
energy. & i
400.786 [ / / d =
Pb
400.785 [
400.784 —
0.5 1 2 5

Proton momentum / (TeV/c)

No problem in terms of hardware as LHC has independent RF systems in
each ring (modest timing upgrade needed).
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Distorting the Closed Orbit

m Additional degree of freedom: adjust length of

closed orbits to compensate different speeds of
species.

- Done by adjusting RF frequency

T(pp,m,Q)zc\/1+[ij (1+n3)

C Qp,
where 6 = (p- Qpp) Is a fractional momentum deviation and
Qp,
. 1 1 Qp, \ .
the phase-slip factorn=— -, y=,1+| — |, y; =55.8for LHC optics.
Tt 7 mc

Moves beam on to off-momentum orbit, longer for 6 > 0.
Horizontal offset given by "dispersion function": Ax=D, (s)3.
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0.002

0.001

o forequal T

0.0005

0.0002

0.0001

Momentum offset required in ramp

Would move beam
by 35 mm in QF!!

¢’y (m
Minimise aperture needed by §, = —5,, = — ( P
4Py \ oy
™~
\\\
1 1.5 2 3 5

Revolution frequencies must be equal for collisions.

Proton momentum /(TeV/c)

Limit with pilot
beams

Limit in normal
operation

= Hard lower limit on energy of p-Pb collisions, £,=2.7 TeV

Energy where RF frequencies can become equal in ramp.
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A FODO cell in the arc between ATLAS and ALICE
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Orbit and optics of the two beams

120 t

0.001 ' ' '
[ 160 |
[ 140 }
0.0005 |

& 100 ¢
80 f
60 f

I 40
—0.0005 | Z At e
i 1520 1540 1560 1580 1600
:""’,;——————,_.——"'-"‘-._-----\~\--’ 8/m
—0.001 &

1520 1540 1560 1580 1600
s/m

x/m
o

So what's the problem if we can collide beams with a small offset
(<0.2 mm at QFs at 7 TeV) at high enough energy?

We have to inject and ramp to get there...
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Beam-beam Encounters in IRs

m RHIC found that this led to intensity limit or
emittance blos-up

- attributed to kicks and tune-modulation from
moving long-range beam-beam encounters.

V. —V
Encounter points move at speed V = -* ; " ~=1734 m/s =0.15 m/turn

Hamiltonian is no longer periodic in s.
Excites modulational resonances (called "overlap knock-out" at the ISR):

c(TPb —Tp)

b

\, S/

- Solution for d-Au at RHIC was to adjust
magnetic field separately in the two rings

- No predictive model for intensity limit.
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Beam Separation in IR2 (around ALICE)

m 50 envelopes of beams at
injection out to first D1
separation magnet

- Vertical crossing angle
bump

- Horizontal injection
separation bump

- Encounter points have
basic spacing of 15 m,
but there are gaps in
the bunch train.

— Comb of 5-6 encounter
points moves across IR
at 0.15 m per turn.
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Beam-beam Kicks and Tune-shifts in IR2

—2.5x1078F N

_5x10-8f 7.5x% 10_8
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= L 25x1078 f
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% 3x10° ' _ax108 |
21078 § —5x10° |
1x1078 —6x107°
of —7x 1078 E
—40 —20 0 20 40 —40 —20 0 20 40
s/m s/m

Assumes Pb ion bunch with nominal intensity N, =7 x10",

proton bunch with 10% nominal intensity N, =1.15x10",
nominal emittances (equal geometric beam sizes).
This level of effect very probably acceptable.
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Deuteron beams in the LHC ?

Linac 4 cannot accelerate deuterons
- D~ in DTL (possible?) but then CCDTL (impossible)

The PS Booster will no longer be able to accelerate ions
once Linac 4 starts (2017)

- H- injection, incompatible with ion injection.
So the only options for deuterons are:

- Before 2017 through Linac2 +PSB, no protons during
that period (Linac 2 should work in 2BA mode, 2
velocity), new Duoplasmotron source (?) and RFQ

- From 2017 through Linac 3+LEIR, with new source (for

D-Pb), RFQ, operating with switchyard before Linac 3,
longer cycle in LEIR, etc

— ECR ion source might work for D-D (to be studied)
Much reduced intensities wrt protons

- (> factor 10, so > factor 100 in luminosity, probably
worse).

m Much to be studied ...
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encounters at injection and in ramp.

Separation is large but nevertheless we take VERY conservative
proton bunch intensity.

Assume Pb ion bunch with nominal intensity N, =7 x10’,

proton bunch with 10% (present) nominal intensity N, =1.15x10%,
nominal emittances (equal geometric beam sizes).

With Pb ion nominal bunch structure in both beams, this would give luminosity
L =1.5x10" cm™s™, in7 ZTeV p+Pb collisions at the LHC.

Luminosity lifetime much longer than Pb-Pb (BFPP etc. negligible).
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—

@ Lighter nuclei in LHC and SPS fixed target @J

m Synergy with NA61/SHINE

- 2010: During LHC run, will study 11B>*, various
energies, generated from primary 208pb82+
- 2011: Studies of Ar & Xe primary beams in
North Area
m Ar
- studies at CERN source in 2011

- Commissioning of LEIR, PS & SPS, followed by NA61
physics run in 2012-13 (??)

- Later Ar-Ar collisions in LHC, likely similar N-N
luminosity to Pb-Pb

m Xe

— Collaboration with iThemba (South Africa)
Study of Xe production in “clone” source in 2011-12
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Outlook for nuclear collisions in the LHC

The LHC works amazingly well and is flexible
m First Pb-Pb run in 2010 exceeded expectations
- First experience of performance limits

m Further steps in Pb-Pb luminosity may not come
so quickly
m Hybrid p-Pb collisions — uncertainties remain

m Lighter A-A collisions should come eventually but
a lot of work remains to be done

m Other options (D-D, D-Pb, ...) might be feasible
— Physics case to be made ?

m The next decade will see the exploration of a
vastly extended energy frontier in nuclear
collisions at the LHC
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LEIR (Low-Energy Ion Ring)

Prepares beams for LHC

using electron cooling
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Dependence of BFPP cross-section on 2

Typical diagram contributing to

Zl+ZZ—>(Zl+e') +e' +7Z,

1s15 ...

Pair production o Z,°Z,°

Radial wave function of 1s,,, state of hydrogen-like atom in its rest frame
7 3/2 7

Ro(r)= [—1j 2exp(—ij = Y(0)Uz¥ = [¥(0)0Z
aO aO

Total cross-section 0 Z,°Z°

Hand-waving, over-simplified argument!
G. Baur et al, Phys. Rept. 364 (2002) 359
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Heavy Ion Physics Parameters

SPS RHIC LHC
CM energy /nucleon Vs / 1" / [GeV] 17 200 5500 X 28

Charged multiplicity dlj% 400 800 > 3000 challenge
Energy density e /[GeV /tm’] 3 5 15-60 denser

Freeze — out volume Iy [ fm’ ~10° =~ 10" =x=10° larger
QGP lifetume Togp/[ftm /¢] <1l 15-4 >10 longer

Thermalization time To/[Im/ ] > 1] ~0.2 <0.1 faster

TQGP /T{} 1 6 = 30

With increasing energy, more partons are available, interact more effectively.
Thermalized high-T phase established more quickly and lasts longer.
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