

Hump: how did it impact the luminosity performance and status

G. Arduini - BE/ABP

Contributions by: M. C. Alabau-Pons, O.O. Andreassen, V. Chareyre, R. De Maria, G. Golluccio, W. Höfle, J-B Jeanneret, L. Walckiers

Outline

Effect on luminosity:

- Injection
- Collision
- Mitigation measures
- Results
- Next steps
- Recent progress
- Summary

Effect on luminosity (injection)

- When the frequency of excitation overlaps with the n+Q or n-Q lines then blow-up and tail generation → larger emittances when going in collision → lower luminosity
- Here we moved the tune on top of the excitation frequency ("hump")

Effect on luminosity (collision)

- When in collision beam-beam acts as a strong non-linear lens → faster decoherence → generation of tails → losses
- Excitation can also drive beam-beam coherent modes leading to losses
- Faster decrease in intensity lower lifetime: observed with ions and protons when no transverse feedback was ON in collision

Effect on luminosity (collision)

Mitigation measures

While searching for origin we have worked on mitigation:

- Damp the excitation by means of the transverse feedback:
 - At low energy first of all as the relative emittance blow-up of the excitation decreases linearly with energy
 - In collision to avoid excitation of beam-beam modes.

$$\left(\frac{d\varepsilon}{dt}\right)_{\text{with fdbk}} \propto \frac{\Delta Q_{\text{rms}}^2}{g^2} \left[\left(\frac{d\varepsilon}{dt}\right)_{\text{w/o fdbk}} + \frac{f_{\text{rev}}g^2}{2\beta_{\text{BPMfdbk}}} X_{\text{noise rms}}^2 \right] \quad \text{for} \quad \Delta Q_{\text{rms}} < g < 1$$

V. Lebedev, V. Parkhomchuk, V. Shiltsev, G. Stupakov, SSCL Pre-print (1993)

Requirements:

- need to work at high gain (power)
- need to reduce the r.m.s. noise on the detection part of the feedback ==> W. Höfle and team during summer. Achieved 1-2 μ m resolution by the beginning of September. Before the hump was hardly visible to the damper pick-ups

Mitigation measures

We can see the hump and the damper can act on its amplitude.

Mitigation measures

Mitigation of the hump effect with the transverse feedback → operation at maximum gain. Compatibility with with tune feedback has been addressed and compromise found

Results

Fill	# bunches	E _{H B1} @inj	ε _{γ B1} ⊚inj	ε _{Η B2} ⊚inj	ε _{γ B2} @inj	ε _{ΗV} @coll (from init. Lumi)	ε _H ^{@end of coast} (from Lumi scan or WS)	ε _V ^{@end of coast} (from Lumi scan or WS)
1364	25	2.5	1.9	3.2	2.7	3.2	4.0/4.5	3.8/4.9
1366	56	1.7	1.7	2.0	2.3	2.2	3.5	3.5
1369	56	2.2	2.1	2.6	2.9	2.9	-	-
1372	104	2.1	2.2	2.3	2.8	2.8	3.7	4.5

- New functions for the damper allow to mitigate blow-up due to hump in the vertical plane. Gain functions during the ramp remain to be optimized (ongoing). ~10-20% blow-up during injection plateau and ramp.
- Systematic difference B1/B2 already at injection remains to be understood (not himp related)
- Blow-up in collision (~40-50 %) to be further studied

Mitigations: next steps

- Some effects are still visible in collision, some of them related to the hump:
 - Optimization of the damper gain in collision not done yet. Observed tail generation and tiny losses when the hump crosses the tune.
- Remaining effects:
 - Beam-beam and working point
 - Noise level in the damper position monitors → more critical at higher energy due to the emittance reduction → preparation work for understanding possible means for noise reduction ongoing

The hump is there all the time...

- But with different patterns more or less disturbing for the beam according to the amount of overlap with the tune...
- Sudden changes of the time pattern observed in some occasions.
- Analysis of the period March-August being completed → try to find find periodicity and correlations

R. De Maria. M-C Alabau-Pons

Mitigations

 In this case small shift of the working point can help
 → Fixed display for real time "hump" monitoring is available → Use it!

 There is not much to do in this case except damping the oscillation

Recent progress (frequency meas.)

So far only turn by turn position meas. (peak among several bunches)

- \rightarrow possibility to define the frequency as $\pm f_0 + n \times f_{rev}$ with $0 < f_0 < f_{rev}/2$
- Since middle of November turn-by-turn/bunch-by-bunch position with damper pick-up. Ion filling scheme with basic spacing of 500 ns \Rightarrow possibility of determining the frequency of the hump $\pm f_0 + n \times 2$ MHz with $0 < f_0 < 1$ MHz

If confirmed this would rule out UPS as origin

R. De Maria - PRELIMINARY

Recent progress (frequency meas.)

Ions operation has allowed reducing the upper limit on the maximum frequency of the hump. Ions are less relativistic then protons \rightarrow f_{RF} changes by ~5KHz. No shift larger than 0.01 observed \rightarrow f_{hump} < 10 MHz.

Analysis of the signal in time domain and correlation beam 1/beam 2 ongoing

Ongoing activities

Remote magnetic measurements (J-B Jeanneret, L. Walckiers and team) and comparison with beam data to attempt localization of the source at least identification of the point/sector (1 coils/point installed and 6 out of 8 equipped with electronics and remote access)

Important for hump investigations and in general understanding of the possible sources of noise affecting the beam.

Summary

The hump affects luminosity performance due to blow-up (particularly at 450 GeV). In collision it can excite beam-beam coherent modes or generate tails and therefore losses.

- Priority has been given to implement mitigation measures: the transverse feedback has proven to be effective to mitigate these effects and as a result of that beams with emittances in the range of 2.5 micrometers could be regularly brought in collisions.
- The identification (and possibly eradication) of the origin remain the (challenging) goal of the ongoing analysis and measurements.

Characterization

- We do not know yet the real frequency of the hump → hope to get it soon
- Behaviour during the ramp and dependence during non-linear chromaticity measurements indicate that it is not close to a very high harmonic of the revolution frequency

Characterization

Momentum dependence during the ramp $A(p)=\langle A_{450GeV}\rangle/p$

Relative emittance blow-up should decrease with momentum

No evident amplitude dependence during the squeeze → No **localized** source in the insertions in IR1/2/5/8

Countermeasures

BSRT

HOR EMITTANCE B2

Noise in the TFB pick-up compatible with operation at high gain → might see some small blow-up above -10 dB

To be compared with ~1.5-2 μm/h observed for B2-V in the presence of hump

BSRT

 Proposal to run at 450 GeV at max gain (> -10 dB) to be reduced just before starting the ramp (to allow tune tracking) for the time being

HOR EMITTANCE B1

 This will allow verifying the effectiveness in controlling the emittance blow-up on B2 V

Possible explanation (J. B. Jeanneret):

- Spectrum compatible with :
 - Harm. 2, 4, 6 of 8 kHz (UPS)
 - Frequency sweep few %
- Failure mode of one of the APC UPS in the tunnel?
- Not excluded according to the experts
- Behaviour could depend on load, temperature, response to network fluctuations,...

