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We discuss how the hadroproduction of tt-pairs in association with jets, vector and/or
scalar bosons is implemented in the PowHel framework. In this framework matrix elements
obtained from the HELAC-NLO package are used to provide predictions of distributions at the
hadron level that are correct up to next-to-leading order accuracy in perturbation theory.
We also show first predictions for W W ~b b-hadroproduction.

Accurate predictions for the production of tt-pairs alone or in association with jets, vector
and/or scalar bosons are important for many experimental studies at hadron colliders both
aiming at better understanding of the Standard Model (SM) and searches for new physics.
However, the t-quarks and heavy bosons decay quickly and their decay products are detected.
The experimental analyses often concentrate on the leptonic decay channels because these offer
a much cleaner final state than the hadronic ones. Thus it is important not only to predict
cross sections for the production of the heavy quarks and bosons, but also for the spectra of
the leptons that emerge in their decays. While the theoretical description of such final states
is straightforward at leading-order accuracy using the state-of-the art calculational tools, such
predictions are known to suffer from large scale ambiguities and corrections from parton showers
and hadronization. In order to improve the accuracy of the theoretical description during the
last decade a lot of effort has been invested to match perturbative predictions at the next-to-
leading order (NLO) accuracy with shower Monte Carlo (SMC) programs. One such approach
is the POWHEG method [T}, 2] that was implemented in a process independent framework in
the POWHEG-BOX program [3].

To write the POWHEG cross section, one defines the NLO-corrected fully differential cross
section belonging to the underlying Born configuration

B(®p) = B(®p)+ V(®p) + /dq)radR(q>R)7

and the POWHEG Sudakov form factor

st o[ 00}

In these equations d® g denotes the phase space measure of the Born computation, while d® g
is that for the real radiation process. The latter is parametrized as d®r = d®d®P,.q, where
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d®,,q includes the measure for the three variables that describe the radiation process of the
extra parton and the corresponding Jacobian factor. The functions B(®p) and V(®p) denote
the Born contribution and the finite part of the virtual corrections, respectively. Finally, R(<I> R)
is the regularized real radiation contribution that is also defined in the FKS subtraction scheme.
In the POWHEG-BOX the latter two are defined in the FKS subtraction scheme [4].

In the Sudakov form factor, the function k, (® ) has to be equal to the transverse momentum
of the emitted parton relative to the emitting one near the region of singular emission. Then

the POWHEG fully differential cross section is defined as

R(®r)
B(®p)

dopus = B(®p)d®p |A(®p, pT™) + dq)radA(q)B; lu(%)) Ok (®r) —pT™)| . (1)

The advantage of this formula is that it can be used to generate equal weight events with
Born configuration (first term) or including first radiation (second term). These events, termed
LHE’s, are stored in files according to the Les Houches accord [5].

The POWHEG-BOX provides a general framework to implement the POWHEG cross section
in Eq. . In this framework, the following ingredients are needed:

e The flavor structures of the Born and real radiation emission subprocesses.

e The Born-level phase space, that we generate to emphasize the resonant kinematics of the
decaying t- and t-quark.

e We obtain the squared matrix elements for the Born and the real-emission processes and
color-correlated Born amplitudes with all incoming momenta using amplitudes computed
by codes included in the HELAC-NLO package [6], in particular HELAC-1L0OP based on the
OPP method [7] complemented by Feynman-rules for the computation of the QCD Ry
rational terms [8]. The matrix elements in the physical channels were obtained by crossing,.
In order to treat the numerical instabilities, we implemented dd-precision numerics by
developing a HELAC-1L00P@dd version of the HELAC-1LOOP program.

e We project spin-correlated Born amplitudes from the helicity basis to the Lorentz one by
using the polarization vectors.

The generation of the matrix elements is straightforward using the HELAC-NLO code. There
are two problems that arise during integration. The first one is that for vanishing transverse
momentum of massless partons or vanishing invariant mass of a massless parton pair the Born
cross section becomes singular. While this can never happen in a LO computation due to the
selection cuts, it is a problem in the POWHEG method because the selection cuts can only be
applied after event generation. The traditional way of treating this problem is the introduction
of a generation cut. With this cut the LO cross section becomes finite, but the generation of
the events is still rather ineflicient because most of the events are generated in the region of
small p | of the massless parton, thus they are lost when the physical selection cuts are applied
(usually much higher, in the region of 20 — 30 GeV). In order to make the generation of events
more efficient, we introduce suppression factors. As we want to suppress the region of small
p1, our choice for the suppression factor is

9 [
F=|- pé J
py +pL,supp
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The second problem is a purely numerical one and is related to the numerical computa-
tion of one-loop amplitudes as implemented in CutTools [I0]. In order to control numerical
instabilities an N' = N test was implemented. For a given numerator we determine the scalar-
integral coefficients using double precision arithmetics. We check the accuracy of the integrand
by reconstructing it using all coefficients (and spurious terms) with a randomly chosen loop
momentum. If the reached relative accuracy is worse than 10™%, we pass the same phase space
point in double-double precision (computed at the first place) to HELAC-1L00P@dd to recalculate
all the coefficients. The HELAC-1L00P@dd code is a straightforward extension of HELAC-1LOOP
to double-double precision using QD [9]. If the N' = N test fails, CutTools turns on its multi-
precision version and calls the corresponding double-double precision version subroutines of
HELAC-1L00P@dd. This way we avoided all numerical instabilities in the computation of the
virtual corrections.

We implemented all these improvements in the PowHel framework that can be used to
generate LHE’s for the following final states in hadroproduction: (i) a tt-pair, (ii) a t t-pair in
association with a jet [I1], (iii) a tt-pair in association with a scalar [I12] and a pseudoscalar
Higgs boson [13], (iv) a t t-pair in association with a SM Z%boson [14, [15], (v) WTW ~bb, and
three more processes that are not yet published. In this proceedings we discuss item (v) briefly.
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Figure 1: Distribution of the a) transverse momentum of the W+W ~bb-system; b) azimuthal
separation between the hardest isolated positron and muon. The lower inset in the right panel
shows the ratio of the predictions with approximate decays of the t-quarks as compared to the
complete W W ~bb-prediction. Selection cuts are specified in the plots.

Fig. a shows the distribution of the transverse momentum of the W+W~bb system. Our
selection cuts are shown in the figure. In a fixed-order computation this distribution diverges
for vanishing transverse momentum. In the POWHEG cross section this divergence is smeared
by the Sudakov form factor as can be seen in the figure. In addition to the WTW ~bb final
state computed at the NLO accuracy and matched to the PYTHIA SMC [I6], we also show the
prediction obtained by computing the t t final state and letting the SMC decay the heavy quarks
(line marked as tt-PY1). The third line (marked as tt-DECAYER-PY1) shows the predictions
obtained by performing the decays of the heavy particles according to the method descibed by
Ref. [I7] and implemented in a general way in our code DECAYER. The large difference between
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the W+ W ~bb-prediction is due to the different source of first emission in the two approaches:
for the W TW b b-case first emission comes mainly from the b-quarks, that we treat as massless,
while in the t t-case first emission comes from the heavy t-quarks. As a result the latter spectra
are much harder.

In Fig. [[}b we show the distribution of azimuthal separation between the hardest isolated
positron and the muon. This distribution is an example where the differences between the
three cases were clearly visible in the LHE’s. These differences are only slightly altered by
the PS, or the full SMC. In particular, the effect of including the spin-correlation leads to
an increase of the distribution for small azimuthal separation A¢.+,-, where the distribution
from the tt+DECAYER computation, which includes the spin correlations in an approximate
way, and from the W+ W ~bb-prediction are similar in shape. Only the normalizations of the
two predictions differ due to the the singly- and non-resonant graphs that are absent in the
t t-+-DECAYER computation. For small separations, these are both significantly larger than the
distribution t t-PY1 obtained from the t t events if the decay of the t-quarks is performed by the
SMC, where spin correlations are neglected. At large separations however, the latter becomes
even larger than the predictions from the W+W ~bb computation.
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