



# Hadron structure and spectroscopy with COMPASS

using  $\pi$  and  $\mu$  beams the unusual way

## B. Pire

CPhT, École Polytechnique, CNRS, PALAISEAU, France

April 4-6th, 2011 IVVHS 2011

Auteuil, Paris

based on works with

IV Anikin, M. Diehl, L. Szymanowski, J.P. Lansberg, OV Teryaev, S Wallon

a simplistic outsider view

- $\Rightarrow$  Success of  $\pi$  beams : spectroscopy
  - $\rightarrow$  beautiful  $\pi_1(1600)$  discovery
- $\Rightarrow$  Success of  $\mu$  beams : hadronic structure
  - $\Delta G(x)$  historical measurements , TMDs
- near future : GPDs through DVCS and other exclusive channels
- **MY PROPOSAL :**
- $\Rightarrow$  use  $\pi$  beams to explore the structure of proton in exclusive processes (= one limit of the Drell Yan program)
- $\Rightarrow$  use  $\mu$  beams to analyze the hybrid meson  $\pi_1(1600)$ (= one limit of the DEMP program)

Plan of the talk

 $\Rightarrow$  use  $\pi$  beams to explore the structure of proton in exclusive processes (= two limits of Drell Yan )

- $\longrightarrow$  Forward exclusive  $\pi N \rightarrow \mu^+ \mu^- N'$  Accessing GPDs  $\tilde{E}$  and  $\tilde{H}$
- $\longrightarrow$  Backward exclusive  $\pi N \rightarrow \mu^+ \mu^- N'$  Accessing  $\pi \rightarrow N$  TDAs
- $\longrightarrow$  discover the exclusive K factor
- $\Rightarrow$  use  $\mu$  beams to analyze the 1<sup>-+</sup> hybrid meson  $\pi_1(1600)$
- $\rightarrow$  scrutenize the hybrid DA, namely its  $\bar{q}q$  Fock state (sic)

 $\Rightarrow$  use quasi real  $\gamma$  beams for Drell Yan pairs on transv. pol. target

 $\rightarrow$  scrutenize the  $\gamma$  chiral odd DA and  $h_1(x)$ 

Success of factorized description of DVCS/TCS

 $\gamma^*N \rightarrow \gamma^*N'$  in terms of Generalized Parton Distributions



 $\gamma^*N \rightarrow \gamma N'$  and  $\gamma N \rightarrow \gamma^*N'$  in terms of the same GPDs, the same LO coeff. function and different NLO contributions *BP*, *L.Szymanowski*, *J.Wagner* : *Phys Rev.* D83,034009(2011)

$$\gamma^*N \to \pi N'$$
 and  $\pi N \to \gamma^*N'$ 

E.Berger, M.Diehl, BP, Phys Lett. B523

#### Pion beams reveal $\tilde{H}, \tilde{E}$ Generalized Parton distributions



(= Exclusive Limit of Drell Yan process)

**COMPASS** with  $\mu$  beams  $\iff$  **COMPASS** with  $\pi$  beams

**Exclusive lepton pair production in**  $\pi N$  **scattering** 

$$\pi^- p \to \gamma^* n \to \mu^+ \mu^- n$$



 $\tilde{H}$  and  $\tilde{E}$  GPDs

$$\Rightarrow \tilde{H}(x,\xi=0,t=0) = \Delta q(x)$$

 $\Rightarrow \tilde{E}$  unknown : Pion pole dominance often assumed



 $\Rightarrow$  *t*-dependence  $\rightarrow$  proton femtophotography

Lepton angular distribution

### Dominant Amplitude : longitudinal $\gamma^*$



$$\frac{d\sigma}{dQ'^2 dt d(\cos\theta) d\varphi} = \frac{\alpha_{\rm em}}{256 \pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda',\lambda} |M^{0\lambda',\lambda}|^2 \sin^2 \theta$$

Crucial Test of the validity of the twist expansion

if  $\sigma_T$  not small, extract **GPDs** from  $\sigma_L$  only!

**LO Estimates** 



$$Q^{\prime 2} = 5 GeV^2 \qquad \tau = 0.2$$



(dashed) =  $|\tilde{\mathcal{H}}|^2$ ; (dash-dotted) =  $\operatorname{Re}(\tilde{\mathcal{H}}^*\tilde{\mathcal{E}})$ ; (dotted) =  $|\tilde{\mathcal{E}}|^2$ .

### Target Transverse Spin asymmetry

At the twist 2 level :  $\frac{d^{\uparrow}\sigma - d^{\downarrow}\sigma}{d^{\uparrow}\sigma + d^{\downarrow}\sigma} = A_{\rm UT}^{\sin(\phi - \phi_S)}\sin(\phi - \phi_S) + \text{other harmonics}$ 

$$A_{UT} = \frac{-2\sqrt{\frac{t-t_{min}}{t_{min}}} \eta^2 \mathcal{I}m \left(\tilde{\mathcal{H}}\tilde{\mathcal{E}}^*\right)}{(1-\eta^2)|\tilde{\mathcal{H}}|^2 - \frac{t}{4M^2}|\eta\tilde{\mathcal{E}}|^2 - 2\eta^2 \mathcal{R}e(\tilde{\mathcal{H}}\tilde{\mathcal{E}}^*)}$$

### New information on GPDs.

e.g. if  $\tilde{E}$  is well modelized by pion pole,  $\tilde{\mathcal{E}}$  is real  $\rightarrow A_{UT} \sim \tilde{H}(x, \xi = x, t)$ 

### NLO analysis not done

At LO, space - and timelike amplitudes are related

$$M^{0\lambda',\lambda}(\pi^- p \to \gamma^* n) = \left[M^{\lambda',0\lambda}(\gamma^* p \to \pi^+ n)\right]^*$$

At higher orders, significant differences expected

 $\rightarrow$  critical check of the universality of GPDs and of factorization.

### Status of spacelike $\gamma^*(Q)p \to \pi N$



**Compass Opportunity** 



Measure lepton pair momentum; deduce missing mass<sup>2</sup> =  $\overline{M}^2$ .

Select small  $\bar{M}^2 \approx M_p^2$ . ((or detect final proton with recoil detector?)

Small  $\xi$  : lepton pair forward.

### How to factorize backward leptoproduction $\gamma^*N \rightarrow N'\pi$

BP, L Szymanowski, PRD71 and PLB622



at large 
$$q^2$$
, small  $u = (p_1 - p_\pi)^2$ , fixed  $\xi = \frac{p_{N'}^+ - p_\pi^+}{p_{N'}^+ + p_\pi^+}$ 

 $\rightarrow$  factorize timelike versions of backward  $\gamma^* N \rightarrow N' \pi$ 

 $\pi N \to N' \gamma^*(Q')$ 





at large  $Q'^2$ , small  $u = (p_{N'} - p_{\pi})^2$ ,

fixed  $\xi$ 

N



Interpretation of the  $(\pi \rightarrow N)or(N \rightarrow \pi)$  TDAs

Develop proton wave function as (schematically)  $|qqq > + |qqq\pi > + ...$ |qqq > is described by proton DA :  $\langle 0 | \epsilon^{ijk} u^i_{\alpha}(z_1 n) u^j_{\beta}(z_2 n) d^k_{\gamma}(z_3 n) | p(p,s) \rangle \Big|_{z^+=0, z_T=0}$ 

Define matrix elements sensitive to  $|qqq \ \pi > part$ : the TDAs

$$\left\langle \pi(p') \right| \epsilon^{ijk} u^i_{\alpha}(z_1 n) u^j_{\beta}(z_2 n) d^k_{\gamma}(z_3 n) \left| p(p,s) \right\rangle \Big|_{z^+=0, z_T=0}$$

light cone matrix elements of operators obeying usual RG evolution equations

 $\Rightarrow$  The  $\pi \rightarrow N$  TDAs provides information on the next to minimal Fock state in the baryon

$$p \rightarrow p' = p \rightarrow p' \times \left[ p' \rightarrow p' \right]^{*}$$

 $Proton = |u \ d \ d \ \pi^+ >$  with small transverse separation for the quark triplet

Impact parameter interpretation

• As for GPDs Fourier transform  $\Delta_T \rightarrow b_T$ 

$$F(x_i, \xi, u = \Delta^2) \to \tilde{F}(x_i, \xi, b_T)$$

 $\rightarrow$  Transverse picture of pion cloud in the proton



if factorization works

### **Define Transition Distribution Amplitudes**

• Dirac decomposition at leading twist :

$$4\langle \pi^{0}(p') | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}) u^{j}_{\beta}(z_{2}) d^{k}_{\gamma}(z_{3}) | p(p,s) \rangle \Big|_{z^{+}=0, z_{T}=0} = \frac{-f_{N}}{2f_{\pi}} \Big[ V^{0}_{1}(\hat{P}C)_{\alpha\beta}(B)_{\gamma} + A^{0}_{1}(\hat{P}\gamma^{5}C)_{\alpha\beta}(\gamma^{5}B)_{\gamma} - 3T^{0}_{1}(P^{\nu}i\sigma_{\mu\nu}C)_{\alpha\beta}(\gamma^{\mu}B)_{\gamma}] + V^{0}_{2}(\hat{P}C)_{\alpha\beta}(\hat{\Delta}_{T}B)_{\gamma} + A^{0}_{2}(\hat{P}\gamma^{5}C)_{\alpha\beta}(\hat{\Delta}_{T}\gamma^{5}B)_{\gamma} + T^{0}_{2}(\Delta^{\mu}_{T}P^{\nu}\sigma_{\mu\nu}C)_{\alpha\beta}(B)_{\gamma} + T^{0}_{3}(P^{\nu}\sigma_{\mu\nu}C)_{\alpha\beta}(\sigma^{\mu\rho}\Delta^{\rho}_{T}B)_{\gamma} + \frac{T^{0}_{4}}{M}(\Delta^{\mu}_{T}P^{\nu}\sigma_{\mu\nu}C)_{\alpha\beta}(\hat{\Delta}_{T}B)_{\gamma}$$

B = nucleon spinor  $V_i(z_i), A_i(z_i), T_i(z_i)$  are the TDAs

- $V_1$  and  $T_1$  dominant . If isospin = 1/2,  $T_1 = f(V_1)$
- Fourier transform each TDA, → momentum fractions representation

$$F(z_i) = \int_{-1+\xi}^{1+\xi} d^3x \delta(\sum x_i - 2\xi) e^{-iPn\sum x_i z_i} F(x_1, x_2, x_3, \xi, t, Q^2)$$

 $F = V_i, A_i, T_i$ 

 $\Rightarrow$  Write the Amplitude  $(\pi N(p_2) \rightarrow N'(p_1)\mu^+\mu^-)$ 

$$\mathcal{M}_{s_{1}s_{2}}^{\lambda} = -i \frac{(4\pi\alpha_{s})^{2}\sqrt{4\pi\alpha_{em}}f_{N}^{2}}{54f_{\pi}Q^{4}} \left[ \underbrace{\bar{u}(p_{2},s_{2})\not(\lambda)\gamma^{5}u(p_{1},s_{1})}_{\mathcal{S}_{s_{1}s_{2}}^{\lambda}} \underbrace{\int_{-1+\xi}^{1+\xi} d^{3}x \int_{0}^{1} d^{3}y \left(2\sum_{\alpha=1}^{7}T_{\alpha} + \sum_{\alpha=8}^{14}T_{\alpha}\right)}_{I} \right] \\ - \underbrace{\varepsilon(\lambda)_{\mu}\Delta_{T,\nu}\bar{u}(p_{2},s_{2})(\sigma^{\mu\nu} + g^{\mu\nu})\gamma^{5}u(p_{1},s_{1})}_{\mathcal{S}_{s_{1}s_{2}}^{\lambda}} \underbrace{\int_{-1+\xi}^{1+\xi} d^{3}x \int_{0}^{1} d^{3}y \left(2\sum_{\alpha=1}^{7}T_{\alpha}' + \sum_{\alpha=8}^{14}T_{\alpha}'\right)}_{I'} \right],$$

= baryon helicity conserving + baryon helicity violating amplitudes

The Hard Amplitude is calculated from 21 Feynman diagrams

Interference of  $\mathcal{S}$  and  $\mathcal{S}' \rightarrow \text{Transverse spin asymmetry}$ 

**Compass Opportunity** 



$$1 < Q^2 < 10 GeV^2$$
, small  $u = (p_\pi - p_{N'})^2$ , fixed  $\xi = rac{p_\pi^+ - p_{N'}^+}{p_{N'}^+ + p_\pi^+}$ 

Measure lepton pair momentum; deduce missing mass<sup>2</sup> =  $\overline{M}^2$ .

Select small  $\bar{M}^2 \approx M_p^2$ .

Small  $u = (p_{target} - q)^2$ : lepton pair almost at rest in lab frame

### Transverse Target spin asymmetry

Recall  $\mathcal{M} = ST_i + S'T'_i$ ; S(S') is Nucleon helicity conserving (violating)

- $\boldsymbol{\nleftrightarrow}$  Comes from Interference of  $\mathcal S$  and  $\mathcal S'$
- $\Rightarrow$  Leading twist (i.e. not  $1/Q^2$ ) in eN and  $\overline{N}N$  reactions
- $\Rightarrow$  zero in  $\pi N$  reaction
- $\Rightarrow$  Proportionnal to  $\mathcal{I}$ m ( $T_i T_j^{'*}$ )

 $\Rightarrow$  absent in a hadronic (nucleon exchange) description

 $\Rightarrow$  i.e. specific to a partonic (TDA) description

 $\rightarrow$  transversally polarized  $\wedge$  in  $KN \rightarrow \wedge \mu^+ \mu^-$ 

**Extending Drell Yan to charmonium case :**  $\pi N \rightarrow N' \psi$ 

 $\Rightarrow \text{Recall } \psi \to \overline{p}p \text{ decay}$ 

the amplitude of which is described with the help of proton (and  $\bar{p}$ ) DAs

 $\Rightarrow$  Replace antiproton DA by  $\pi \rightarrow N$  TDA

 $\xi \approx \frac{M_{\psi}^2}{2s_{\pi N}}$ 



 $\psi$  is isoscalar  $\rightarrow$  Isospin  $\frac{1}{2}$  part of  $\pi \rightarrow N$  TDA selected by hard amplitude

### Tests of the applicability of the TDA framework

The process amplitude Factorizes at large enough  $Q^2$ :

$$\mathcal{M}(Q^2,\xi,t) = \int dx dy \phi(y_i) T_H(x_i, y_i, Q^2) F(x_i,\xi,t)$$

You know that you reach the right domain if you check :

- scaling law for the amplitude :  $\mathcal{M}(Q^2,\xi)\sim rac{lpha_s(Q^2)^2}{Q^4}$  , ( up to log corrections )
- Dominance of transversely polarized virtual photon  $\sigma_T >> \sigma_L$

 $\Rightarrow$  crucial test : Universality of TDAs  $\rightarrow$  this description applies as well to spacelike and timelike reactions

 $\rightarrow$  Backward DEMP  $\gamma^* P \rightarrow P' \pi$  and Backward  $\pi N \rightarrow N' \gamma^*$ Data exist (JLab) for  $Q^2$  up to a few GeV<sup>2</sup>  $\rightarrow$  More to come !

## Conclusions

 $\Rightarrow$  Exclusive limit of Drell Yan reactions with  $\pi$  (*K* and  $\bar{p}$ ?) beams will yield crucial information on GPDs and TDAs!

**GPD** and **TDA** physics explore confinement dynamics in hadrons

- → Recent theoretical progress
- Quadruple distribution representation
- Isospin relations
- -N and  $\Delta$  exchange models



Experimental breakthrough expected from COMPASS :

- first measurements of  $\tilde{H}(x,\xi,t)$ ,  $\tilde{E}(x,\xi,t)$  at small  $\xi$ in spacelike and timelike cases - first measurements of TDA in a timelike regime

### HARD muoPRODUCTION OF EXOTIC HYBRID

IV Anikin, BP, L.Szymanowski, OV Teryaev, S Wallon, Phys. Rev D70 and D71

Factorization framework



→ AIM : measure DA of the hybrid already discovered

(we discussed  $\pi_1(1400) \rightarrow \pi\eta$  specific case; also applicable to  $\pi_1(1600)$ )

## The crucial non perturbative parts

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

### The TWIST 2 DA of the EXOTIC HYBRID

#### Distribution amplitude of exotic hybrid mesons at twist 2

• One may think that to produce  $|q\bar{q}g\rangle$ , the fields  $\Psi$ ,  $\bar{\Psi}$ , A should appear explicitly in the non-local operator  $\mathcal{O}(\Psi, \bar{\Psi}A)$ 



- If one tries to produce  $H = 1^{-+}$  from a local operator, the dominant operator should be  $\bar{\Psi}\gamma^{\mu}G_{\mu\nu}\Psi$  of twist = dimension spin = 5 1 = 4
- It means that there should be a  $1/Q^2$  suppression in the production amplitude of H with respect to usual  $\rho$ -production (which is twist 2)
- But one of the main progress is the understanding of hard exclusive processes in terms of non-local light-cone operators, like the twist 2 operator

$$\bar{\psi}(-z/2)\gamma_{\mu}[-z/2;z/2]\psi(z/2)$$

where [-z/2; z/2] is a Wilson line which thus hides gluonic degrees of freedom: the needed gluon is there, at twist 2. This does not requires to introduce explicitly A!

Feasibility - step 1

Counting rates for H versus  $\rho$  electroproduction: order of magnitude

• Ratio:

$$\frac{d\sigma^{H}(Q^{2}, x_{B}, t)}{d\sigma^{\rho}(Q^{2}, x_{B}, t)} = \left| \frac{f_{H}}{f_{\rho}} \frac{\left(e_{u} \mathcal{H}_{uu}^{-} - e_{d} \mathcal{H}_{dd}^{-}\right) \mathcal{V}^{(H, -)}}{\left(e_{u} \mathcal{H}_{uu}^{+} - e_{d} \mathcal{H}_{dd}^{+}\right) \mathcal{V}^{(\rho, +)}} \right|^{2}$$

• Rough estimate:

• neglect  $\bar{q}$  i.e.  $x \in [0,1]$ 

 $\Rightarrow Im \mathcal{A}_H$  and  $Im \mathcal{A}_{
ho}$  are equal up to the factor  $\mathcal{V}^M$ 

• Neglect the effect of  $Re\mathcal{A}$ 

$$\frac{d\sigma^H(Q^2, x_B, t)}{d\sigma^\rho(Q^2, x_B, t)} \approx \left(\frac{5f_H}{3f_\rho}\right)^2 \approx 0.15$$

### Feasibility - step 2

Counting rates for H versus  $\rho$  electroproduction: more precise study • use standard description of GPDs based on Double Distributions •  $\mu_R^2 = Q^2$  versus BLM scale from NLO (at the level of cross-section)  $\begin{aligned} &\xi = 0.2 & \mu_R^2 = e^{-4.9}Q^2 & \rho & \xi = 0.1 & \mu_R^2 = e^{-4.68}Q^2 \\ &\text{(or } x_B \approx 0.33) & \mu_R^2 = e^{-5.13}Q^2 & H & \text{(or } x_B \approx 0.18) & \mu_R^2 = e^{-5.0}Q^2 \end{aligned}$ ρ H $\rho^{0}$  - meson,  $\mu^{2}_{\ B} = e^{-4.9}Q^{2}$  $\rho^0$  - meson,  $x_n = 0.18$  $\rho^0$  - meson (M.V. et al) 10<sup>4</sup>  $\rho^{0}$  - meson,  $x_{p} = 0.33$ 10<sup>4</sup> -  $H^0$  - meson,  $\mu^2_{\mu} = e^{-5.13}Q^2$ do/dt ( t=t\_{min}) (nb/GeV<sup>2</sup>)  $H^{0}$  - meson,  $x_{n} = 0.18$ 10<sup>3</sup>  $d\sigma/dt$  (  $t=t_{min}$ )  $(nb/GeV^2)$  $H^0$  - meson,  $x_p = 0.33$ 10<sup>3</sup> 10<sup>2</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>1</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>-1</sup> 10<sup>-1</sup> 10 10 10  $Q^2$  (GeV<sup>2</sup>)  $Q^2 (GeV^2)$  $\mu_R^2 = \mu_F^2 = Q^2$  $\mu_B^2 = \mu_F^2 = \mu_{BLM}^2$   $x_B \approx 0.33$ 

### An asymmetry to mimic phase shift analysis

#### Angular asymmetry to unravel the hybrid meson

- $\pi_1$  has rather small amplitude with respect to the  $a_2$  background
- Asymmetry sensitive to their interference:



### PHOTOPRODUCTION OF DRELL YAN PAIRS

 $\gamma N - > l^+ l^- X$ 



**Bethe - Heitler process** 

**Drell Yan process** 

- Quasi real photon beam
- Transversely polarized target
- → A difficult but rewarding experiment

MOTIVATION

Transverse spin structure of nucleon is very badly known!

Even at the usual (integrated) parton distribution level : interesting but indirect knowledge of  $\Delta_T q(x) = h_1^q(x)$ 

**Basic reason** transversity distribution is **CHIRAL ODD** 

An observable quantity contains an even number of chiral-odd objects

 $\Rightarrow$  Drell Yan double polarized cross section  $h_1^q(x_1)h_1^{\overline{q}}(x_2) \rightarrow PAX$ 

✓ Use another chiral-odd object : fragmentation, TMD ...



- Leading Twist Photon Distribution Amplitude and
- Transversely polarized Vector Meson Distribution Amplitude

are CHIRAL ODD

**Recall Distribution Amplitude = hadron light cone wave function** 

$$\int dx^{-} e^{-iz(P,x)} \left\langle 0 | \bar{q}_{\alpha}(0) q_{\beta}(x) | H(P) \right\rangle \Big|_{x^{+}=0, x_{T}=0}$$

(  $\rightarrow$  Fourier Transform  $\int dk^- d \vec{k}_T$ )

The photon Distribution Amplitude

# Non-triviality of the QCD vacuum $\longrightarrow \langle \bar{q}q \rangle \neq 0$ Magnetic susceptibility $\chi \neq 0$

Photon couples to quarks through *em* coupling and through a twist 2 photon distribution amplitude (DA)  $\phi_{\gamma}(u)$ 

$$\langle 0|\bar{q}(0)\sigma_{\alpha\beta}q(x)|\gamma^{(\lambda)}(k)\rangle = i e_q \chi \langle \bar{q}q \rangle \left(\epsilon_{\alpha}^{(\lambda)}k_{\beta} - \epsilon_{\beta}^{(\lambda)}k_{\alpha}\right) \int_{0}^{1} dz \, e^{-iz(kx)} \phi_{\gamma}(z) \,,$$

 $\Rightarrow$  normalization :  $\int dz \, \phi_{\gamma}(z) = 1$ ,

 $\Rightarrow$  z = momentum light-cone fraction carried by the quark. Here the photon is real; not much change if slightly virtual. How to access the transversity PDF

Consider 
$$\gamma N -> l^+ l^- X$$



**Kinematics** 

## $\gamma(k)q(xr) \rightarrow l(p)l(p')q(q')$

$$p + p' = q = \alpha k + \frac{Q^2 + Q_T^2}{\alpha s} r + Q_\perp$$
$$q' = \bar{\alpha} k + \frac{Q_T^2}{\bar{\alpha} s} r - Q_\perp$$
$$p = \gamma \alpha k + \frac{(\gamma Q_T + l_T)^2}{\gamma \alpha s} r + \gamma Q_\perp + l_\perp$$
$$p' = \bar{\gamma} \alpha k + \frac{(\bar{\gamma} Q_T - l_T)^2}{\bar{\gamma} \alpha s} r + \bar{\gamma} Q_\perp - l_\perp$$
$$x = \frac{\bar{\alpha} Q^2 + Q_T^2}{\alpha \bar{\alpha} s} \qquad Q^2 = \frac{l_T^2}{\gamma \bar{\gamma}}$$



**Interference effects** 

Remember BH-DVCS interference BP, L.Szymanowski, Phys. Rev. Lett. 103, 072002



⇒ Chiral-oddity of photon DA → Interference builds a proton transversity dependent contribution ⇒ Charge conjugation properties :  $\frac{d\Delta_T \sigma(l^-) - d\Delta_T \sigma(l^+)}{d^4 Q \, d\Omega} = \frac{d\sigma_{\phi BH}}{d^4 Q \, d\Omega}$ 

Crucial point : CHIRAL-ODD amplitude has an absorptive part :

**Amplitude** 
$$\mathcal{A}_{\Phi} \sim \int_{0}^{1} du \frac{\phi_{\gamma}(u)}{u - \frac{Q^{2}\alpha}{Q^{2} + Q^{2}} - i\epsilon} = PV \int_{0}^{1} du \frac{\phi_{\gamma}(u)}{u - \frac{Q^{2}\alpha}{Q^{2} + Q^{2}}} + i\pi\phi_{\gamma}(\frac{Q^{2}\alpha}{Q^{2} + Q^{2}})$$

### **Cross section difference**

$$d\bar{\sigma}_{\phi BH} = \frac{(4\pi\alpha_{em})^3}{4s} \frac{C_F 4\pi\alpha_s}{2N_c} \cdot \frac{\chi\langle\bar{q}q\rangle}{\bar{Q}_{\perp}^2} \int dx \sum_q Q_l^3 Q_q^3 h_1^q(x) 2\mathcal{R}e(\mathcal{I}_{\phi BH}) \, dLIPS$$

$$2\mathcal{R}e(\mathcal{I}_{\phi BH}) = \phi_{\gamma} \left[\frac{\alpha Q^2}{Q^2 + \vec{Q}_{\perp}^2}\right] \frac{32\pi \alpha^2 \bar{\alpha}}{xs(\bar{\alpha}Q^2 + \vec{Q}_{\perp}^2)^2} \cdot (Q^2 + \vec{Q}_{\perp}^2) \left[\epsilon^{rks_T Q_T} A_1 + \epsilon^{rks_T l_T} A_2\right]$$

#### Result : INTERFERENCE DOESN'T VANISH

~ 
$$\chi \phi_{\gamma}(\frac{Q^2 \alpha}{Q^2 + Q_T^2}) \cdot h_1(\frac{\bar{\alpha}Q^2 + Q_T^2}{\alpha \bar{\alpha}s})$$

may be singled out by the lepton azymuthal distribution

 $\Rightarrow$  allows to scan  $h_1(x)$  and  $\Phi_{\gamma}(z)$ 



# THERE IS MUCH PHYSICS TO BE STUDIED WITH COMPASS, BOTH WITH HADRON and MUON BEAMS

### there is EVEN MORE than in the existing PROPOSALS

Thank you for your attention