GenWrapper: A Generic Wrapper for Running
Legacy Applications on Desktop Grids

Attila Csaba Marosi
atisu@sztaki.hu

%

Joint EGEE and EDGeS Summer School on Grid Application Support
29 June 2009 - 07 July 2009
Budapest, Hungary



Outline

Volunteer Computing and Desktop Grid Computing

BOINC — Berkeley Open Infrastructure for Network Computing
— native applications

—  the BOINC Wrapper

GenWrapper

—  Motivation

—  Details

Applications and Projects utilizing GenWrapper

Conclusion



Volunteer Computing and Desktop Grid Computing

. Volunteer Computing usually refers to aggregates formed by non-dedicated
(volunteer) desktop nodes

—  public resource computing, public-based desktop grids, public desktop
grids

= volatile nature of connected resources

—  the resource donating entity (“donor”) needs to trust the entity
(“project”) gathering the resources

. Desktop Grid Computing is using private resources available at institutions
and companies

—  institutional desktop grids, enterprise desktop grids, local desktop grids
— adminsitrators have total control over the resources { nc
—  donors may not be aware of donating (idle) CPU time _)
—  dedicated , diff t ity requirements ' f‘“ﬁ\ TAL
edicated resources, different security req DA J‘AKJ
LESHTOP GRID



BOINC

BOINC Project

N

donors install the BOINC Core Client BOINC Core Client BOINC Core Client

and attach to a Project X
-

N

= the client downloads an

\

Application and sets of input data ¥
“ . Input Input
(“Work units”) c c
o -2 oy
> the Application processes the =2 § = 3
input data o o o o
| g | [ouRE 5| |IOuERuE]
™ the client uploads the output . .
“c leted result”) Work unit Work unit
( g P Host 1. Host 2.

BOINC is suited for Master-Worker style applications

= no communication is possible between the “work units”



The native BOINC application

BOINC Core Client 4 S| BObtC spplicEen

o 15 [ botne inico

o & | boinc_ini
- Input

e o process 1nput

5 O checkpoint

E O write output =

c =2
= | done

N B | output |
@ | boinc_finish() \

Work unit
. any application needs special preparation

= needs to be recompiled and linked with the BOINC library

= hasto callboinc init () atthe beginning and boinc finish () before exit
= the Core Client and the Application uses shared memory for communication

= for each file to be opened needs to be resolved viaboinc resolve ()

= there is a separate working directory (“slot”) and storage dir (“project”)



The BOINC Wrapper

BOINC Wrapper

BOINC Core Client [«=» -
o ) . Legacy Application 1. == |nput 1.
S b01nc_1n1t()//'
)
S | exec appl
O | ..
S | exec appN o
g boinc_finish() ~—> Legacy Application N. == [nput N.

: A B} ] Application Work unit
. the wrapper is a native application, but:

™ handles communication with the Core Client (suspends, resumes, starts and kills
the application; reports fraction and CPU time used)

. can be used to port Legacy Applications

= no need to change the original code

legacy applications are run as sub-processes
. each application may have input, output files, environment and command line
. checkpoints after each finished application (task)

. uses an XML style configuration file for task description



Motivation for a Generic Wrapper

Why did we need it?
The features of the BOINC Wrapper are not enough

patching config files on client machines

input files need preparation

generating extra messages (log, debug)
independent jobs in a single WU (batching)
unknown number of output files

legacy applications may start processes themselves

support for DC-API and BOINC API

Wanted to be prepared for unknown requirements might be raised by future
applications

We did not want to extend the BOINC Wrapper to make it an XML-based
programming language, we choose to use an existing language -> Bourne shell



A Generic Wrapper

How did we do it ?
—  we took GitBox a Windows only port of BusyBox ...

— asingle binary providing POSIX shell interpreter and essential UNIX
commands (sed, grep, tar, echo, etc)

— was used earlier by the git version control system on Windows (abandoned
now)

— ...and ported it back to Linux and Mac OS X (while still runs on Windows)
— the name remained GitBox, but has little common with the original...
— extended it to...

— use the BOINC API and to provide the API for POSIX shell scripting (boinc
resolve filename,boinc fraction,boinc fraction percent)

—  have more commands available (like unzip, awk, etc) and fixed some...

— handle communication with the Core Client: report CPU time; suspend,
resume and kill processes started (not trivial!); CPU throttling, etc.

How does it work ?



BOINC Core Client

£

shared

memory

Starter script

source profile script
exec work unit script

BOINC Client
lerary

boinc_init()
unzip application L oo ea
generate starter
execute GitBox
boinc_finish()

Launcher

L — =

Application Bundle (Zip) ==

GitBox +—

Work unit script

Z1ip outputs

perform arbitrary action
exec Legacy Application 1. =
boinc fraction_done 0.5
perform arbitrary action
exec Legacy Application N.
boinc fraction_done 1
perform arbitrary action

Profile script

Legacy Application 1.

Legacy Application N.

Input 1. N Input N.

Work unit

Application

GenWrapper



Sample GenWrapper script

IN= "boinc resolve filename in
. OUT= boinc resolve filename out"
. NUM="cat S${IN}"
. PERCENT PER ITER=$((100000 / NUM))
for i in “seqg SNUM ; do
PERCENT COMPLETE=$ ( (PERCENT PER ITER * i / 1000))
boinc fraction done percent ${PERCENT COMPLETE}
echo -e "I am ${PERCENT_COMPLETE}% complete." >> S${OUT}
sleep 1;

H © & JdJ o U & W DN -

0.done

no need to call boinc init () orboinc finish ()
= exit status of the script is the exit status of the work unit

the script should implement checkpointing, and checkpoint itself when fits
every input and output file needs to be resolved

no background jobs yet (Windows lacks fork () )

= but legacy applications may create new processes themselves



Some applications and projects using GenWrapper

CancerGrid Project - Grid Aided Computer System For Rapid Anti-Cancer Drug Design
EDGeS Project — Enabling Desktop Grids for e-Science
. 3D Video Rendering Service using Blender @ UoW
. Protein Molecule Simulation using AutoDock @ University of Westminster
a http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Autodock
. Patient Readmission Application - statistical model developed in R @ UoW
o http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:r

Discrete event simulator using Discrete Event Modelling on Simula (Demos) @
Norwegian University of Science and Technology (NTNU)

EMMIL - E-commerce model to integrate logistics @ International Business School Inst.
of Information Systems and Logistics, Budapest, Hungary



—- CancerGrid

The CancerGrid project

e EU Framework Program 6 (FP-6, 2006-2009)
e Title: Grid Aided Computer System For Rapid Anti-Cancer Drug Design
* Project period
— January 1, 2007 — December 31, 2009
* Goals:

— Developing focused libraries with a high content of anti-cancer
leads, building models for predicting various molecule properties

— Developing a computer system based on grid technology, which
helps to accelerate and automate the in silico design of libraries
for drug discovery processes



The CancerGrid applications - Wide variety of
applications in a workflow

Applications: cmol3d, mopac, mdc, fmt, fma,
etc.

Fortran, C, C++
. processing/ memory requirements

multi-binary applications (already
contain some wrappers), libraries

legacy binaries for Linux and Windows
config file preparation before execution
pure logging/ debugging information

— -‘_| LISTID 2D.xml (10k*N)

e 1D.2D.mol ID.CFID.mol | — | ID.CFID.mop
(10k) (15k) (350K) ‘

B

variable run-time

ID CFID.
(50K

— one to one Work unit mapping not I n M DM°"
always efficient 2D/3D | |, | Flexmol e @ A Cac.

— batching | MORR

*  variable number of output files 0®ml | [ 0oontsa | <[ 10.cFD.mol % M/

) - (10k) (2MB) (15k)

. need to be executed in a specific order e =

. workflows have been created M=100
—  molecule descriptor calculator, model Ll

building and property prediction




The CancerGrid applications — descriptor calculator

the most computation intensive workflow is the descriptor calculator
= 4 jobs for molecular calculations
= 2 jobs for file format conversion
= 3 jobs for database manipulation

main parameters of the workflow (from computing perspective)
> N : number of two dimensional input molecules
> M : number of confirmers (variants of a molecule)

molecular calculation jobs are executed once for each input or once for each
confirmer

= typical value for N: 30,000; forM: 100

= 3,000,000 instances, total ~10,000, 000 jobs
the granularity of the workflow is fine grained

= running time of one instance is a few minutes

= not suitable for conversion to BOINC work units one to one



The CancerGrid architecture WS-PGRADE/ gUSE

User Interface, Workflow Manager

> 4

a Job Database, Job Queues and

Queue Manager extension has DG Serve
been introduced at the BOINC :
BOINC <« BOINC client
R gUSE Submitter Server
once a queue contains appropriate el e DC-API cli
number of jobs a work unit is e [ o ropperfor
created using DC-API /r S Sche- e
V/
N . Job Database duler Legacy
a shell script is created to manage Dorrnt _ Application
iption of Jobs: ™
the execution of the batch Apps, Args, I/O files) u i
|
—  assembled from head, body ﬁf - a
H |
and tail fragments Queue Data .
= body part is repeated for each || Manager s server
job in the batch — || B «f+ BOINCclient
A _ _ Scheduling e O
may contain macros like policy — |
— C-API cli
%{name} <F WU BOINC s DW -
) Task en rapper' or
—  executed by GenWrapper Batch = DB ach execution
creation -
~ Application




3D Video Rendering Service using Blender

University of Westminster, London, UK

E D @@S Define mput parameters BOINC Server DC-API
. {First Frame, Last _ Create work vnits
= open source renderlng software Frame) L Collect results
Define number of work '-% < Create complete video from
. Blender renders frames sequentially "t [ | frames

= set of frames is sent to workers
and a master creates the
complete video from the pieces

. part of an on-line distributed
rendering service

:i 1 \\I Download: executable, Blender

BOINC workers files)

project files, frame munbers
The relalivn ol b rendzr = ignes = Uie speedop Upload: result (rendered PNG
400 -

puli]

230

// http://wgrass.wmin.ac.uk/index.php/

7 Desktop_Grid:Rendering

i ’
H}

all

100 1000 1000C 10020



Conclusions

GenWrapper offers a generic solution for wrapping and executing an arbitrary set of
applications on BOINC (BOINC API or DC-API) and XtremWeb

= POSIX like scripting language
F Not a silver bullet !
a security considerations, legacy applications with lot of external dependencies

great flexibility and powerful tool for porting legacy applications

based on a modified version of GitBox (~BusyBox)
= open source (GPL/ LGPL)

runs on Windows, Linux, Mac OS X

small size
= Launcher and GitBox are ~400KByte each (will be integrated into a single binary)

many applications and projects are using it



Thank You!

GenWrapper
—  http://sanjuro.lpds.sztaki.hu/genwrapper

e Enabling Desktop Grids for e-Science

—  http://www.edges-grid.eu

e CancerGrid

—  http://www.cancergrid.eu

desktopgrid@Ilpds.sztaki.hu



