
GenWrapper: A Generic Wrapper for Running
Legacy Applications on Desktop Grids

Attila Csaba Marosi
atisu@sztaki.hu

Joint EGEE and EDGeS Summer School on Grid Application Support
29 June 2009 - 07 July 2009

Budapest, Hungary

Outline

2/20

• Volunteer Computing and Desktop Grid Computing

• BOINC – Berkeley Open Infrastructure for Network Computing

− native applications

− the BOINC Wrapper

• GenWrapper

− Motivation

− Details

• Applications and Projects utilizing GenWrapper

• Conclusion

Volunteer Computing and Desktop Grid Computing

• Volunteer Computing usually refers to aggregates formed by non-dedicated
(volunteer) desktop nodes

− public resource computing, public-based desktop grids, public desktop
grids

− volatile nature of connected resources

− the resource donating entity (“donor”) needs to trust the entity
(“project”) gathering the resources

• Desktop Grid Computing is using private resources available at institutions
and companies

− institutional desktop grids, enterprise desktop grids, local desktop grids

− adminsitrators have total control over the resources

− donors may not be aware of donating (idle) CPU time

− dedicated resources, different security requirements

3/20

…
BOINC Project

Host 2.

BOINC Core Client• donors install the BOINC Core Client
and attach to a Project

− the client downloads an
Application and sets of input data
(“Work units”)

− the Application processes the
input data

− the client uploads the output
(“Completed result”)

BOINC

Work unit

Input

Output

…

BO
IN

C
Ap

pl
ic

at
io

n

Host 1.

BOINC Core Client

Work unit

Input

Output

…

BO
IN

C
Ap

pl
ic

at
io

n
• BOINC is suited for Master-Worker style applications

− no communication is possible between the ”work units”

X

4/20

sh
ar

ed
 m

em
or

y

BOINC Core Client BOINC Application

boinc_init()
do
process input
checkpoint
write output

done
boinc_finish() BO

IN
C

Cl
ie

nt
 L

ib
ra

ry
Work unit

Input

Output

…

• any application needs special preparation

− needs to be recompiled and linked with the BOINC library

− has to call boinc_init() at the beginning and boinc_finish() before exit

− the Core Client and the Application uses shared memory for communication

− for each file to be opened needs to be resolved via boinc_resolve()

− there is a separate working directory (“slot”) and storage dir (“project”)

The native BOINC application

5/20

BOINC Core Client BOINC Wrapper

boinc_init()
exec app1
…
exec appN
boinc_finish()

BO
IN

C
Cl

ie
nt

 L
ib

ra
ry

Application

Legacy Application 1.

Legacy Application N.

…

Work unit

Input 1.

Input N.

…

• the wrapper is a native application, but:

− handles communication with the Core Client (suspends, resumes, starts and kills
the application; reports fraction and CPU time used)

• can be used to port Legacy Applications

− no need to change the original code

− legacy applications are run as sub-processes

• each application may have input, output files, environment and command line

• checkpoints after each finished application (task)

• uses an XML style configuration file for task description

The BOINC Wrapper

6/20

• Why did we need it?

– The features of the BOINC Wrapper are not enough

– patching config files on client machines

– input files need preparation

– generating extra messages (log, debug)

– independent jobs in a single WU (batching)

– unknown number of output files

– legacy applications may start processes themselves

– support for DC-API and BOINC API

– Wanted to be prepared for unknown requirements might be raised by future
applications

– We did not want to extend the BOINC Wrapper to make it an XML-based
programming language, we choose to use an existing language -> Bourne shell

Motivation for a Generic Wrapper

7/20

• How did we do it ?

– we took GitBox a Windows only port of BusyBox …

– a single binary providing POSIX shell interpreter and essential UNIX
commands (sed, grep, tar, echo, etc)

– was used earlier by the git version control system on Windows (abandoned
now)

– … and ported it back to Linux and Mac OS X (while still runs on Windows)

– the name remained GitBox, but has little common with the original…

– extended it to…

– use the BOINC API and to provide the API for POSIX shell scripting (boinc
resolve_filename, boinc fraction, boinc fraction_percent)

– have more commands available (like unzip,awk,etc) and fixed some…

– handle communication with the Core Client: report CPU time; suspend,
resume and kill processes started (not trivial!); CPU throttling, etc.

• How does it work ?

A Generic Wrapper

8/20

Application

shared
memoryBOINC Core Client Launcher

boinc_init()
unzip application
generate starter
execute GitBox
boinc_finish() BO

IN
C

Cl
ie

nt

Li
br

ar
y

Starter script
source profile script
exec work unit script

Application Bundle (Zip)

Legacy Application 1.

Legacy Application N.

…

GitBox
Profile scriptProfile script

Work unit

Work unit script

Input 1.Input 1. Input N.Input N.…
GenWrapper

perform arbitrary action
exec Legacy Application 1.
boinc fraction_done 0.5
perform arbitrary action
exec Legacy Application N.
boinc fraction_done 1
perform arbitrary action
zip outputs

Output Output

9/20

1. IN=`boinc resolve_filename in`
2. OUT=`boinc resolve_filename out`
3. NUM=`cat ${IN}`
4. PERCENT_PER_ITER=$((100000 / NUM))
5. for i in `seq $NUM`; do
6. PERCENT_COMPLETE=$((PERCENT_PER_ITER * i / 1000))
7. boinc fraction_done_percent ${PERCENT_COMPLETE}
8. echo -e "I am ${PERCENT_COMPLETE}% complete." >> ${OUT}
9. sleep 1;
10.done

Sample GenWrapper script

• no need to call boinc_init() or boinc_finish()

− exit status of the script is the exit status of the work unit

• the script should implement checkpointing, and checkpoint itself when fits

• every input and output file needs to be resolved

• no background jobs yet (Windows lacks fork())

− but legacy applications may create new processes themselves

10/20

Some applications and projects using GenWrapper

• CancerGrid Project - Grid Aided Computer System For Rapid Anti-Cancer Drug Design

• EDGeS Project – Enabling Desktop Grids for e-Science

• 3D Video Rendering Service using Blender @ UoW

• Protein Molecule Simulation using AutoDock @ University of Westminster

− http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Autodock

• Patient Readmission Application - statistical model developed in R @ UoW

− http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:r

• Discrete event simulator using Discrete Event Modelling on Simula (Demos) @
Norwegian University of Science and Technology (NTNU)

• EMMIL – E-commerce model to integrate logistics @ International Business School Inst.
of Information Systems and Logistics, Budapest, Hungary

11/20

The CancerGrid project

• EU Framework Program 6 (FP-6, 2006-2009)

• Title: Grid Aided Computer System For Rapid Anti-Cancer Drug Design

• Project period

– January 1, 2007 – December 31, 2009

• Goals:

– Developing focused libraries with a high content of anti-cancer
leads, building models for predicting various molecule properties

– Developing a computer system based on grid technology, which
helps to accelerate and automate the in silico design of libraries
for drug discovery processes

12/20

Applications: cmol3d, mopac, mdc, fmt, fma,
etc.

• Fortran, C, C++
• processing/ memory requirements
• multi-binary applications (already

contain some wrappers), libraries
• legacy binaries for Linux and Windows
• config file preparation before execution
• pure logging/ debugging information
• variable run-time

– one to one Work unit mapping not
always efficient

– batching
• variable number of output files
• need to be executed in a specific order
• workflows have been created

− molecule descriptor calculator, model
building and property prediction

The CancerGrid applications - Wide variety of
applications in a workflow

13/20

The CancerGrid applications – descriptor calculator

• the most computation intensive workflow is the descriptor calculator

− 4 jobs for molecular calculations

− 2 jobs for file format conversion

− 3 jobs for database manipulation

• main parameters of the workflow (from computing perspective)

− N : number of two dimensional input molecules

− M : number of confirmers (variants of a molecule)

• molecular calculation jobs are executed once for each input or once for each
confirmer

− typical value for N : 30,000; for M : 100

− 3,000,000 instances, total ~10,000,000 jobs

• the granularity of the workflow is fine grained

− running time of one instance is a few minutes

− not suitable for conversion to BOINC work units one to one

14/20

15

DG Server
BOINC
Server

Components

BOINC
Task
DB

Sche-
duler

Data
server

Queue
Manager

D
C-

AP
Im

as
te

r
WU

Job Database
(Description of Jobs:
Apps, Args, I/O files)

Job
descr.

Scheduling
policy

Batch
creation

BOINC client

BOINC client

GenWrapper for
batch execution

DC-API cli

Legacy
Application

gUSE Submitter

Job
descr.

GenWrapper for
batch execution

DC-API cli

Legacy
Application

The CancerGrid architecture

• a Job Database, Job Queues and
Queue Manager extension has
been introduced at the BOINC
server.

• once a queue contains appropriate
number of jobs a work unit is
created using DC-API

• a shell script is created to manage
the execution of the batch

− assembled from head, body
and tail fragments

− body part is repeated for each
job in the batch

− may contain macros like
%{name}

− executed by GenWrapper

WS-PGRADE/ gUSE
User Interface, Workflow Manager

3D Video Rendering Service using Blender
University of Westminster, London, UK

http://wgrass.wmin.ac.uk/index.php/
Desktop_Grid:Rendering

• open source rendering software

• Blender renders frames sequentially

− set of frames is sent to workers
and a master creates the
complete video from the pieces

• part of an on-line distributed
rendering service

16/20

• GenWrapper offers a generic solution for wrapping and executing an arbitrary set of
applications on BOINC (BOINC API or DC-API) and XtremWeb

− POSIX like scripting language

− Not a silver bullet !

− security considerations, legacy applications with lot of external dependencies

• great flexibility and powerful tool for porting legacy applications

• based on a modified version of GitBox (~BusyBox)

− open source (GPL/ LGPL)

• runs on Windows, Linux, Mac OS X

• small size

− Launcher and GitBox are ~400KByte each (will be integrated into a single binary)

• many applications and projects are using it

Conclusions

17/20

• GenWrapper

− http://sanjuro.lpds.sztaki.hu/genwrapper

• Enabling Desktop Grids for e-Science

− http://www.edges-grid.eu

• CancerGrid

− http://www.cancergrid.eu

Thank You!

desktopgrid@lpds.sztaki.hu

18/20

