

Enabling Grids for E-sciencE

The Grid Observatory

www.eu-egee.org

Grid Observatory Project

Enabling Grids for E-science

- Integrate the collection of data on the behaviour of the EGEE grid and users with the development of models and of an ontology for the domain knowledge
- Goals
 - Data collection and publication
 - Public access to a posteriori traces of EGEE activity
 - Analysis
 - Propose realistic methods to answer real operational issues
 - Contribute to interactions with computer science research
- EGEE Scientific Cluster (NA4)
 - LRI (CNRS), Università Piemonte Orientale, London Imperial College, ASGC
 - With collaboration from Digiteo Labs, CNRS, LAL, MIS

Flagship grid infrastructure project funded by the European Commission

- Operate a large-scale, production-quality grid
- 300 sites, 140 partners, 50 countries
- 80,000 cores, 5PB
- 10,000 users
- 300,000 jobs/day
- FP6 & FP7

Flagship grid infrastructure project funded by the European Commission
The best approximation of the current needs of e-science

- Operate a large-scale, production-quality grid
- 300 sites, 140 partners, 50 countries
- 80,000 cores, 5PB
- 10,000 users
- 300,000 jobs/day
- FP6 & FP7

Flagship grid infrastructure project funded by the European Commission
The best approximation of the current needs of e-science
Extensive monitoring facilities

- CIC tools
 - GOCDB, SAM, SFT, ...
- Core gLite
 - L&B, BDII, ...
- Site Services
 - Maui/PBS logs
- gLite integrators
 - R-GMA, Job Provenance
- Experience integrators
 - DashBoard
- External software
 - MonaLisa

Enabling Grids for E-sciencE

Flagship grid infrastructure project funded by the European Commission

The best approximation of the current needs of e-science

Extensive monitoring facilities

Data were discarded after operational usage, and in any case not available to the scientific community

Image copyright © 2005-2008 David Opie

How can we reduce the effort required to operate this expanding infrastructure? Bob Jones' talk at EGEE'08

EC co-funding: 32 Million €

Some immediate questions

Enabling Grids for E-science

Resource allocation

- Performance of the gLite scheduling hierarchy
- Responsive grids Everybody's grid
- Common goods prevent abuse of the grid resources

Dimensioning

- Patterns and trends in requests and usage
- Scalability of the information system

Dependability

- Detection: black holes
- Diagnosis: disappearing jobs
- Performance of a probe-free approach

From and to scientific research

Enabling Grids for E-sciencE

- Autonomic Computing: "Computing systems that manage themselves in accordance with high-level objectives from humans". Kephart & Chess A vision of Autonomic Computing, IEEE Computer 2003
 - Self-*: configuration, optimization, healing, protection
 - On open non steams
- Statistical analysis machine learning, data mining
- Promote a quantitative approach
 - Optimize for the most frequent case
 - Compare solutions on defined datasets—benchmarks

Data Collection

- Acquisition, consolidation, long-term conservation of traces of EGEE activities
- GO portal available since Oct. 2008
 - www.grid-observatory.org
 - Heap of data "as is"
 - Get understanding of the complexities of the data
 - Start analysis and bootstrap interactions
 - Next step (September 09): filtered data

- Reliable: data curation and provenance
- Exhaustive: Added value in snapshots of the inputs and grid state e.g. workload and available services during a relevant time range
- Filtered: remove redundancy

- Information System (BDII)
 - LDIF format, CE and SE information, limited information about services
 - One master file each day, plus diff each 15 minutes
- GRIF (Grille de Recherche Ile de France)/LAL Site
 - Logging and Bookkeeping service
 - ascii dump of the SQL tables events, short_fields and long_fields: all the events in the lifcycle of a job, tagged
 - Batch system(s)
 - Job controller traces allow to recover the grid identifier
 - WMS internals (condorG, wm_proxy, etc.)
 - Possible application: disappearing jobs
- Real Time Monitor
 - Summary of the lifecycle of jobs from the Real Time Monitor project
- Next: Storage traffic open issue: how to relate them to user files
- Outside the scope: external traffic on shared resources

How to get an account?

Enabling Grids for E-sciencE

12

How to get an account?

Enabling Grids for E-sciencE

13

Architecture

Towards a knowledge base

Enabling Grids for E-science

- Execution trace formats (à la Grid Workload Format)
- Event trace models (à la IBM Common Event Base)
 - Automatic ontology construction tools may help for dealing with undocumented logs e.g. automatic conversion to IBM CBE of the cryptic logs of the WMS

Ontology

- The Glue Information Model is an ontology of the resources
- More concepts
 - Concepts for the grid dynamics e.g. job lifecycle or users relations
 - Expert concepts as prior knowledge of non-trivial correlations: workflows, failure modes,...
 - Concepts for elementary analysis
- Validated models will become concepts
- More semantics: relations between concepts and typing to allow logical inferences. Generic application: Data curation and consolidation, e.g. RTM + BDII

A complex system

- Coupled usage: Virtual Organization
 - Community software, community activity
 - Access rights
- Feedback loops in the middleware
 - Job dispatch
- Emerging policies
 - As the result of sites and stakeholders decisions
- Inference of models for middleware components and applications, users and usage profiles, users interactions

Time-series analysis - CE level

Enabling Grids for E-sciencE

- **Evidence of self-similarity and** heavy-tailedness in the arrival process
- Simple methods for realistic workload prediction
 - Linear from the load history
 - As the mean of the past executions x number of jobs in the queue

are defeated by very long jobs

Correlated by good fits of GARCH distributions

times, $\xi > 0$ indicates stong

More: http://indico.lal.in2p3.fr/conferenceDisplay.py?confld=443

- **Ongoing work**
 - Systematic AR segmentation by Minimal Description Length
 - Evaluation of the gLite Expected Response Time computation

Burst of arrivals, at all scales Generalized Pareto for inter-arrival heavy-tailedness ition of the standardized residuals and fitted normal distribution for GARCH(1,3 distribution of standardized residuals fitted normal distribution Only the volatility is

predictable

On-line clustering

Clustering the jobs timestamps by StrAP, an on-line version of the Affinity Propagation algorithm

Submission

Clusters described by real jobs, the exemplars

Complexity compatible with line analysis

Provides a concise description of the system

25

5 Clusters

3

Reservoi

On-line clustering

Enabling Grids for E-so

Overall, a normal situation

- Clustering the jobs times of the Affinity Propagation algorithm
- Clusters described by real jobs, the exemplars
- Complexity compatible with online analysis
- Provides a concise description of the system

On-line clustering

Enabling Grids for E-sciencE

- Clustering the jobs timestamps by StrAP, an on-line version of the Affinity Propagation algorithm
- Clusters described by real jobs, the exemplars
- Complexity compatible with online analysis
- Provides a concise description of the system, and exhibits dangerous evolutions
- More:
 - Poster # 36
 - X.Zhang, M. Sebag, C. Germain-Renaud, "Multi-scale Realtime Grid Monitoring with Job Stream Mining".
 To appear (CCGrid'09),

And more...

- Correlation of Estimated Response Time, from VOViews objects in the BDII, with actual response time, from job traces
 - https://savannah.cern.ch/task/?8589
 - Already: detection of anomalous behaviour incredibly high ERTs
- Elastic responsive computing through Reinforcement Learning [CCGRID'08, ICAC'08, GMAC'09?]
 - Principled dynamic prioritization of urgent jobs
 - Integrates fair-share (VOs) and utilization
 - Possible applications: local scheduler, systems of pilot jobs
- On-line black hole detection
 - Page-Hinkley Statistics

Enabling Grids for E-sciencE

- **Curse of dimensionality:** representation and computational complexity
 - e.g. we needed to devise a new version of the Affinity Propagation method
- **Sparse data: largely unexplored** state/action space
 - Each problem requires to build a specific simulator
- No steady-state: still in expanding phase
 - Quantitative and qualitative (e.g. extension of pilot jobs) trends
- Data acquisition at full grid scale
 - Deployment of the acquisition suite will be a long process Experience

software bug,

irrelevant to

- Validation: lack of expert interpretation
 - What is a blackhole?

GMAC'09: Grids Meets Autonomic Computing

- Barcelona, Spain, 15 June 2009
- Associated with the 6th International Conference on Autonomic Computing (ICAC'09)
- http://www.frombarcelona.org/GRIDmeetsAC/

Workshop Focus

Identify key scientific challenges related to the management and evolution of grids as a specific category of complex large-scale systems. The goal of the workshop is to promote community wide discussion of, and collaboration on potentially high-impact ideas that will influence and foster continued research in improving the manageability and reliability of grids.