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Lecture 1: Building a probability model
» preliminaries, the marked Poisson process
» incorporating systematics via nuisance parameters
» constraint terms
» examples of different “narratives” / search strategies
Lecture 2: Hypothesis testing
» simple models, Neyman-Pearson lemma, and likelihood ratio
» composite models and the profile likelihood ratio
» review of ingredients for a hypothesis test
Lecture 3: Limits & Confidence Intervals
» the meaning of confidence intervals as inverted hypothesis tests
» asymptotic properties of likelihood ratios
» Bayesian approach

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 69

Lecture 2
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Hypothesis testing s:z.z:zx:;zf%

One of the most common uses of statistics in particle physics is
Hypothesis Testing (e.g. for discovery of a new particle)
» assume one has pdf for data under two hypotheses:
+ Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis H+: eg. signal-plus-background

» one makes a measurement and then needs to decide whether
to reject or accept Ho
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The idea of a “50“ discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87 - 10~ 7
+ eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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Hypothesis testing ::i::;:f;:x:}"

Before we can make much progress with statistics, we need
to decide what it is that we want to do.

» first let us define a few terms:

Actual condition

Guilty Not guilty
+ Rate of Type | error « False Positive
Verdict of True Positive (i.e. gullt‘reported
- Rate of Type Il 8 b Typo tomor
. Power = 1 — ﬁ gecision Fals'e Neg.ative
Verdict of (i.e. guilt .
'not guilty' not detected) True Negative
Type Il error
Treat the two hypotheses asymmetrically
» the Null is special.
- Fix rate of Type | error, call it “the size of the test”
Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error
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The idea of a “50“ discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to o = 2.87 - 1077
+ eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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Hypothesis testing ‘ﬁ'ﬁ

The idea of a “50“ discovery criteria for particle physics is really a
conventional way to specify the size of the test

» usually 50 corresponds to a = 2.87- 1077
- eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what region is
sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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The Neyman-Pearson Lemma S 7

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis Hj (background only)
- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
o = P(I q W’H())

(Convention: if data falls in W then we accept Ho)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when Hj is true)

ﬁ:P(ZL‘ c W|H1)

The Neyman-Pearson Lemma

The region W that minimizes the probability of wrongly
accepting Hy is just a contour of the Likelihood Ratio

P(x|H;)
P(z|Ho)

Any other region of the same size will have less power

> ko

The likelihood ratio is an example of a Test Statistic, eg.
a real-valued function that summarizes the data in a way
relevant to the hypotheses that are being tested
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A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given
size (eg. probability under Ho is 1-(x)
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A short proof of Neyman-Pearson ::::.:t?;"::':c#

Now consider a variation on the contour that has the same
size
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A short proof of Neyman-Pearson 2:z:::t:°;"::':c$

P(\_|Ho) = P(_/|Hy)

Now consider a variation on the contour that has the same size
(eg. same probability under Ho)

A short proof of Neyman-Pearson Bt |

P(\_|Ho) = P(_/ |Hy)

P(z|H)
P(z|Ho)

P(\_|H1) < PO_|Hok,

Because the new area is outside the contour of the likelihood
ratio, we have an inequality

< kq
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A short proof of Neyman-Pearson e |

P(\_|Ho) = P(_/ |Hy)

P(alHy)
P(a|Hy) P(a|Ho)

P(\_IH1) < P(\_|Ho)kq P(_/|Hy) > P(_/|Ho)k

And for the region we lost, we also have an inequality
Together they give...

P(x|H,)

< ka
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A short proof of Neyman-Pearson
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~_=

P(\_|Hy) = P(_/|H,)

PlaiHy) = Pl ~
P(\_|H1) < P(\_|Hok, P(_/|H1) > P(_/|Ho)k,
P(\_|H1) < P(_/|H;)
The new region region has less power.
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Experiments vs. Events Free ey
Ideally, you want to cut on a2
the likelihood ratio for your o) Forvlarz)
experiment o /
1-8 I\
» equivalent to a sum of _
log likelihood ratios g2 =q1 + ¢ q1
Easy to see that includes
experiments where one
event had a high LR and the
other one was relatively
small
q1 qo
T €2
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2 discriminating variables

Often one uses the output of a neural network or multivariate algorithm in
place of a true likelihood ratio.

» That'’s fine, but what do you do with it?
» If you have a fixed cut for all events, this is what you are doing:

1o Z2

To(q) fs(q)

¢g=lQ=-s+In (1+ sfs(zvy)>

bfy(@,y)

q
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LEP Higgs S
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The Test Statistic and its distribution S e @
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Consider this schematic diagram

signal + background background-only
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The “test statistic” is a single number that quantifies the entire experiment, it
could just be number of events observed, but often its more sophisticated, like
a likelihood ratio. What test statistic do we choose?

And how do we build the distribution? Usually “toy Monte Carlo”, but what
about the uncertainties... what do we do with the nuisance parameters?
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From our general model

n

P(m,a|a) = Pois(n|s(a) + b(a)) H s(a)fs(m;ézi 1 IZZEZ m]\a H G(aila;, 0y)

J 1€syst
Consider a simple number counting model with s(a)— s, b(a)— b, and

P(non, nofr| s, b) = Pois(nen|s + b) Pois(neg|7h).

We could simply use non as our test statistic, but to calculate the p-value
we need to know distribution of non.

p= Y Pois(nen|s +b) x Pois(nog|rd)
Nen=n H_/
on=Tlobs constant
Observations:
» The distribution of non explicitly depends on both s and b.
» The distribution of nor is independent of s
v If zb is very different from nor, then the data are not consistent with the
model parameters. However, the p-value derived from non is not small.
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The Marked Poisson model ‘Qf
Recall our marked Poisson model T o ATiAS rewmeay sty -Slg;nal 3
R Observab|es n eventS eaCh é 6; H— lvy (m =300 GeV,\s =7 TeV) :;I;malBG é
with some value of " E
discriminating variable m B E
- auxiliary measurements: g; s E
- parameters: a 53 E
1= =
950~ 200 250 800 360 400 450  50C
Transverse Mass [GeV]
n
s(a)fs m3|a) b(a) fp mj\oz
P(m, ala Pois(n|s(a G(a;lay, 0y)
( ) | ) | H )+b(a) H 1‘ (2
J 1€syst

Useful to separate parameters into a=(u,v)
> parameters of interest u: cross sections, masses, coupling constants, ...
* nuisance parameters v: reconstruction efficiencies, energy scales, ...

> note: not all of the nuisance parameters need to have constraint terms
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist
treatment of the main measurement, while eliminating nuisance
parameters (deal with systematics) with an intuitive Bayesian technique.

p= Z P(nonls)

Mon=Nobs

P(non]s) = / db Pois(non|s + b) 7(b),
Tracing back the origin of z(b)
» clearly state prior 17(b); identify control samples (sidebands) and use:

(noﬁ|b)n()
m(0) = POlnot) = 7 b Hn®)”

In a purely Frequentist approach we must need a test statistic that
depends on both non and nor and we must consider both random (eg. when
generating toy Monte Carlo)

P(non, noft|s, b) = Pois(nen|s + b) Pois(neg|Tb).
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Does it matter? S @

contours for b, =100, critical regions for 7 = 1

This on/off problem has been studied .1
extensively. 120/
» instead of arguing about the merits of ~ "°F

various methods, just go and check their
rate of Type | error

No Systematics

g profile

p profile

ad hoc

correct coverage

100

920

» Results indicated large discrepancy in »

“claimed” significance and “true”
significance for various methods

70
60k
50F

» eg. 50 is really ~40 for some points wob A L A
60 80 100 120 140 160 180 2)?0

So, yes, it does matter.
Figure 7. A comparison of the various methods critical bou
ary Zerit(y) (see text). The concentric ovals represent c
tours of Lg from Eq. 15.

P(non, nofr| s, b) = Pois(nen|s + b) Pois(neg|Tb).
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The Profile Likelihood Ratio ::::.:t:ﬁ:;";:cs‘(T‘
Consider our general model with a single parameter of interest u
» let =0 be no signal, x=1 nominal signal
In the LEP approach the likelihood ratio is equivalent to:
P(mlp=1,v)
P(m|p=0,v)
» but this variable is sensitive to uncertainty on v and makes no use of
auxiliary measurements a
Alternatively, one can define profile likelihood ratio

Ny — Pl al P m.a) )

» where ﬁ(p; m, a)is best fit with x fixed (the constrained maximum
likelihood estimator, depends on data)

» and 7 and [i are best fit with both left floating (unconstrained)

» Tevatron used Qrev = M(p=1)/A(u=0) as generalization of QLep
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QLEP =

P(m, alji, 0)
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Does it matter? S @

‘ Gaussian-mean problem (relative 0,), Z =5 ‘

This on/off problem has been studied  Lw—rr
extensively. o~
» instead of arguing about the merits of o

various methods, just go and check their
rate of Type | error

70~
60—

50—

» Results indicated large discrepancy in -
“claimed” significance and “true” s0E
significance for various methods b

10
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relative background uncertainty

Follow-up work by Bob Cousins &
Jordan Tucker, [physics/0702156]

» eg. 50 is really ~4o for some points
So, yes, it does matter.

P(non, nofr|s, b) = Pois(nen|s + b) Pois(neg|7h).

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 90

CENTER FOR

An example 5:::;1?::.";.1%
Essentially, you need to fit your model to the data twice:

once with everything floating, and once with signal fixed to 0
P(m,alp=0,0(p=0;m,a))

Alp=0) =
P(m,alfi, )

P(m,alf, D) P(m,a|p=0,0(u=0;m,a))
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Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

Xup) =
W) == P, al, 7)
one can see the function is independent of true values of v
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the
distribution of -2 In A (u=uo0) given that the true value of u is uo
converges to a chi-square distribution

P(m,aly, H(u;m, a) )

» more on this tomorrow, but the important points are:
» “asymptotic distribution” is known and it is independent of v
- more complicated if parameters have boundaries (eg. = 0)

Thus, we can calculate the p-value for the background-only
hypothesis without having to generate Toy Monte Carlo!
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Toy Monte Carlo

Explicitly build distribution by generating “toys” / pseudo experiments assuming a
specific value of x and v.

» randomize both main measurement m and auxiliary measurements a
» fit the model twice for the numerator and denominator of profile likelihood ratio
» evaluate -2In A(x) and add to histogram

Choice of u is straight forward: typically =0 and x=1, but choice of v is less clear
» more on this tomorrow

This can be very time consuming. Plots below use millions of toy pseudo-
experiments on a model with ~50 parameters.

—— signalplusbackground
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What makes a statistical method
To describe a statistical method, you should clearly specify
- choice of a test statistic

Qrep = Lopp(p=1)/Ly(pn = 0)
- ratio of profiled likelihoods (Tevatron) @rev = Laws(i = 1,9)/Ls(i = 0,2')
- profile likelihood ratio (LHC) ANp) = Lo (i, 0)/ Loss (1, )

- simple likelihood ratio (LEP)

> how you build the distribution of the test statistic
- toy MC randomizing nuisance parameters according to 7 ()
- aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
« toy MC with nuisance parameters fixed (Neyman Construction)
- assuming asymptotic distribution (Wilks and Wald, more tomorrow)

- what condition you use for limit or discovery
« more on this tomorrow
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Experimentalist Justification
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So far this looks a bit like magic. How can you claim that you
incorporated your systematic just by fitting the best value of your
uncertain parameters and making a ratio?

It won’t unless the the parametrization is sufficiently flexible.

So check by varying the settings of your simulation, and see if the
profile likelihood ratio is still distributed as a chi-square

P —— Nominal (Fast Sim) Here it is pretty stable, but
© E —— SMmeare . . .
8 % ATLAS ot | it’s not perfect (and this is
T Q° scale 2 : :
0 Gl a log plot, so it hides some
i Q? scale 4
Wb & O seale et pretty big discrepancies)
E My, T Leading-order WWhbb
104 = Full Simulation . . .
B For the distribution to be
w0 Ldt=101b" independent of the nuisance
ililh parameters your
we o W m ‘ “ L parametrization must be
0

AR S B 1 !
2 4 6 8 10 12 14 16 18

log Likelihood Ratio

20

sufficiently flexible.
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A very important point ‘{‘
If we keep pushing this point to the extreme, the physics problem
goes beyond what we can handle practically

The p-values are usually predicated on the assumption that the true
distribution is in the family of functions being considered

» eg. we have sufficiently flexible models of signal & background to
incorporate all systematic effects
» but we don’t believe we simulate everything perfectly
» ..and when we parametrize our models usually we have further
approximated our simulation.
- nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics
uncertainties (not statistical ones). Statistics can only help us so much

after this point. Now we must be physicists!
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