
Batch System Status at the
RAL Tier-1

Andrew Lahiff, Alastair Dewhurst,
John Kelly, Ian Collier

29 Oct 2013, HEPiX Fall 2013 Workshop

2

Outline

•  RAL batch system
–  Background
–  Issues

•  Choosing a new batch system
–  Criteria
–  Testing

•  Compatibility with middleware
•  Testing with VOs
•  New batch system configuration & monitoring
•  Migration to the new batch system

•  Batch system at the RAL Tier-1
–  656 worker nodes, 9312 slots, 93000 HEPSPEC06

•  VOs supported
–  All LHC experiments. RAL provides:

•  2% of ALICE T1 requirements
•  13% of ATLAS T1 requirements
•  8% of CMS T1 requirements
•  19% of LHCb T1 requirements

–  Many non-LHC experiments, including non-HEP

•  Allocations

3

RAL batch system

ALICE
ATLAS
CMS
LHCb
Others

•  Jobs running & queued over past 4 years

•  Distinct users per day, jobs completed per day

4

RAL batch system

•  Torque/Maui have been used for many years at RAL
–  Currently Torque 2.5.12, Maui 3.3.1

•  Many issues with Torque/Maui
–  pbs_server, maui sometimes unresponsive
–  pbs_server needs to be restarted sometimes due to excessive

memory usage
–  Job start rate sometimes not high enough to keep the farm full
–  Regular job submission failures on CEs - Connection timed out-qsub:

cannot connect to server
–  Unable to schedule jobs to the whole-node queue

•  We wrote our own simple scheduler for this, running in parallel to Maui

–  Didn’t handle mixed farm with SL5 and SL6 nodes well
–  DNS issues, network issues & problematic worker nodes cause it to

become very unhappy

•  Significant effort just to keep it working
5

Issues

6

Choosing a new batch system

•  In August 2012 started looking for an alternative
•  Initially proposed the following technologies as candidates

–  Torque 4 + Maui
–  LSF
–  Grid Engine
–  SLURM
–  HTCondor

•  Criteria
–  Integration with WLCG community

•  Compatible with grid middleware
•  APEL accounting

–  Integration with our environment
•  e.g. does it require a shared filesystem

–  Scalability
•  Number of worker nodes
•  Number of cores
•  Number of jobs per day
•  Number of running, pending jobs

–  Robustness
•  Effect of problematic worker nodes on batch server
•  Effect if batch server is down temporarily
•  Effect of other problems (e.g. network issues)

7

Choosing a new batch system

•  Criteria (cont’d)
–  Software support
–  Procurement cost

•  Licenses, support
•  Avoid commercial products unless all open source products unsuitable

–  Maintenance cost
•  FTE required to keep it running

–  Essential functionality
•  Hierarchical fairshares
•  Ability to limit resources (CPU time, wall time, memory, …)
•  Ability to schedule whole-node/multi-core jobs effectively
•  Ability to place limits on numbers of running jobs for particular users, groups or

VOs

–  Desirable functionality
•  High availability
•  Ability to handle dynamic resources
•  Power management
•  IPv6 compatibility

8

Choosing a new batch system

9

Choosing a new batch system

•  Some products were quickly rejected
–  Requirement: avoid all commercial solutions unless all open source

products are found to be unsuitable
–  Therefore rejected

•  LSF
•  Univa Grid Engine
•  Oracle Grid Engine

–  Also rejected the open source Grid Engines (Son of Grid Engine, Open Grid
Scheduler)

•  Competing products, not clear which has best long-term future
•  Neither seems to have communities as active as SLURM & HTCondor

•  Note we did do some minimal testing with LSF and Son of
Grid Engine
–  E.g. to see how easy to install & configure, setting up fairshares, …

10

Choosing a new batch system

•  Also rejected
–  Torque 4 + Maui

•  Still need to use Maui (Maui causes us problems in the current batch
system)

•  Testing with high job submission rates / query rates revealed problems
–  Success rate:

Job submission Job status

Torque 2.5.12 10% 20%

Torque 4.x >90% >90%

Grid Engine 100% 100%

HTCondor 100% 100%

LSF 100% 100%

SLURM 100% 100%

11

Choosing a new batch system

•  Left with 2 choices

•  Critical test: can the batch system successfully maintain 10000 running
jobs?
–  No point migrating to a batch system which fails this test

•  Testing
–  110 old worker nodes (8 cores, 16 GB), using 16, 64, 100 job slots per node
–  Sleep jobs with random durations submitted from a variety of different users

•  Setup
Enabled features which would be required in a production service

–  HTCondor
•  Single central manager (collector, negotiator), schedd on another host
•  Hierarchical fairshares
•  Partitionable slots

–  SLURM
•  Consumable resource allocation plugin
•  Multi-factor job priority plugin
•  Backfill scheduler
•  Accounting (external MySQL database)

12

SLURM vs HTCondor

13

SLURM vs HTCondor

•  HTCondor
–  No problems running > 10000 jobs
–  No problems with > 200000 pending jobs

•  SLURM
–  Stability problems experienced when running > ~6000 jobs

•  Everything fine when no jobs are completing or new jobs starting (!)

–  Queries (sinfo, squeue, …) and job submission failed:
 Socket timed out on send/recv operation

–  Using FIFO scheduling helped
•  Cannot use this in production!

–  Some activities (e.g. restarting SLURM controller) triggered
unresponsiveness

•  Took many hours to return to a stable situation

14

SLURM vs HTCondor

•  SLURM
–  Tried a number of things

•  Identical configuration, same version as used at another site which has
5500 slots

•  Tried “large cluster” & “high-throughput” suggestions from
documentation

•  Asked other people using SLURM, asked on the mailing list

–  Despite a lot of effort we were unable to solve these problems,
therefore rejected SLURM

•  At the time didn’t know of any WLCG sites with more than 5500 slots
using or testing SLURM

•  Conclusion
–  Chose HTCondor as the prime candidate for replacing Torque/Maui

•  EMI-3 CREAM CE
–  HTCondor not officially supported

•  BLAH supports HTCondor
–  Job submission works!

•  Script for publishing dynamic information doesn’t exist in EMI-3
–  Wrote our own based on the scripts in old CREAM CEs

•  APEL parser for HTCondor doesn’t exist in EMI-3
–  Wrote our own

–  Relatively straightforward to get an EMI-3 CREAM CE working with
HTCondor

15

Compatibility with
Middleware

•  Another possibility – EMI-3 ARC CE
–  Successfully being used by some ATLAS & CMS Tier-2s outside of

Nordugrid (with SLURM, Grid Engine, …)

•  LRZ-LMU, Estonia Tier 2, Imperial College, Glasgow

–  Benefits of ARC CEs
•  Support HTCondor better than CREAM CEs do
•  Simpler than CREAM CEs (no YAIM, no Tomcat, no MySQL, …)
•  ARC CE accounting publisher (JURA) can send accounting records directly

to APEL using SSM. APEL publisher node not required

–  Decided it was worthwhile to try ARC CEs
•  Internal testing initially
•  Moved on to testing with real ATLAS jobs, pilots submitted from the

standard pilot factories

16

Compatibility with
Middleware

•  Which VOs can use ARC CEs?
–  ATLAS, CMS (both use HTCondor-G to submit pilots)
–  LHCb (recently added to DIRAC the ability to submit to ARC)
–  Non-LHC VOs which use EMI WMS for job submission

•  Which VOs can’t?
–  ALICE, don’t currently have any available effort to work on this

•  ALICE can submit directly to HTCondor, which is something we might consider

•  Our configuration of ARC CEs
–  Each CE configured with a single generic queue
–  Using the philosophy: jobs must request the resources they require. For

example
•  CMS jobs request 2.5 GB memory
•  ATLAS jobs request 3 GB or 4 GB memory as required
•  ATLAS multicore jobs request 8 cores, 16 GB memory
•  Jobs which don’t specifically request much memory don’t get any

–  We think this approach is better than having lots of queues

17

Compatibility with
Middleware

18

HTCondor testing with VOs

•  Next stage of testing with HTCondor
•  “Almost” production quality service setup in late May

–  HTCondor 7.8.8 with highly-available central manager (2 nodes)
–  2 EMI-3 ARC CEs, using LCAS/LCMAPS + Argus
–  112 8-core EMI-2 SL6 worker nodes

•  Testing
–  Evaluation using resources beyond WLCG pledges
–  Aim to gain experience running ‘real’ work

•  Stability, reliability, functionality, dealing with problems, …

–  Initial testing mainly with ATLAS, but also CMS
•  ATLAS: production & analysis SL6 queues
•  CMS: initially testing with integration testbed, then added to production

glideinWMS

–  After sorting out initial teething problems, worked very successfully

•  All configuration managed by Quattor
•  Features we’re using

–  High-availability of central manager
•  Easy to setup, doesn’t require shared filesystem

–  Hierarchical fairshares
–  Partitionable slots
–  condor_defrag daemon

•  Currently not many multicore jobs are submitted

–  Concurrency limits
–  Per-job PID namespaces
–  Python API (for Nagios checks)

•  Startd cron
–  Worker node health check script prevents new jobs from starting by some/all

VOs as appropriate if problems detected (e.g. disk full or read-only, CVMFS
broken, …)

•  Currently testing
–  cgroups

19

HTCondor setup

•  Torque batch system
–  Lots of custom monitoring & accounting scripts written over the years
–  All would need to be modified for HTCondor
–  Only a few so far have been updated for HTCondor, e.g. Mimic

– 

•  Mostly trying to use existing tools, e.g.
–  HTCondor Job Overview Monitor (http://sarkar.web.cern.ch/sarkar/doc/condor_jobview.html)
–  condor_gangliad (since last week)

–  Gangliarc (ARC CE ganglia monitoring)
–  ARC Grid Monitor

20

Monitoring

21

Migration to HTCondor

•  Timeline
2012 Aug - Started evaluating alternatives to Torque/Maui
2013 June - Began testing HTCondor with ATLAS & CMS
2013 Aug - Choice of HTCondor approved by RAL Tier-1 management
2013 Sept - Declared HTCondor & ARC CEs production services

 - Moved 50% of pledged CPU resources to HTCondor
 (upgraded WNs to SL6 as well as migrating to HTCondor)

2013 Nov - Migrate remaining resources to HTCondor

•  CE usage over past month

22

Migration to HTCondor

ARC CEs CREAM CEs

•  No major problems
–  In some ways this is not good: admins not gaining experience in

diagnosing problems

•  Support very good
–  E.g. issue found affecting high availability of central manager,

quickly fixed & released in 8.0.2

•  Even when throttled, job start rate faster than Torque/Maui
•  Trivial to extend batch system into a private cloud

–  See talk on Friday

23

HTCondor: experience so far

24

Summary

•  Scaling problems with Torque/Maui
•  Investigated alternatives

–  HTCondor chosen as replacement

•  Current status
–  No major problems with ARC CEs or HTCondor
–  Migration in progress

•  50% CPU capacity in Torque/Maui, 50% in HTCondor
•  Will complete migration in early November

