Alignment with tracks fitted with a Kalman filter

LHC Alignment Workshop, 25/06/2007

Wouter Hulsbergen (CERN/LBD)

introduction

- good reasons to use same track model in calibration and reconstruction
 - track model and calibration are not independent
 - consistency is more important than correctness!
- practically all modern experiments use a Kalman filter for track fitting
 - one important advantage is efficiency in dealing with multiple scattering
- it has been said that Kalman filter track fit is unsuitable for alignment
 - tracks that come out of the K-filter usually have incomplete covariance matrix
- in this talk, I'll discuss in reasonable detail
 - an alternative formulation of the minimum chisquare formalism for alignment
 - how to make the output of the Kalman filter suitable for alignment
 - how to include vertex and mass constraints
- this is all 'theory': I have no real results to present!

minimum chisquare fit

define a track chisquare as

$$\chi^2 = \sum_{\text{hits i}} \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2$$

where

- $m \rightarrow$ measurement, $\sigma \rightarrow$ measurement error
- x → track parameters, usually 5
- h → measurement model
- we can also write this in a matrix notation

$$\chi^2 = r^T V^{-1} r$$

- $r = m h(x) \rightarrow residual vector$
- − V
 → measurement covariance matrix (usually diagonal)
- the 'least squares estimator' is the value for x that minimizes chisquare

minimum chisquare fit (II)

the condition that the chisquare is minimal wrt 'x' is

$$0 \equiv \frac{\mathrm{d}\chi^2}{\mathrm{d}x} = -2H^T V^{-1} r$$

H=dh(x)/dx

N equations usually non-linear in x

- solution can be obtained by linearizing the measurement model
 - start with some value x⁽⁰⁾, calculate first derivative
 - calculate also second derivative (neglect d²r/dx²)

$$\frac{\mathrm{d}^2 \chi^2}{\mathrm{d} x^2} = 2H^T V^{-1} H$$

NxN matrix

obtain new estimate of parameters with

Newton-Raphson'
$$x^{(1)} = x^{(0)} - \left(\frac{d^2 \chi^2}{dx^2}\right)^{-1} \frac{d\chi^2}{dx}$$

$$Cov(x) = 2\left(\frac{d^2\chi^2}{dx^2}^{(0)}\right)^{-1}$$

• if h(x) is not a linear model (H is not constant): use iterations

chisquare minimization for alignment

- suppose now, that we have
 - a sample of independently reconstructed tracks
 - a set of calibration constants 'alpha' common to the tracks
- we would like to minimize a total chisquare

$$\chi^2 = \sum_{\text{tracks j}} \left(r^T V^{-1} r \right)_j$$

with respect to both alpha and all track parameters

- following procedure outlined on previous slides. two scenarios:
 - 1. minimize for x and alpha simultaneously on large sample of tracks
 - unpractical, because too many parameters
 - 2. minimize every track to x first, then alpha on a large sample of tracks
 - keep track of dependence of x on alpha through total derivative

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} = \frac{\partial}{\partial\alpha} + \frac{\partial x}{\partial\alpha} \frac{\partial}{\partial x}$$

chisquare minimization for alignment

• calculate $dx/d\alpha$ from requirement that track chisquare remains minimal

$$0 = \frac{\mathrm{d}}{\mathrm{d}\alpha} \frac{\partial \chi^2}{\partial x} = \frac{\partial^2 \chi^2}{\partial \alpha \partial x} + \frac{\mathrm{d}x}{\mathrm{d}\alpha} \frac{\partial^2 \chi^2}{\partial x \partial x}$$

$$\boxed{\frac{\mathrm{d}x}{\mathrm{d}\alpha} = -\frac{\partial^2 \chi^2}{\partial \alpha \partial x} \left(\frac{\partial^2 \chi^2}{\partial x \partial x}\right)^{-1}}$$

now calculate 'total derivatives' of chisquare to alpha

$$\frac{\mathrm{d}\chi^2}{\mathrm{d}\alpha} = 2 \sum_{\mathrm{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} \left(V - HCH^T \right) V^{-1} r$$

$$\frac{\mathrm{d}^2 \chi^2}{\mathrm{d}\alpha^2} = 2 \sum_{\text{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} \left(V - HCH^T \right) V^{-1} \frac{\partial r}{\partial \alpha}$$

$$C = Cov(x)$$

- these formulas give the least squares estimator for alpha
- same result as in Blobel and Kleinwort (2002), Bruckman et al (2005), etc.

minimum chisquare condition is 'local'

it seems as if derivative to one parameter depends on each hit on track

$$\frac{\mathrm{d}\chi^2}{\mathrm{d}\alpha} = 2 \sum_{\mathrm{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} \left(V - HCH^T \right) V^{-1} r$$

this matrix correlates derivatives for module 'i' with hits in module 'j'

however, if the track chisquare is at its minimum

$$H^T V^{-1} r = 0 \qquad \qquad \frac{\mathrm{d}\chi^2}{\mathrm{d}\alpha} = 2 \sum_{\mathrm{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} r$$

- hence, the first derivative is 'local': only partial derivatives count
- why is this relevant? if there are other contributions to X^2 , e.g.
 - multiple scattering constraints
 - hits in a reference system
 - vertex constraints

then we do not need to include those in the residual vector 'r'

Including multiple coulomb scattering

- in a global track fit:
 - scattering angles explicitely included in track model
 - chisquare gets extra terms to constrain scattering angle

 $\chi^{2} = \sum_{\text{hits } i} \frac{(m_{i} - h_{i}(x, \theta))^{2}}{V_{ii}} + \sum_{\text{scat.angles } j} \frac{(\hat{\theta_{j}} - \theta_{j})^{2}}{\Theta_{jj}}$

variance of ϑ-hat (function of type and momentum)

- in the Kalman fit, it looks different, but it is essentially the same
- easiest way to propagate into alignment formalism: change the symbols
 - x: track parameters, including multiple scattering angles
 - **m**: measurement vector, including ϑ -hat
 - V: covariance matrix for the measurements, including Θ
 - r: residual vector, including residuals for scattering angles
- master formulas for alignment chisquare minimization do not change

summarizing the formalism

master equations for the derivatives

$$\frac{\mathrm{d}\chi^2}{\mathrm{d}\alpha} = 2 \sum_{\text{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} r$$

covariance matrix for (biased) residuals (usually called R)

$$\frac{\mathrm{d}^2 \chi^2}{\mathrm{d}\alpha^2} = 2 \sum_{\text{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} \left(V - HCH^T \right) V^{-1} \frac{\partial r}{\partial \alpha}$$

- ingredients
 - residuals r
 - measurement covariance matrix V (diagonal)
 - derivatives of residuals to track parameters H
 - track covariance matrix C
 - derivatives of residuals to alignment parameters $\partial \mathbf{r}/\partial \alpha$
- this is **nothing new**, but you might still like this write-up: Bocci and Hulsbergen, ATL-INDET-PUB-2007-009.

track models: 'global' versus 'kalman'

scatt. angles/displacements model used in (ATLAS) 'global' track fit (2 or 4 per 'plane') track parameters at origin (usually 5) model used in usual 'Kalman-filter' track fit X_2 X_1

- these models are not necessarily different: they should represent similar trajectories (otherwise, one of them is probably not optimal)
- these models are also not bound to the fitting method
 - we could write down a K-filter with the global track fit model and vice versa
 - it would just be rather inefficient to do so

track fitting: 'global' versus 'kalman'

global fit method

- covariance matrix of all track parameters calculated
- used for alignment in e.g. MILLIPEDE, Atlas' 'Global Chisquare'

Kalman filter

- track model chosen such that not all track parameter correlations need to be calculated
- global covariance matrix C is incomplete: covariance matrix computed for every state vector x_i but correlations are missing
- problem for application of closed-form alignment procedure

challenge: calculate the missing parts

- hope that it isn't too hard
- hope that it isn't too (CPU) time consuming: matrix C can be very large

calculation of 'global' covariance C in Kalman filter

- math isn't more difficult than K-filter itself, but a bit hard to explain unless you are already familiar with Fruhwirth's notation
 - will still sketch calculation and ingredients
 - since you'll probably get lost anyway, I'll rush through it

strategy

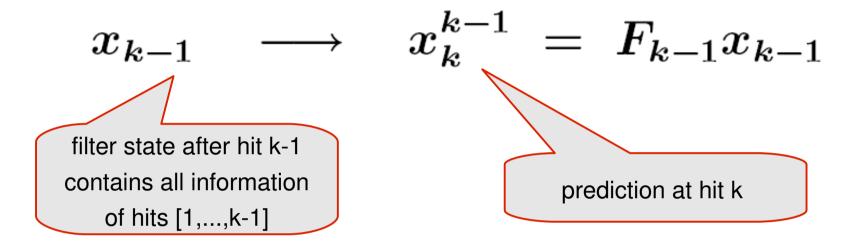
- step 1: covariance matrix of neighbouring states after 'prediction step'
- step 2: covariance matrix of neighbouring states after 'smoother step'
- step 3: extend to non-neighbouring states

$$C = \begin{pmatrix} 0 & 1, 2 & 3 & 3 & 3 & 3 \\ 0 & 1, 2 & 3 & 3 & 3 \\ 0 & 1, 2 & 3 & 3 \\ 0 & 1, 2 & 3 & 3 \\ 0 & 1, 2 & 3 & 0 \end{pmatrix}$$
 • matrix of 5x5 matrices o

- out of standard K-filter

step 1: covariance for 'filtered' state k-1 and 'predicted' state k

kalman filter prediction (for linear models)



cov. matrix for filtered state 'k-1' and prediction state 'k'

$$C \; = \; \left(egin{array}{ccc} C_{k-1} & C_{k-1} F_{k-1}^T \ F_{k-1} C_{k-1} & F_{k-1} C_{k-1} F_{k-1}^T + Q \end{array}
ight)$$

this is trivial, except maybe the bit about the 'noise'

scattering ('noise')

enters here

step 2: covariance of neigbouring smoothed states

- final result of the kalman filter consists of 'smoothed' states
 - state after information of all hits is processed
 - for alignment we need the correlation between smoothed states
 - Fruhwirth's notation for smoothed states: state \mathbf{x}_{k}^{n} , covariance matrix \mathbf{C}_{k}^{n}
- two strategies for 'smoothing'
 - smoothing formalism (see e.g. Fruhwirth, 1989)
 - bi-direction K-filter: runs filters in both directions and 'average'
 though latter is more popular now, we'll use former, but it doesn't matter
- suppose that we have a procedure to obtain the state at node 'k' after adding all remaining hits {k,, n}
 - how do we 'back-propagate' information from {k,...,n} to state k-1?
 - what happens to the covariance for states k-1 and k?

intermezzo: propagation formula

- suppose we have two observables (a,b) with covariance V
- suppose we do something which makes that we know a better

$$a \longrightarrow ilde{a} \qquad V_{aa} \longrightarrow ilde{V}_{aa}$$

we can propagate this knowledge to b using

$$egin{array}{lcl} & ilde{b} & = & b + V_{ab}V_{aa}^{-1}(ilde{a} - a) \ & ilde{V}_{bb} & = & V_{bb} - V_{ba}V_{aa}^{-1}(V_{aa} - ilde{V}_{aa})V_{aa}^{-1}V_{ab} \ & ilde{V}_{ab} & = & ilde{V}_{aa}V_{aa}^{-1}V_{ab} \end{array}$$

- this is just another result of the least squares estimator
- formulas also work when a and b are vectors

step 2: covariance of neighbouring smoothed states (II)

- we apply the propagation formulas from the previous page to state 'k'
 - a = predicted state k, a-tilde = smoothed state k
 - b = filtered state k-1
 - V_aa = C_k^{k-1} --> covariance for predicted state k
 - V_aa-tilde = C_k^{n} --> covariance for smoothed state k
- the result for the covariance matrix is

$$C_{k-1}^n = C_{k-1} \,+\, A_{k-1} \left(C_k^n - C_k^{k-1}
ight) A_{k-1}^T \, egin{array}{c} ext{cov. matrix for} \ ext{state k-1} \ ext{(see e.g. Fruhwirth)} \end{array}$$

$$C_{k-1,k}^n = A_{k-1}C_k^n$$

correlation my notation)

where I used the definition of the *smoother gain matrix* (see Fruhwirth)

$$A_{k-1} = C_{k-1} F_{k-1}^T \left(C_k^{k-1} \right)^{-1}$$

step 3: covariance for all smoothed states

- so, we calculated the correlation between two neighbouring states
 - 1st 'off-diagonal' in the global covariance matrix C
 - how do we calculate the correlation between other states?
- consider states k-2 and k
 - correlation can only occur through state k-1
 - then it takes the following form (not entirely trivial)

$$C_{k-2,k}^{n} = C_{k-2,k-1}^{n} (C_{k-1}^{n})^{-1} C_{k-1,k}^{n}$$

now consider the next diagonal

$$C_{k-3,k}^{n} = C_{k-3,k-2}^{n} \left(C_{k-2}^{n} \right)^{-1} C_{k-2,k-1}^{n} \left(C_{k-1}^{n} \right)^{-1} C_{k-1,k}^{n}$$

looks horrible enough, but we can reuse what we have already calculated

$$C_{k-3,k}^{n} = C_{k-3,k-2}^{n} (C_{k-2}^{n})^{-1} C_{k-2,k}^{n}$$

final result

recursive expressions for all diagonals in the matrix C

$$C_{k-1,l}^n \ = \ A_{k-1}C_{k,l}^n \qquad k \le l$$

- this is one multiplication of two 5x5 matrices for every off-diagonal 5x5 matrix
- requires 'smoother gain matrix' at every node

$$A_{k-1} \; = \; C_{k-1} F_{k-1}^T \left(C_k^{k-1} \right)^{-1} = \; \left(F_{k-1} \right)^{-1} \left(C_k^{k-1} - Q_k \right) \left(C_k^{k-1} \right)^{-1}$$

- to compute this matrix you need to have access to
 - all transport matrices (F)
 - all noise matrices (Q)
 - either the (forward) predicted result or the filtered result
- lucky in LHCb: default track fit keeps all this information with track

implementation for LHCb

- implemented calculation of matrix C in a Gaudi tool
 - it operates on 'fitted' tracks, using information stored in the K-filter nodes
- CPU time consumption
 - calculation not complicated, but CPU intensive
 - LHCb tracks have typically 50 hits
 - (symmetric) matrix C has typically ~ 30000 entries
 - surprisingly enough, time consumption not a big deal
 - O(1 ms) per track
 - relatively little compared to track fit itself
 - thanks to highly optimized matrix algebra (ROOT::Math::SMatrix)
- next step: actually use in LHCb's alignment framework

efficiently dealing with vertex constraints

- vertex and mass constraints are useful for constraining alignment degrees of freedom that are poorly constrained by single tracks
 - e.g. elliptical distortions, 'clocking' effect in central detectors
 - multi-track constraints effectively connect parts of detector that are never traversed simultaneously by single track
- usual way of including such constraints is with dedicated track fits
 - tracks fits that fit two tracks simultaneously, using common parameters for track origin
 - track fits that include a 'point' constraint from a vertex determined with other tracks
- however, if the global covariance matrix of the track parameters is available, we can do these this more efficiently

efficiently dealing with vertex constraints (II)

- assume you have a vertex fit that
 - takes track parameters 'at origin' with covariance as input
 - gives back new track parameters + covariance for all tracks
- using formulas on slide 15, 'propagate' this to other track parameters
 - in global fit: propagate to scattering angles
 - in kalman fit: propagate to all other states along track
- this allows to calculate
 - 'updated' residuals for all tracks
 - full covariance for all residuals on all tracks
- advantage: fast and simple, no dedicated track fits needed
- see also ATL-INDET-PUB-2007-009 (formula's only, no application yet)

conclusions

- calculated complete covariance matrix for K-filter tracks
- assuming that
 - we would like to use the standard K-filter track fit for alignment
 - we care about multiple scattering
 - we care about correlations between residuals (closed-form, a la MILLIPEDE)
 - then it is good to know that this is possible, at least on paper
- even if you do not care about these things, the result is still useful because it can also be used to add vertex constraints to the problem
 - interesting both for 'closed-form' and 'iterative' alignment procedure
 - interesting both with and without multiple scattering on the track

backup slides

Including multiple coulomb scattering (II)

one more look at the first derivative

$$\frac{\mathrm{d}\chi^2}{\mathrm{d}\alpha} = 2 \sum_{\text{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} \left(V - HCH^T \right) V^{-1} r^{-1}$$

residuals for scattering angles are here!

 do we really need to deal with the scattering angles explicitely? not if we use that the track is at minimum chisquare

$$\frac{\mathrm{d}\chi^2}{\mathrm{d}\alpha} = 2 \sum_{\mathrm{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} r$$
because V is diagonal and only 'hits' depend on alpha, only hit residuals remain

• in other words: make sure you use the right formula for the first derivative; otherwise, things become really complicated