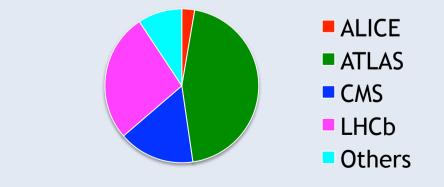
UK Computing for Particle Physics

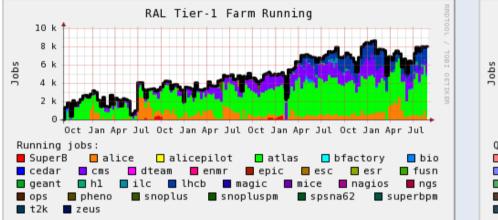
Batch System Status at the RAL Tier-1

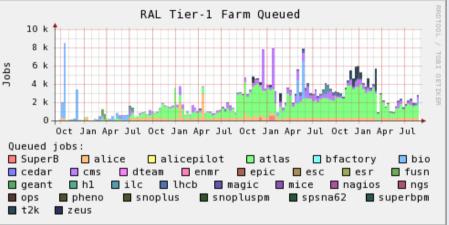
<u>Andrew Lahiff</u>, Alastair Dewhurst, John Kelly, Ian Collier

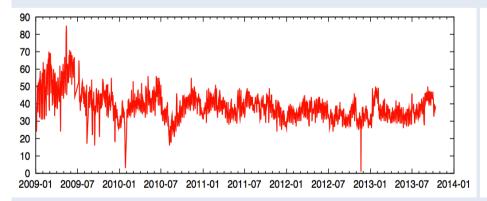
29 Oct 2013, HEPiX Fall 2013 Workshop

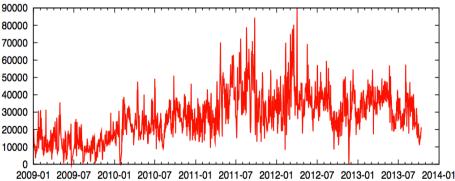

Outline

- RAL batch system
 - Background
 - Issues
- Choosing a new batch system
 - Criteria
 - Testing
- Compatibility with middleware
- Testing with VOs
- New batch system configuration & monitoring
- Migration to the new batch system


- Batch system at the RAL Tier-1
 - 656 worker nodes, 9312 slots, 93000 HEPSPEC06
- VOs supported
 - All LHC experiments. RAL provides:
 - 2% of ALICE T1 requirements
 - 13% of ATLAS T1 requirements
 - 8% of CMS T1 requirements
 - 19% of LHCb T1 requirements
 - Many non-LHC experiments, including non-HEP
- Allocations




RAL batch system


• Jobs running & queued over past 4 years

• Distinct users per day, jobs completed per day

- Torque/Maui have been used for many years at RAL
 - Currently Torque 2.5.12, Maui 3.3.1
- Many issues with Torque/Maui
 - pbs_server, maui sometimes unresponsive
 - pbs_server needs to be restarted sometimes due to excessive memory usage
 - Job start rate sometimes not high enough to keep the farm full
 - Regular job submission failures on CEs Connection timed out-qsub: cannot connect to server
 - Unable to schedule jobs to the whole-node queue
 - We wrote our own simple scheduler for this, running in parallel to Maui
 - Didn't handle mixed farm with SL5 and SL6 nodes well
 - DNS issues, network issues & problematic worker nodes cause it to become very unhappy
- Significant effort just to keep it working

- In August 2012 started looking for an alternative
- Initially proposed the following technologies as candidates
 - Torque 4 + Maui
 - LSF
 - Grid Engine
 - SLURM
 - HTCondor

- Criteria
 - Integration with WLCG community
 - Compatible with grid middleware
 - APEL accounting
 - Integration with our environment
 - e.g. does it require a shared filesystem
 - Scalability
 - Number of worker nodes
 - Number of cores
 - Number of jobs per day
 - Number of running, pending jobs
 - Robustness
 - Effect of problematic worker nodes on batch server
 - Effect if batch server is down temporarily
 - Effect of other problems (e.g. network issues)

- Criteria (cont'd)
 - Software support
 - Procurement cost
 - Licenses, support
 - Avoid commercial products unless all open source products unsuitable
 - Maintenance cost
 - FTE required to keep it running
 - Essential functionality
 - Hierarchical fairshares
 - Ability to limit resources (CPU time, wall time, memory, ...)
 - Ability to schedule whole-node/multi-core jobs effectively
 - Ability to place limits on numbers of running jobs for particular users, groups or VOs
 - Desirable functionality
 - High availability
 - Ability to handle dynamic resources
 - Power management
 - IPv6 compatibility

- Some products were quickly rejected
 - Requirement: avoid all commercial solutions unless all open source products are found to be unsuitable
 - Therefore rejected
 - LSF
 - Univa Grid Engine
 - Oracle Grid Engine
 - Also rejected the open source Grid Engines (Son of Grid Engine, Open Grid Scheduler)
 - Competing products, not clear which has best long-term future
 - Neither seems to have communities as active as SLURM & HTCondor
- Note we did do some minimal testing with LSF and Son of Grid Engine
 - E.g. to see how easy to install & configure, setting up fairshares, ...

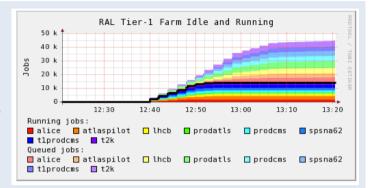
- Also rejected
 - Torque 4 + Maui
 - Still need to use Maui (Maui causes us problems in the current batch system)
 - Testing with high job submission rates / query rates revealed problems
 - Success rate:

	Job submission	Job status
Torque 2.5.12	10%	20%
Torque 4.x	>90%	>90%
Grid Engine	100%	100%
HTCondor	100%	100%
LSF	100%	100%
SLURM	100%	100%

• Left with 2 choices

12

- **Critical test:** can the batch system successfully maintain 10000 running jobs?
 - No point migrating to a batch system which fails this test
- Testing
 - 110 old worker nodes (8 cores, 16 GB), using 16, 64, 100 job slots per node
 - Sleep jobs with random durations submitted from a variety of different users
- Setup


Enabled features which would be required in a production service

- HTCondor
 - Single central manager (collector, negotiator), schedd on another host
 - Hierarchical fairshares
 - Partitionable slots
- SLURM
 - Consumable resource allocation plugin
 - Multi-factor job priority plugin
 - Backfill scheduler
 - Accounting (external MySQL database)

SLURM vs HTCondor

- HTCondor
 - No problems running > 10000 jobs
 - No problems with > 200000 pending jobs

- SLURM
 - Stability problems experienced when running > ~6000 jobs
 - Everything fine when no jobs are completing or new jobs starting (!)
 - Queries (sinfo, squeue, ...) and job submission failed: Socket timed out on send/recv operation
 - Using FIFO scheduling helped
 - Cannot use this in production!
 - Some activities (e.g. restarting SLURM controller) triggered unresponsiveness
 - Took many hours to return to a stable situation

SLURM vs HTCondor

• SLURM

- Tried a number of things
 - Identical configuration, same version as used at another site which has 5500 slots
 - Tried "large cluster" & "high-throughput" suggestions from documentation
 - Asked other people using SLURM, asked on the mailing list
- Despite a lot of effort we were unable to solve these problems, therefore rejected SLURM
 - At the time didn't know of any WLCG sites with more than 5500 slots using or testing SLURM
- Conclusion
 - Chose HTCondor as the prime candidate for replacing Torque/Maui

Compatibility with Middleware

- EMI-3 CREAM CE
 - HTCondor not officially supported
 - BLAH supports HTCondor
 - Job submission works!
 - Script for publishing dynamic information doesn't exist in EMI-3
 - Wrote our own based on the scripts in old CREAM CEs
 - APEL parser for HTCondor doesn't exist in EMI-3
 - Wrote our own
 - Relatively straightforward to get an EMI-3 CREAM CE working with HTCondor

Compatibility with Middleware

- Another possibility EMI-3 ARC CE
 - Successfully being used by some ATLAS & CMS Tier-2s outside of Nordugrid (with SLURM, Grid Engine, ...)
 - LRZ-LMU, Estonia Tier 2, Imperial College, Glasgow
 - Benefits of ARC CEs
 - Support HTCondor better than CREAM CEs do
 - Simpler than CREAM CEs (no YAIM, no Tomcat, no MySQL, ...)
 - ARC CE accounting publisher (JURA) can send accounting records directly to APEL using SSM. APEL publisher node not required
 - Decided it was worthwhile to try ARC CEs
 - Internal testing initially
 - Moved on to testing with real ATLAS jobs, pilots submitted from the standard pilot factories

Compatibility with Middleware

- Which VOs can use ARC CEs?
 - ATLAS, CMS (both use HTCondor-G to submit pilots)
 - LHCb (recently added to DIRAC the ability to submit to ARC)
 - Non-LHC VOs which use EMI WMS for job submission
- Which VOs can't?
 - ALICE, don't currently have any available effort to work on this
 - ALICE can submit directly to HTCondor, which is something we might consider
- Our configuration of ARC CEs
 - Each CE configured with a single generic queue
 - Using the philosophy: *jobs must request the resources they require*. For example
 - CMS jobs request 2.5 GB memory
 - ATLAS jobs request 3 GB or 4 GB memory as required
 - ATLAS multicore jobs request 8 cores, 16 GB memory
 - Jobs which don't specifically request much memory don't get any
 - We think this approach is better than having lots of queues

HTCondor testing with VOs

- Next stage of testing with HTCondor
- "Almost" production quality service setup in late May
 - HTCondor 7.8.8 with highly-available central manager (2 nodes)
 - 2 EMI-3 ARC CEs, using LCAS/LCMAPS + Argus
 - 112 8-core EMI-2 SL6 worker nodes
- Testing
 - Evaluation using resources beyond WLCG pledges
 - Aim to gain experience running 'real' work
 - Stability, reliability, functionality, dealing with problems, ...
 - Initial testing mainly with ATLAS, but also CMS
 - ATLAS: production & analysis SL6 queues
 - CMS: initially testing with integration testbed, then added to production glideinWMS
 - After sorting out initial teething problems, worked very successfully

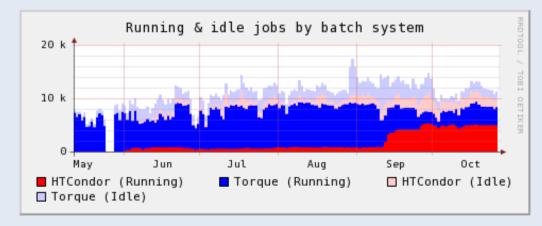
HTCondor setup

- All configuration managed by Quattor
- Features we're using
 - High-availability of central manager
 - Easy to setup, doesn't require shared filesystem
 - Hierarchical fairshares
 - Partitionable slots
 - condor_defrag daemon
 - Currently not many multicore jobs are submitted
 - Concurrency limits
 - Per-job PID namespaces
 - Python API (for Nagios checks)
- Startd cron
 - Worker node health check script prevents new jobs from starting by some/all VOs as appropriate if problems detected (e.g. disk full or read-only, CVMFS broken, ...)
- Currently testing
 - cgroups

Monitoring

- Torque batch system
 - Lots of custom monitoring & accounting scripts written over the years
 - All would need to be modified for HTCondor
 - Only a few so far have been updated for HTCondor, e.g. Mimic

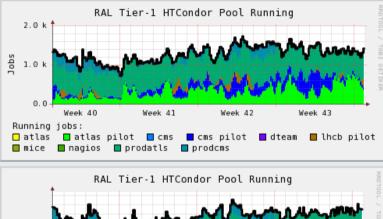
- Mostly trying to use existing tools, e.g.
 - HTCondor Job Overview Monitor (http://sarkar.web.cern.ch/sarkar/doc/condor_jobview.html)
 - condor_gangliad (since last week)
 - Gangliarc (ARC CE ganglia monitoring)
 - ARC Grid Monitor

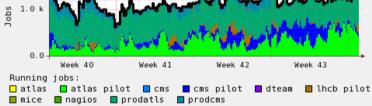

Migration to HTCondor

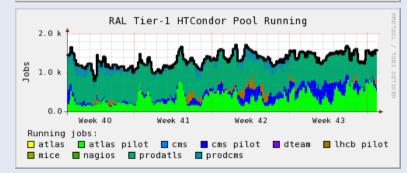
• Timeline

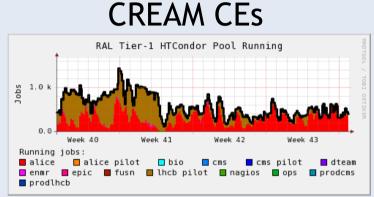
- 2012 Aug Started evaluating alternatives to Torque/Maui
- 2013 June Began testing HTCondor with ATLAS & CMS
- 2013 Aug Choice of HTCondor approved by RAL Tier-1 management
- 2013 Sept Declared HTCondor & ARC CEs production services
 - Moved 50% of pledged CPU resources to HTCondor (upgraded WNs to SL6 as well as migrating to HTCondor)

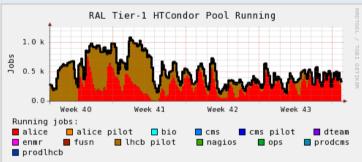
2013 Nov - Migrate remaining resources to HTCondor

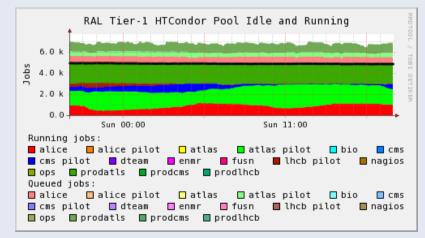





Migration to HTCondor


• CE usage over past month


ARC CEs



HTCondor: experience so far

- No major problems
 - In some ways this is not good: admins not gaining experience in diagnosing problems
- Support very good
 - E.g. issue found affecting high availability of central manager, quickly fixed & released in 8.0.2
- Even when throttled, job start rate faster than Torque/Maui
- Trivial to extend batch system into a private cloud
 - See talk on Friday

- Scaling problems with Torque/Maui
- Investigated alternatives
 - HTCondor chosen as replacement
- Current status
 - No major problems with ARC CEs or HTCondor
 - Migration in progress
 - 50% CPU capacity in Torque/Maui, 50% in HTCondor
 - Will complete migration in early November