Hadron structure and spectroscopy with COMPASS
using π and μ beams the unusual way

B. Pire

CPhT, École Polytechnique, CNRS, PALAISEAU, France

$$
\text { April 4-6th,2011 IWHS } 2011 \text { Auteuil, Paris }
$$

based on works with
IV Anikin, M. Diehl, L. Szymanowski, J.P. Lansberg, OV Teryaev, S Wallon

a simplistic outsider view

\Rightarrow Success of π beams : spectroscopy

$$
\text { beautiful } \pi_{1}(1600) \text { discovery }
$$

\Leftrightarrow Success of μ beams : hadronic structure

$$
\Delta G(x) \text { historical measurements, TMDs }
$$

near future : GPDs through DVCS and other exclusive channels

MY PROPOSAL :
\rightleftharpoons use π beams to explore the structure of proton in exclusive processes (= one limit of the Drell Yan program)
\Rightarrow use μ beams to analyze the hybrid meson π_{1} (1600)
($=$ one limit of the DEMP program)

Plan of the talk

\Rightarrow use π beams to explore the structure of proton in exclusive processes (= two limits of Drell Yan)
$\longrightarrow \quad$ Forward exclusive $\pi N \rightarrow \mu^{+} \mu^{-} N^{\prime} \quad$ Accessing GPDs \tilde{E} and \tilde{H}
\longrightarrow Backward exclusive $\pi N \rightarrow \mu^{+} \mu^{-} N^{\prime} \quad$ Accessing $\pi \rightarrow N$ TDAs
\longrightarrow discover the exclusive K factor
\rightleftharpoons use μ beams to analyze the 1^{-+}hybrid meson $\pi_{1}(1600)$
\longrightarrow scrutenize the hybrid DA, namely its $\bar{q} q$ Fock state (sic)
\bullet use quasi real γ beams for Drell Yan pairs on transv. pol. target \longrightarrow scrutenize the γ chiral odd DA and $h_{1}(x)$

Success of factorized description of DVCS/TCS

$\gamma^{*} N \rightarrow \gamma^{*} N^{\prime}$ in terms of Generalized Parton Distributions

$\gamma^{*} N \rightarrow \gamma N^{\prime}$ and $\gamma N \rightarrow \gamma^{*} N^{\prime}$ in terms of the same GPDs, the same LO coeff. function and different NLO contributions

$$
\gamma^{*} N \rightarrow \pi N^{\prime} \text { and } \pi N \rightarrow \gamma^{*} N^{\prime}
$$

Pion beams reveal \tilde{H}, \tilde{E} Generalized Parton distributions

(a)
spacelike

(b)
timelike
(= Exclusive Limit of Drell Yan process)

COMPASS with μ beams
$\Longleftrightarrow \quad$ COMPASS with π beams

Exclusive lepton pair production in πN scattering

$$
\pi^{-} p \rightarrow \gamma^{*} n \rightarrow \mu^{+} \mu^{-} n
$$

(b)

$$
\begin{gathered}
\frac{d \sigma}{d Q^{\prime 2} d t d(\cos \theta) d \varphi}=\frac{\alpha_{\mathrm{em}}}{256 \pi^{3}} \frac{\tau^{2}}{Q^{\prime 6}} \sum_{\lambda^{\prime}, \lambda}\left|M^{0 \lambda^{\prime}, \lambda}\right|^{2} \sin ^{2} \theta \\
M^{0 \lambda^{\prime}, \lambda}\left(\pi^{-} p \rightarrow \gamma^{*} n\right)=-i e \frac{4 \pi}{3} \frac{f_{5}}{Q^{\prime}} \frac{1}{(p+p)^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{+} \gamma_{5} \tilde{\mathcal{G}}^{d u}(\eta, t)+\gamma_{5} \frac{\left(p^{\prime}-p\right)^{+}}{2 M} \tilde{\mathcal{E}}^{d u}(\eta, t)\right] u(p, \lambda)
\end{gathered}
$$

$\tilde{\mathcal{H}}^{d u}(\eta, t)=\frac{8 \alpha_{S}}{3} \int_{-1}^{1} d z \frac{\phi_{\pi}(z)}{1-z^{2}} \int_{-1}^{1} d x\left[\frac{e_{d}}{-\eta-x-i \epsilon}-\frac{e_{u}}{-\eta+x-i \epsilon}\right]\left[\tilde{H}^{d}(x, \eta, t)-\tilde{H}^{u}(x, \eta, t)\right]$

\tilde{H} and \tilde{E} GPDs

$\Rightarrow \widetilde{H}(x, \xi=0, t=0)=\Delta q(x)$
$\bullet \tilde{E}$ unknown : Pion pole dominance often assumed

(a)

(b)
$\diamond t$-dependence \rightarrow proton femtophotography

Lepton angular distribution

Dominant Amplitude : Iongitudinal γ^{*}

$$
\frac{d \sigma}{d Q^{\prime 2} d t d(\cos \theta) d \varphi}=\frac{\alpha_{\mathrm{em}}}{256 \pi^{3}} \frac{\tau^{2}}{Q^{\prime 6}} \Sigma_{\lambda^{\prime}, \lambda}\left|M^{0 \lambda^{\prime}, \lambda}\right|^{2} \sin ^{2} \theta
$$

Crucial Test of the validity of the twist expansion
if σ_{T} not small, extract GPDs from σ_{L} only!

LO Estimates

$$
Q^{\prime 2}=5 G e V^{2} \quad \tau=0.2
$$

(a)

(b)

$($ dashed $)=|\widetilde{\mathcal{H}}|^{2} ;($ dash-dotted $)=\operatorname{Re}\left(\tilde{\mathcal{H}}^{*} \tilde{\mathcal{E}}\right) ;($ dotted $)=|\widetilde{\mathcal{E}}|^{2}$.

Target Transverse Spin asymmetry

At the twist 2 level : $\frac{d^{\uparrow} \sigma-d^{\downarrow} \sigma}{d^{\uparrow} \sigma+d^{\downarrow} \sigma}=A_{\mathrm{UT}}^{\sin \left(\phi-\phi_{S}\right)} \sin \left(\phi-\phi_{S}\right)+$ other harmonics

$$
A_{U T}=\frac{-2 \sqrt{\frac{t-t_{\min }}{t_{\min }}} \eta^{2} \operatorname{Im}\left(\tilde{\mathcal{H}} \tilde{\mathcal{E}}^{*}\right)}{\left(1-\eta^{2}\right)|\tilde{\mathcal{H}}|^{2}-\frac{t}{4 M^{2}}|\eta \tilde{\mathcal{E}}|^{2}-2 \eta^{2} \operatorname{Re} e\left(\tilde{\mathcal{H} \mathcal{E}} \tilde{\mathcal{E}}^{*}\right)}
$$

\Rightarrow New information on GPDs.
e.g. if \tilde{E} is well modelized by pion pole, $\tilde{\mathcal{E}}$ is real $\rightarrow A_{U T} \sim \tilde{H}(x, \xi=x, t)$

NLO analysis not done

At LO, space - and timelike amplitudes are related

$$
M^{0 \lambda^{\prime}, \lambda}\left(\pi^{-} p \rightarrow \gamma^{*} n\right)=\left[M^{\lambda^{\prime}, 0 \lambda}\left(\gamma^{*} p \rightarrow \pi^{+} n\right)\right]^{*}
$$

At higher orders, significant differences expected
\rightarrow critical check of the universality of GPDs and of factorization.

Status of spacelike $\gamma^{*}(Q) p \rightarrow \pi N$

Data from HERMES :

$\sigma_{T}+\epsilon \sigma_{L} \quad \sigma_{T} \mathbf{v S} \sigma_{L} ?$
(also data from JLab)

2 contradictory phenom. analysis π-exchange with exp FF ;
S. Goloskokov and P.Kroll, EPJ, C65

QCD with $\alpha_{S}=.8$
C. Bechler, D. Muller, ArXiv 0906.2571

Compass Opportunity

Sufficient rates (O ($1-10 /$ hour)

Transverse spin asymmetry

$$
1<q^{\prime 2}<10 \mathrm{GeV}^{2}, \quad \text { small } t=\left(q-q^{\prime}\right)^{2}, \quad \text { fixed } \xi=\frac{p_{N}^{+}-p_{N^{\prime}}^{+}}{p_{N^{\prime}}^{+}+p_{N}^{+}}
$$

Measure lepton pair momentum ; deduce missing mass ${ }^{2}=\bar{M}^{2}$.
Select small $\bar{M}^{2} \approx M_{p}^{2}$. ((or detect final proton with recoil detector?)
Small ξ : lepton pair forward.

How to factorize backward leptoproduction $\gamma^{*} N \rightarrow N^{\prime} \pi$

at large q^{2}, \quad small $u=\left(p_{1}-p_{\pi}\right)^{2}, \quad$ fixed $\xi=\frac{p_{N^{\prime}}^{+}-p_{\pi}^{+}}{p_{N^{\prime}}^{+}+p_{\pi}^{+}}$
\rightarrow factorize timelike versions of backward $\gamma^{*} N \rightarrow N^{\prime} \pi$

$$
\pi N \rightarrow N^{\prime} \gamma^{*}\left(Q^{\prime}\right)
$$

at large $Q^{\prime 2}, \quad$ small $u=\left(p_{N^{\prime}}-p_{\pi}\right)^{2}, \quad$ fixed ξ
$K^{-} N \rightarrow \wedge \gamma^{*}\left(Q^{\prime}\right)$

$\bar{N} N \rightarrow \pi \gamma^{*}$

Interpretation of the $(\pi \rightarrow N) \operatorname{or}(N \rightarrow \pi)$ TDAs

Develop proton wave function as (schematically) $|q q q>+| q q q \pi>+\ldots$ $\mid q q q>$ is described by proton DA : $\left.\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1} n\right) u_{\beta}^{j}\left(z_{2} n\right) d_{\gamma}^{k}\left(z_{3} n\right)|p(p, s)\rangle\right|_{z^{+}=0, z_{T}=0}$

Define matrix elements sensitive to $\mid q q q \pi>$ part : the TDAs

$$
\left.\left\langle\pi\left(p^{\prime}\right)\right| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1} n\right) u_{\beta}^{j}\left(z_{2} n\right) d_{\gamma}^{k}\left(z_{3} n\right)|p(p, s)\rangle\right|_{z^{+}=0, z_{T}=0}
$$

light cone matrix elements of operators obeying usual RG evolution equations
\Rightarrow The $\pi \rightarrow N$ TDAs provides information on the next to minimal Fock state in the baryon

Proton $=\mid u d d \pi^{+}>$with small transverse separation for the quark triplet

Impact parameter interpretation

- As for GPDs Fourier transform $\Delta_{T} \rightarrow b_{T}$

$$
F\left(x_{i}, \xi, u=\Delta^{2}\right) \rightarrow \tilde{F}\left(x_{i}, \xi, b_{T}\right)
$$

\rightarrow Transverse picture of pion cloud in the proton

if factorization works

Define Transition Distribution Amplitudes

- Dirac decomposition at leading twist :

$$
\begin{aligned}
& \left.4\left\langle\pi^{0}\left(p^{\prime}\right)\right| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|p(p, s)\rangle\right|_{z+}=0, z_{T}=0 \\
& \frac{-f_{N}}{2 f_{\pi}}\left[V_{1}^{0}(\widehat{P} C)_{\alpha \beta}(B)_{\gamma}+A_{1}^{0}\left(\widehat{P} \gamma^{5} C\right)_{\alpha \beta}\left(\gamma^{5} B\right)_{\gamma}-3 T_{1}^{0}\left(P^{\nu} i \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\gamma^{\mu} B\right)_{\gamma}\right]+ \\
& V_{2}^{0}(\hat{P} C)_{\alpha \beta}\left(\widehat{\Delta}_{T} B\right)_{\gamma}+A_{2}^{0}\left(\hat{P} \gamma^{5} C\right)_{\alpha \beta}\left(\widehat{\Delta}_{T} \gamma^{5} B\right)_{\gamma}+T_{2}^{0}\left(\Delta_{T}^{\mu} P^{\nu} \sigma_{\mu \nu} C\right)_{\alpha \beta}(B)_{\gamma} \\
& +T_{3}^{0}\left(P^{\nu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\sigma^{\mu \rho} \Delta_{T}^{\rho} B\right)_{\gamma}+\frac{T_{4}^{0}}{M}\left(\Delta_{T}^{\mu} P^{\nu} \sigma_{\mu \nu} C\right)_{\alpha \beta}\left(\widehat{\Delta}_{T} B\right)_{\gamma} \\
& B=\text { nucleon spinor } \quad V_{i}\left(z_{i}\right), A_{i}\left(z_{i}\right), T_{i}\left(z_{i}\right) \text { are the TDAs }
\end{aligned}
$$

V_{1} and T_{1} dominant. If isospin $=\mathbf{1} / \mathbf{2}, T_{1}=f\left(V_{1}\right)$

- Fourier transform each TDA, \rightarrow momentum fractions representation

$$
\begin{gathered}
F\left(z_{i}\right)=\int_{-1+\xi}^{1+\xi} d^{3} x \delta\left(\sum x_{i}-2 \xi\right) e^{-i P n \Sigma x_{i} z_{i}} F\left(x_{1}, x_{2}, x_{3}, \xi, t, Q^{2}\right) \\
F=V_{i}, A_{i}, T_{i}
\end{gathered}
$$

\Rightarrow Write the Amplitude $\left(\pi N\left(p_{2}\right) \rightarrow N^{\prime}\left(p_{1}\right) \mu^{+} \mu^{-}\right)$

$$
\begin{aligned}
\mathcal{M}_{s_{1} s_{2}}^{\lambda}= & -i \frac{\left(4 \pi \alpha_{s}\right)^{2} \sqrt{4 \pi \alpha_{\mathrm{em}}} f_{N}^{2}}{54 f_{\pi} Q^{4}}[\underbrace{\bar{u}\left(p_{2}, s_{2}\right) \notin(\lambda) \gamma^{5} u\left(p_{1}, s_{1}\right)}_{\mathcal{S}_{s_{1} s_{2}}^{\prime}} \underbrace{\int_{-1+\xi}^{1+\xi} d^{3} x \int_{0}^{1} d^{3} y\left(2 \sum_{\alpha=1}^{7} T_{\alpha}+\sum_{\alpha=8}^{14} T_{\alpha}\right)}_{\mathcal{S}_{s_{1} s_{2}}^{\prime}} \\
& -\underbrace{\varepsilon(\lambda)_{\mu} \Delta_{T, \nu} \bar{u}\left(p_{2}, s_{2}\right)\left(\sigma^{\mu \nu}+g^{\mu \nu}\right) \gamma^{5} u\left(p_{1}, s_{1}\right)}_{I^{\prime}} \underbrace{\int_{-1+\xi}^{1+\xi} d^{3} x \int_{0}^{1} d^{3} y\left(2 \sum_{\alpha=1}^{7} T_{\alpha}^{\prime}+\sum_{\alpha=8}^{14} T_{\alpha}^{\prime}\right)}]
\end{aligned}
$$

$=$ baryon helicity conserving + baryon helicity violating amplitudes
\rightarrow The Hard Amplitude is calculated from 21 Feynman diagrams
Interference of \mathcal{S} and $\mathcal{S}^{\prime} \rightarrow$ Transverse spin asymmetry

Compass Opportunity

also with Kaon beam

$$
1<Q^{2}<10 \mathrm{GeV}^{2}, \quad \text { small } u=\left(p_{\pi}-p_{N^{\prime}}\right)^{2}, \quad \text { fixed } \xi=\frac{p_{\pi}^{+}-p_{N^{\prime}}^{+}}{p_{N^{\prime}}^{+}+p_{\pi}^{+}}
$$

Measure lepton pair momentum ; deduce missing mass ${ }^{2}=\bar{M}^{2}$.
Select small $\bar{M}^{2} \approx M_{p}^{2}$.
Small $u=\left(p_{\text {target }}-q\right)^{2}$: lepton pair almost at rest in lab frame

Transverse Target spin asymmetry

Recall $\mathcal{M}=\mathcal{S} T_{i}+\mathcal{S}^{\prime} T_{i}^{\prime} ; \quad \mathcal{S}\left(\mathcal{S}^{\prime}\right)$ is Nucleon helicity conserving (violating)
\rightleftharpoons Comes from Interference of \mathcal{S} and \mathcal{S}^{\prime}
\triangleleft Leading twist (i.e. not $1 / Q^{2}$) in $e N$ and $\bar{N} N$ reactions
\diamond zero in πN reaction
\Rightarrow Proportionnal to $\operatorname{Im}\left(T_{i} T_{j}^{\prime *}\right)$
\Rightarrow absent in a hadronic (nucleon exchange) description
\Rightarrow i.e. specific to a partonic (TDA) description
\rightarrow transversally polarized \wedge in $K N \rightarrow \wedge \mu^{+} \mu^{-}$

Extending Drell Yan to charmonium case : $\pi N \rightarrow N^{\prime} \psi$

\Rightarrow Recall $\psi \rightarrow \bar{p} p$ decay

the amplitude of which is described with the help of proton (and \bar{p}) DAs
\Rightarrow Replace antiproton DA by $\pi \rightarrow N$ TDA $\quad \xi \approx \frac{M_{\psi}^{2}}{2 s_{\pi N}}$

ψ is isoscalar \rightarrow Isospin $\frac{1}{2}$ part of $\pi \rightarrow N$ TDA selected by hard amplitude

Tests of the applicability of the TDA framework

The process amplitude Factorizes at large enough Q^{2} :

$$
\mathcal{M}\left(Q^{2}, \xi, t\right)=\int d x d y \phi\left(y_{i}\right) T_{H}\left(x_{i}, y_{i}, Q^{2}\right) F\left(x_{i}, \xi, t\right)
$$

You know that you reach the right domain if you check :

- scaling law for the amplitude : $\mathcal{M}\left(Q^{2}, \xi\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)^{2}}{Q^{4}}$, (up to log corrections)
- Dominance of transversely polarized virtual photon $\sigma_{T} \gg \sigma_{L}$
\leadsto crucial test : Universality of TDAs \rightarrow this description applies as well to spacelike and timelike reactions
\rightarrow Backward DEMP $\gamma^{*} P \rightarrow P^{\prime} \pi$ and Backward $\pi N \rightarrow N^{\prime} \gamma^{*}$
Data exist (JLab) for Q^{2} up to a few $\mathrm{GeV}^{2} \longrightarrow$ More to come!

Conclusions

\Rightarrow Exclusive limit of Drell Yan reactions with π (K and \bar{p} ?) beams will yield crucial information on GPDs and TDAs!

GPD and TDA physics explore confinement dynamics in hadrons
\Rightarrow Recent theoretical progress

\rightarrow Experimental breakthrough expected from COMPASS :

- first measurements of $\tilde{H}(x, \xi, t), \tilde{E}(x, \xi, t)$ at small ξ in spacelike and timelike cases
- first measurements of TDA in a timelike regime

HARD muoPRODUCTION OF EXOTIC HYBRID

IV Anikin, BP, L.Szymanowski, OV Teryaev, S Wallon, Phys. Rev D70 and D71
Factorization framework

\leadsto AIM : measure DA of the hybrid already discovered (we discussed $\pi_{1}(1400) \rightarrow \pi \eta$ specific case ; also applicable to $\pi_{1}(1600)$)

The crucial non perturbative parts

The TWIST 2 DA of the EXOTIC HYBRID

Distribution amplitude of exotic hybrid mesons at twist 2

- One may think that to produce $|q \bar{q} g\rangle$, the fields $\Psi, \bar{\Psi}, A$ should appear explicitely in the non-local operator $\mathcal{O}(\Psi, \bar{\Psi} A)$

- If one tries to produce $H=1^{-+}$from a local operator, the dominant operator should be $\bar{\Psi} \gamma^{\mu} G_{\mu \nu} \Psi$ of twist $=$ dimension - spin $=5-1=4$
- It means that there should be a $1 / Q^{2}$ suppression in the production amplitude of H with respect to usual ρ-production (which is twist 2)
- But one of the main progress is the understanding of hard exclusive processes in terms of non-local light-cone operators, like the twist 2 operator

$$
\bar{\psi}(-z / 2) \gamma_{\mu}[-z / 2 ; z / 2] \psi(z / 2)
$$

where $[-z / 2 ; z / 2]$ is a Wilson line which thus hides gluonic degrees of freedom: the needed gluon is there, at twist 2. This does not requires to introduce explicitely A !

Feasibility - step 1

Counting rates for H versus ρ electroproduction: order of magnitude

- Ratio:

$$
\frac{d \sigma^{H}\left(Q^{2}, x_{B}, t\right)}{d \sigma^{\rho}\left(Q^{2}, x_{B}, t\right)}=\left|\frac{f_{H}}{f_{\rho}} \frac{\left(e_{u} \mathcal{H}_{u u}^{-}-e_{d} \mathcal{H}_{d d}^{-}\right) \mathcal{V}^{(H,-)}}{\left(e_{u} \mathcal{H}_{u u}^{+}-e_{d} \mathcal{H}_{d d}^{+}\right) \mathcal{V}^{(\rho,+)}}\right|^{2}
$$

- Rough estimate:
- neglect \bar{q} i.e. $x \in[0,1]$
$\Rightarrow \operatorname{Im} \mathcal{A}_{H}$ and $\operatorname{Im} \mathcal{A}_{\rho}$ are equal up to the factor \mathcal{V}^{M}
- Neglect the effect of $\operatorname{Re} \mathcal{A}$

$$
\frac{d \sigma^{H}\left(Q^{2}, x_{B}, t\right)}{d \sigma^{\rho}\left(Q^{2}, x_{B}, t\right)} \approx\left(\frac{5 f_{H}}{3 f_{\rho}}\right)^{2} \approx 0.15
$$

Feasibility - step 2

Counting rates for H versus ρ electroproduction: more precise study

- use standard description of GPDs based on Double Distributions
- $\mu_{R}^{2}=Q^{2}$ versus BLM scale from NLO (at the level of cross-section)
$\xi=0.2$
$\mu_{R}^{2}=e^{-4.9} Q^{2} \quad \rho$
$\xi=0.1$
$\mu_{R}^{2}=e^{-4.68} Q^{2} \quad \rho$
(or $x_{B} \approx 0.33$)
$\mu_{R}^{2}=e^{-5.13} Q^{2} \quad H$
(or $x_{B} \approx 0.18$)
$\mu_{R}^{2}=e^{-5.0} Q^{2} \quad H$

$$
{ }_{I} \mu_{R}^{2}=\mu_{F}^{2}=Q^{2}
$$

$-\rho^{0}-$ meson, $\mu_{R}^{2}=e^{-4.9} Q^{2}$
$-\cdots \rho^{0}-$ meson $(M . V$. et al $)$
$---H^{0}-$ meson, $\mu_{R}^{2}=e^{-5.13} Q^{2}$

$$
\mu_{R}^{2}=\mu_{F}^{2}=\mu_{B L M}^{2} \quad x_{B} \approx 0.33
$$

An asymmetry to mimic phase shift analysis

Angular asymmetry to unravel the hybrid meson

- π_{1} has rather small amplitude with respect to the a_{2} background
- Asymmetry sensitive to their interference:

$$
\begin{aligned}
A\left(Q^{2}, y_{l}, \hat{t}, m_{\pi \eta}\right) & = \\
\begin{aligned}
\text { Angular Asymmetry }
\end{aligned} & \frac{\int \cos \theta_{c m} d \sigma^{\pi^{0} \eta}\left(Q^{2}, y_{l}, \hat{t}, m_{\pi \eta}, \cos \theta_{c m}\right)}{\int d \sigma^{\pi^{0} \eta}\left(Q^{2}, y_{l}, \hat{t}, m_{\pi \eta}, \cos \theta_{c m}\right)} \\
& =\frac{\frac{8}{15} \mathcal{R} e\left[B_{11}\left(m_{\pi \eta}^{2}\right) B_{12}{ }^{*}\left(m_{\pi \eta}^{2}\right)\right]}{\frac{2}{3}\left|B_{11}\left(m_{\pi \eta}^{2}\right)\right|^{2}+\frac{2}{5}\left|B_{12}\left(m_{\pi \eta}^{2}\right)\right|^{2}}
\end{aligned}
$$

PHOTOPRODUCTION OF DRELL YAN PAIRS

$$
\gamma N->l^{+} l^{-} X
$$

(a)

Drell Yan process
\Rightarrow Quasi real photon beam
\approx Transversely polarized target
\Rightarrow A difficult but rewarding experiment

MOTIVATION

Transverse spin structure of nucleon is very badly known!

Even at the usual (integrated) parton distribution level : interesting but indirect knowledge of $\Delta_{T} q(x)=h_{1}^{q}(x)$

Basic reason transversity distribution is CHIRAL ODD

An observable quantity contains an even number of chiral-odd objects
\Rightarrow Drell Yan double polarized cross section $h_{1}^{q}\left(x_{1}\right) h_{1}^{\bar{q}}\left(x_{2}\right) \rightarrow$ PAX
\Rightarrow Use another chiral-odd object : fragmentation, TMD ...

BASIC IDEA

Leading Twist Photon Distribution Amplitude and

Transversely polarized Vector Meson Distribution Amplitude

are CHIRAL ODD

Recall Distribution Amplitude $=$ hadron light cone wave function

$$
\left.\int d x^{-} e^{-i z(P . x)}\langle 0| \bar{q}_{\alpha}(0) q_{\beta}(x)|H(P)\rangle\right|_{x^{+}=0, x_{T}=0}
$$

(\rightarrow Fourier Transform $\int d k^{-} d \vec{k}_{T}$)

The photon Distribution Amplitude

Non-triviality of the QCD vacuum $\longrightarrow\langle\bar{q} q\rangle \neq 0$

Magnetic susceptibility

$$
\chi \neq 0
$$

Photon couples to quarks through em coupling and through a twist 2 photon distribution amplitude (DA) $\phi_{\gamma}(u)$
$\langle 0| \bar{q}(0) \sigma_{\alpha \beta} q(x)\left|\gamma^{(\lambda)}(k)\right\rangle=i e_{q} \chi\langle\bar{q} q\rangle\left(\epsilon_{\alpha}^{(\lambda)} k_{\beta}-\epsilon_{\beta}^{(\lambda)} k_{\alpha}\right) \int_{0}^{1} d z e^{-i z(k x)} \phi_{\gamma}(z)$,
\leadsto normalization : $\int d z \phi_{\gamma}(z)=1$,
$\Rightarrow z=$ momentum light-cone fraction carried by the quark.
Here the photon is real ; not much change if slightly virtual.

How to access the transversity PDF

Consider $\gamma N->l^{+} l^{-} X$

Kinematics

$$
\gamma(k) q(x r) \rightarrow l(p) l\left(p^{\prime}\right) q\left(q^{\prime}\right)
$$

$$
\begin{gathered}
p+p^{\prime}=q=\alpha k+\frac{Q^{2}+\mathbf{Q}_{\mathbf{T}}^{2}}{\alpha s} r+Q_{\perp} \\
q^{\prime}=\bar{\alpha} k+\frac{\mathbf{Q}_{\mathbf{T}}^{2}}{\bar{\alpha} s} r-Q_{\perp} \\
p=\gamma \alpha k+\frac{\left(\gamma \mathbf{Q}_{\mathrm{T}}+\mathrm{l}_{\mathrm{T}}\right)^{2}}{\gamma \alpha s} r+\gamma Q_{\perp}+l_{\perp} \\
p^{\prime}=\bar{\gamma} \alpha k+\frac{\left(\bar{\gamma} \mathbf{Q}_{\bar{T}}-l_{\mathrm{T}}\right)^{2}}{\bar{\gamma} \alpha s} r+\bar{\gamma} Q_{\perp}-l_{\perp} \\
x=\frac{\bar{\alpha} Q^{2}+\mathbf{Q}_{\mathbf{T}}{ }^{2}}{\alpha \bar{\alpha} s} \quad Q^{2}=\frac{\mathbf{l}_{\mathrm{T}}^{2}}{\gamma \bar{\gamma}}
\end{gathered}
$$

Interference effects

Remember BH-DVCS interference

BP, L.Szymanowski, Phys. Rev. Lett. 103, 072002

\leadsto Chiral-oddity of photon DA \longrightarrow Interference builds a proton transversity dependent contribution
\Rightarrow Charge conjugation properties : $\frac{d \Delta_{T} \sigma\left(l^{-}\right)-d \Delta_{T} \sigma\left(l^{+}\right)}{d^{4} Q d \Omega}=\frac{d \sigma_{\phi B H}}{d^{4} Q d \Omega}$
Crucial point : CHIRAL-ODD amplitude has an absorptive part :
Amplitude $\mathcal{A}_{\Phi} \sim \int_{0}^{1} d u \frac{\phi_{\gamma}(u)}{u-\frac{Q^{2} \alpha}{Q^{2}+Q^{2}}-i \epsilon}=P V \int_{0}^{1} d u \frac{\phi_{\gamma}(u)}{u-\frac{Q^{2} \alpha}{Q^{2}+Q^{2}}}+i \pi \phi_{\gamma}\left(\frac{Q^{2} \alpha}{Q^{2}+\mathbf{Q}^{2}}\right)$

Cross section difference

$$
\begin{gathered}
d \bar{\sigma}_{\phi B H}=\frac{\left(4 \pi \alpha_{e m}\right)^{3}}{4 s} \frac{C_{F} 4 \pi \alpha_{s}}{2 N_{c}} \cdot \frac{\chi\langle\bar{q} q\rangle}{\bar{Q}_{\perp}^{2}} \int d x \sum_{q} Q_{l}^{3} Q_{q}^{3} h_{1}^{q}(x) 2 \mathcal{R} e\left(\mathcal{I}_{\phi B H}\right) d L I P S \\
2 \mathcal{R} e\left(\mathcal{I}_{\phi B H}\right)=\phi_{\gamma}\left[\frac{\alpha Q^{2}}{Q^{2}+\widehat{Q}_{\perp}^{2}}\right] \frac{32 \pi \alpha^{2} \bar{\alpha}}{x s\left(\bar{\alpha} Q^{2}+\bar{Q}_{\perp}^{2}\right)^{2}} \cdot\left(Q^{2}+\vec{Q}_{\perp}^{2}\right)\left[\epsilon^{\left.r k s_{T} Q_{T} A_{1}+\epsilon^{r k s_{T} l_{T}} A_{2}\right]}\right.
\end{gathered}
$$

Result : INTERFERENCE DOESN'T VANISH

$$
\sim \chi \phi_{\gamma}\left(\frac{Q^{2} \alpha}{Q^{2}+\mathrm{Q}_{\mathrm{T}}{ }^{2}}\right) \cdot h_{1}\left(\frac{\bar{\alpha} Q^{2}+\mathrm{Q}^{2}}{\alpha \bar{\alpha} s}\right)
$$

\leadsto may be singled out by the lepton azymuthal distribution
\Rightarrow allows to scan $h_{1}(x)$ and $\Phi_{\gamma}(z)$
\rightleftharpoons only nucleon is polarized, i.e. SINGLE SPIN EFFECTS

CONCLUSION

THERE IS MUCH PHYSICS TO BE STUDIED WITH COMPASS, BOTH WITH HADRON and MUON BEAMS

there is EVEN MORE than in the existing PROPOSALS

Thank you for your attention

