Sterile neutrinos from the low energy to the GUT scale

Werner Rodejohann (MPIK, Heidelberg) 14/05/12

Outline

- General aspects and phenomenology
 - What is a sterile neutrino?
 - What is its mass?
 - 3 (4) well motivated scales and their phenomenology
 - * heavy
 - * keV
 - * eV
 - * (TeV)
 - * Special and popular cases:
 - $\cdot \nu MSM$
 - \cdot Mini-Seesaw
- Models for light sterile neutrinos: 3 ways to make them light

LSND/MiniBooNE (talk by Thierry Lasserre)

calibration of Gallium experiments
 (talk by Thierry Lasserre)

reactor anomaly

(talk by Thierry Lasserre)

cosmology
(talk by Yvonne Wong)

supernova 7

Motivation

Light Sterile Neutrinos: A White Paper

K. N. Abazajian^{a, 1} M. A. Acero,² S. K. Agarwalla,³ A. A. Aguilar-Arevalo,² C. H. Albright,^{4,5} S. Antusch,⁶ C. A. Argüelles,⁷ A. B. Balantekin,⁸ G. Barenboim^a,³ V. Barger,⁸ P. Bernardini,⁹ F. Bezrukov,¹⁰ O. E. Bjaelde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,¹⁶ S. J. Brice,⁵ A. D. Bross,⁵ B. Caccianiga,¹⁷ F. Cavanna,^{18,19} E. J. Chun,²⁰ B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴ D. J. Ernst, ³⁵ A. Esmaili, ³⁶ J. J. Evans, ^{37, 38} E. Fernandez-Martinez, ³⁹ E. Figueroa-Feliciano, ²³ B. T. Fleming^a,¹⁸ J. A. Formaggio^a,²³ D. Franco,⁴⁰ J. Gaffiot,²² R. Gandhi,⁴¹ Y. Gao,⁴² G. T. Garvey,³⁴ V. N. Gavrin,⁴³ P. Ghoshal,⁴¹ D. Gibin,⁴⁴ C. Giunti,⁴⁵ S. N. Gninenko,⁴³ V. V. Gorbachev,⁴³ D. S. Gorbunov,⁴³ R. Guenette,¹⁸ A. Guglielmi,⁴⁴ F. Halzen,^{46,8} J. Hamann,¹¹ S. Hannestad,¹¹ W. Haxton,^{47,48} K. M. Heeger,⁸ R. Henning,^{49,50} P. Hernandez,³ P. Huber^b,¹⁶ W. Huelsnitz,^{34,51} A. Ianni,⁵² T. V. Ibragimova,⁴³ Y. Karadzhov,¹⁵ G. Karagiorgi,⁵³ G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp^a,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker,⁵⁹ Th. Lasserre^a,^{22,40} M. Laveder,⁶⁰ A. Letourneau,²² D. Lhuillier,²² Y. F. Li,⁶¹ M. Lindner,⁶² J. M. Link^b,¹⁶ B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,⁶³ J. Lopez-Pavon,⁶⁴ W. C. Louis^a,³⁴ L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{65,66} M. Maltoni,³¹ W. A. Mann,⁶⁷ D. Marfatia,⁶⁸ C. Mariani,^{53,16} V. A. Matveev,^{43,69} N. E. Mavromatos,^{70,39} A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,³⁴ D. Minic,¹⁶ L. Miramonti,¹⁷ D. Mohapatra,¹⁶ R. N. Mohapatra,⁵¹ C. Montanari,⁷⁴ Y. Mori,⁷⁵ Th. A. Mueller,⁷⁶ H. P. Mumm,⁷⁷ V. Muratova,²⁷ A. E. Nelson,⁷⁸ J. S. Nico,⁷⁷ E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzague,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,^{39,52} O. Ruchayskiy,³⁹ P. R. Sala,¹⁷ K. Scholberg,⁸⁸ T. Schwetz^a,⁶² M. H. Shaevitz,⁵³ M. Shaposhnikov,⁸⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang.^{97,98} G. Testera.⁸¹ X. C. Tian.⁹⁹ A. Tonazzo.⁴⁰ C. D. Tunnell.¹⁰⁰ R. G. Van de Water.³⁴ L. Verde,¹⁰¹ E. P. Veretenkin,⁴³ C. Vignoli,⁵² M. Vivier,²² R. B. Vogelaar,¹⁶ M. O. Wascko,⁶³ J. F. Wilkerson,^{49,102} W. Winter,⁹⁷ Y. Y. Y. Wong^a,²⁵ T. T. Yanagida,⁵⁷ O. Yasuda,¹⁰³ M. Yeh,¹⁰⁴ F. Yermia,²⁴ Z. W. Yokley,¹⁶ G. P. Zeller,⁵ L. Zhan,⁶¹ and H. Zhang⁶²

¹University of California, Irvine

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

³Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia

⁴Northern Illinois University

⁵Fermi National Accelerator Laboratory

⁶University of Basel

^aSection editor

^bEditor and corresponding author (pahuber@vt.edu and jmlink@vt.edu)

arXiv:1204.5379v1 [hep-ph] 18 Apr 2012

Remarks

Steriles have a number of consequences:

- oscillations
- astrophysics
- cosmology
- beta decays, neutrinoless double beta decay
- Higgs physics
- . . .

would be extraordinary discovery!

What is a sterile neutrino?

SM contains 3 active neutrinos with isospin $\frac{1}{2}$

$$\left(\begin{array}{c}\nu_e\\e^{-}\end{array}\right)_L, \quad \left(\begin{array}{c}\nu_\mu\\\mu^{-}\end{array}\right)_L, \quad \left(\begin{array}{c}\nu_\tau\\\tau^{-}\end{array}\right)_L$$

their anti-particles (*CP*-partners; $\nu \rightarrow \nu^c$) are also active:

$$\left(\begin{array}{c} e^+ \\ \bar{\nu}_e \end{array}\right)_R, \quad \left(\begin{array}{c} \mu^+ \\ \bar{\nu}_\mu \end{array}\right)_R, \quad \left(\begin{array}{c} \tau^+ \\ \bar{\nu}_\tau \end{array}\right)_R$$

the $(\nu_{e,\mu,\tau})_L$ and $(\bar{\nu}_{e,\mu,\tau})_R$ take part in weak interactions = couple to W, Z

What is a sterile neutrino?

- add a fourth state to the game, but don't give it isospin!
 - \Rightarrow a sterile neutrino u_s
- a sterile neutrino ν_s does NOT take part in weak interactions = does NOT couple to W, Z
- can mix with active neutrinos
- can couple to Higgs
- can couple to BSM physics
- example: N_R with CP-partner N_R^c

we discuss N_R , the <u>right-handed neutrino</u>, and assume that it is Majorana, and assume that no other New Physics is there

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

• SM singlet, not protected by v, hence GUT-scale, or B - L breaking scale, or Planck-scale \Rightarrow naturally large

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

two good ideas for M_R :

- SM singlet, not protected by v, hence GUT-scale, or B L breaking scale, or Planck-scale \Rightarrow naturally large
- if M_R is zero, symmetry of the Lagrangian is enlarged \Rightarrow naturally small

total mass term for active neutrinos and sterile neutrino(s):

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Question: WHAT IS THE SCALE OF M_R ?

answer: we don't know...

```
two good ideas for M_R:
```

- SM singlet, not protected by v, hence GUT-scale, or B L breaking scale, or Planck-scale \Rightarrow naturally large
- if M_R is zero, symmetry of the Lagrangian is enlarged \Rightarrow naturally small

so, what now?

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

special cases:

- $m_D = 0$; pure Majorana case
- $M_R = 0$; pure Dirac case
- $M_R \gg m_D$; seesaw case
- $m_D \gg M_R$; pseudo-Dirac case
- $M_D \sim M_R$; ugly case

The seesaw limit $M_R \gg m_D$

$$n_{\nu} = \frac{m_D^2}{M_R}$$

does this fix everything?

No, multiply m_D with x and M_R with x^2 : leaves m_{ν} invariant

stay in the seesaw limit $M_R \gg m_D$ from now on

Formalism

$$\begin{aligned}
\mathcal{L} &= \frac{1}{2} (\bar{\nu}_L, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix} \\
6 \times 6 \text{ mass matrix diagonalized by} \\
\mathcal{U}_{\nu} &\simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix} \\
\text{with } B &= m_D M_R^{-1} \\
\text{light neutrino mass matrix:} \\
m_{\nu} &= -m_D M_R^{-1} m_D^T = U \operatorname{diag}(m_1, m_2, m_3) U^T \\
\text{heavy neutrino mass matrix:} \\
M_R &= V_R \operatorname{diag}(M_1, M_2, M_3) V_R^T
\end{aligned}$$

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \ \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Formalism

 6×6 mass matrix diagonalized by

$$\mathcal{U}_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix}$$

3 active neutrinos mix with each other through

$$N \equiv U\left(1 - \frac{1}{2}BB^{\dagger}\right)$$
 with $B = m_D M_R^{-1}$

3 active neutrinos mix with sterile neutrinos via

$$\theta_{\alpha i} = (m_D M_R^{-1} V_R)_{\alpha i} = \frac{[m_D V_R^*]_{\alpha i}}{M_i} = \mathcal{O}(\sqrt{m_\nu / M_R})$$

Formalism

Immediate consequences:

• unitarity violation of PMNS matrix of order $(m_D/M_R)^2$

$$\left|\frac{1}{2}BB^{\dagger}\right| < \left(\begin{array}{cccc} 4.0 \times 10^{-3} & 1.2 \times 10^{-5} & 3.2 \times 10^{-3} \\ & & 1.6 \times 10^{-3} & 2.1 \times 10^{-3} \\ & & & 5.3 \times 10^{-3} \end{array}\right)$$

• Lepton flavor violation

 $\operatorname{BR}(\mu \to e\gamma) \propto \left| N_{\mu i}^* N_{ei} f(m_i/m_W) + \theta_{\mu i}^* \theta_{ei} f(M_i/m_W) \right|^2 \lesssim 1.1 \times 10^{-8}$

• neutrinoless double beta decay

$$\sum N_{ei}^2 m_i \lesssim 0.5 \text{ eV}$$
 and $\sum rac{ heta_{ei}^2}{M_i} \lesssim 2 imes 10^{-8} \text{ GeV}$

3 (4) well motivated scales

there are three well-motivated mass values of M_R :

- eV
- keV
- $\gtrsim 10^9~{\rm GeV}$
- (TeV)

The case of very heavy $M_R \ldots$

- \ldots gives correct neutrino masses for $m_D \simeq v$
- ... gives successful thermal leptogenesis
- ... is a generic GUT prediction

this is the scale where one would expect M_R

The case of very heavy $M_R \ldots$

- \ldots gives correct neutrino masses for $m_D \simeq v$
- ... gives successful thermal leptogenesis
- ... is a generic GUT prediction

this is the scale where one would expect M_R

Recall: theorists also expected small neutrino mixing...

Phenomenology of heavy singlets

recall: for small quartic Higgs coupling $\lambda = m_h/(v\sqrt{2})$ is driven to negative values by top Yukawa:

$$\beta_{\lambda} \propto -24 \operatorname{Tr} \left(Y_u^{\dagger} Y_u \right)^2 \Rightarrow m_h \ge f(\Lambda)$$

vacuum stability bound

often overlooked: Dirac Yukawa $\bar{\nu}_L Y_{\nu} N_R$ contribution to λ :

 $\Delta\beta_{\lambda} = -8 \operatorname{Tr} \left(Y_{\nu}^{\dagger} Y_{\nu} \right)^2$

Casas, Di Clemente, Ibarra, Quiros; Miro, Espinosa, Giudice, Isidori, Riotto, Strumia

naively, if M_R goes down, Y_{ν} goes down and effect is negligible

W.R., Zhang

Phenomenology of (high scale) Leptogenesis little

(would expect leptonic CP violation and neutrinoless double beta decay)

But note:

- bread and butter leptogenesis requires $M_1\gtrsim 10^9~{
 m GeV}$
- *resonant* leptogenesis works even at weak scale
- *flavor oscillation* of sterile neutrinos with mass around few GeV

keV steriles as Warm Dark Matter particles

Warm Dark Matter predicts less cuspy (=smoother) DM profiles, and less dwarf satellites than Cold Dark Matter

keV sterile is excellent candidate

- produced from non-resonant (Dodelson-Widrow) or resonant + μ_{α} (Shi-Fuller) mixing with SM neutrinos
- thermally produced and then diluted
- non-thermally produced from BSM physics

keV WDM is constrained by

- X-ray searches $\Gamma \sim G_F^2 M_1^5 \, \theta^2$
- Ly- α structure formation: $M_1 \gtrsim 1$ keV
- free streaming, BBN, Tremaine-Gunn,...

 $m_{\nu} = \theta^2 M \Rightarrow$ one massless active neutrino!

The usual plot for double beta decay...

The usual plot for double beta decay... ... gets completely turned around!

Sterile Neutrinos and $0\nu\beta\beta$

• recall $|m_{ee}|_{
m NH}^{
m act}$ can vanish and $|m_{ee}|_{
m IH}^{
m act}\sim 0.02$ eV cannot vanish

•
$$|m_{ee}| = |\underbrace{|U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{2i\alpha} + |U_{e3}^2| m_3 e^{2i\beta}}_{m_{ee}^{act}} + \underbrace{|U_{e4}|^2 m_4 e^{2i\Phi_1}}_{m_{ee}^{st}}|$$

•
$$\Delta m_{\mathrm{st}}^2 \simeq 1 \text{ eV}^2$$
 and $|U_{e4}| \simeq 0.15$

• sterile contribution to $0\nu\beta\beta$:

$$|m_{ee}|^{\rm st} \simeq \sqrt{\Delta m_{\rm st}^2} |U_{e4}|^2 \simeq 0.02 \text{ eV} \begin{cases} \gg |m_{ee}|_{\rm NH}^{\rm act} \\ \simeq |m_{ee}|_{\rm IH}^{\rm act} \end{cases}$$

• \Rightarrow $|m_{ee}|_{\rm NH}$ cannot vanish and $|m_{ee}|_{\rm IH}$ can vanish!

Remarks

- majority of experiments does not require sterile neutrinos
- oscillation experiments: $\Delta m^2 \simeq 1 \ {\rm eV}^2$ vs. cosmology: $m_s \lesssim 1 \ {\rm eV}$
- appearance-disappearance tension
- all anomalies explained by the same thing?
- are they all real?

3 well motivated scales

there are three well-motivated mass values of M_R :

- eV
- keV
- $\gtrsim 10^9 {
 m GeV}$

what if all three are there?

N_1	N_2	N_3	BAU	eV-anomalies	DM
eV	GUT	GUT	\checkmark	\checkmark	_
eV	keV	GUT	_	\checkmark	\checkmark
keV	GUT	GUT			
	or GeV	or GeV	V		V

TeV seesaw

naively, $m_{\nu} = m_D^2/M_R$ and mixing m_D/M_R \Rightarrow TeV neutrinos have mixing of order 10^{-7} But, matrices are involved...e.g. (Kersten, Smirnov)

$$m_D = v \begin{pmatrix} h_1 & h_2 & h_3 \\ \omega h_1 & \omega h_2 & \omega h_3 \\ \omega^2 h_1 & \omega^2 h_2 & \omega^2 h_3 \end{pmatrix} \text{ and } M_R = M_0 \mathbb{1}$$

gives $m_{\nu} = 0$, add (very) small corrections first pointed out: Korner, Pilaftsis, Schilcher (1993) works with $Y = \mathcal{O}(1)$ and $M_0 \lesssim$ TeV!

rev scale seesaw with sizable mixing											
	$M_D = r$	$n \begin{pmatrix} f \epsilon \\ 0 \\ 0 \end{pmatrix}$	$\begin{array}{ccc} 2 & 0 \\ g\epsilon \\ 0 \end{array}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	and i	$M_{R}^{-1} = 0$	$M^{-1} \begin{pmatrix} a \\ b \\ k \end{pmatrix}$	а b b c c de e	$\begin{pmatrix} k \\ d\epsilon \\ e\epsilon^2 \end{pmatrix}$		
$M/{\sf GeV}$	$m/{\sf MeV}$	ϵ	a	k	b	С	d	e	f	g	
5.00	0.935	0.02	1.00	1.35	0.90	1.4576	0.7942	0.2898	0.0948	0.485	

 $T \setminus I$

gives successful m_{ν} and for double beta decay:

$$\frac{T_{1/2}(\text{light})}{T_{1/2}(\text{heavy})} \simeq 10^4$$

Mitra, Senjanovic, Vissani

TeV scale seesaw with sizable mixing

Casas-Ibarra Parametrization

$$m_D = iU \sqrt{m_\nu^{\rm diag}} R \sqrt{M_R^{\rm diag}} V_R^T$$

Ibarra, Molinaro, Petcov

Higgs physics and sterile neutrinos

recall: for small quartic Higgs coupling $\lambda = m_h/(v\sqrt{2})$ is driven to negative values by top Yukawa:

$$\beta_{\lambda} \simeq -24 \operatorname{Tr} \left(Y_u^{\dagger} Y_u \right)^2 \Rightarrow m_h \ge f(\Lambda)$$

vacuum stability bound

often overlooked: Dirac Yukawa $\bar{\nu}_L Y_{\nu} N_R$ contribution to λ :

 $\Delta\beta_{\lambda} = -8 \operatorname{Tr} \left(Y_{\nu}^{\dagger} Y_{\nu} \right)^2$

Casas, Di Clemente, Ibarra, Quiros; Miro, Espinosa, Giudice, Isidori, Riotto, Strumia

naively, if M_R goes down, Y_{ν} goes down and effect is negligible

Higgs physics and sterile neutrinos

But: if neutrinos are made accessible at colliders, Dirac Yukawa is large even for TeV neutrinos \Rightarrow influences vacuum stability bound

νMSM

- no new scale beyond v and Planck scale
- no new particles except 3 right-handed neutrinos
 - one is keV and is Warm Dark Matter
 - two are few GeV, almost degenerate, and do leptogenesis via oscillations

Shaposhnikov *et al.*; Shaposhnikov *et al.*;

Mini-seesaw

 M_R very small but $\gg m_D$

immediate and important consequence: no neutrinoless double beta decay!

$$\frac{1}{2}(\bar{\nu}_L, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix} \to \operatorname{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_{\nu_4}, m_{\nu_5}, m_{\nu_6})$$

 6×6 mass matrix diagonalized by \mathcal{U}_{ν}

 $\sum_{i=1}^{6} (\mathcal{U}_{\nu})_{ei}^{2} m_{\nu_{i}} = 0$

if all 6 masses are below 100 MeV:

$$\mathcal{A}_{0\nu\beta\beta} \simeq G_F^2 \frac{(\mathcal{U}_{\nu})_{ei}^2 m_{\nu_i}}{q^2 - m_{\nu_i}^2} = G_F^2 \frac{(\mathcal{U}_{\nu})_{ei}^2 m_{\nu_i}}{q^2} = 0$$

Models for light sterile neutrinos

how to bring one (or all) of the singlet neutrinos down to (k)eV ?

- extra dimensions
- zero mass plus corrections
- Froggatt-Nielsen

"Split seesaw"

Kusenko, Takahashi, Yanagida

Light sterile neutrinos from slightly broken flavor symmetry introduce flavor symmetry leading to one massless neutrino, e.g.

$$M_{R}^{L_{e}-L_{\mu}-L_{\tau}} = \begin{pmatrix} 0 & a & b \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{pmatrix} \Rightarrow M_{1} = 0 , \quad M_{2,3} = \pm \sqrt{a^{2} + b^{2}}$$

$$M_{3} \approx M_{2} = M_{3} \approx \text{GeV}$$

$$L_{e}-L_{\mu}-L_{\tau}$$

$$M_{1} \approx \text{KeV}$$

$$M_{1} \equiv 0$$
small breaking to lift M_{1}
Mohapatra; Shaposhnikov; Lindner, Merle, Niro; Araki, Li

Light sterile neutrinos from Froggatt-Nielsen introduce new U(1) and field Θ with charge -1 N_R has charge m and ν_L has charge n:

$$m_D \,\bar{\nu}_L \,N_R \,\left(\frac{\Theta}{\Lambda}\right)^{n+m} + M_R \,\bar{N}_R^c \,N_R \,\left(\frac{\Theta}{\Lambda}\right)^{2m} , \qquad \frac{\Theta}{\Lambda} \simeq \lambda$$

 \Rightarrow FN charge of N_R drops out in m_D^2/M_R

Merle, Niro; Barry, W.R., Zhang

Flavor Symmetries

	l	e^c	μ^c	$ au^c$	$ u^c$	$h_{u,d}$	θ	$arphi_T$	$arphi_S$	ξ	$arphi_0^T$	$arphi_0^S$	ξ_0
A_4	3	1	1"	1'	3	1	1	3	3	1	3	3	1
Z_3	ω	ω^2	ω^2	ω^2	ω^2	1	1	1	ω^2	ω^2	1	ω^2	ω^2
U(1)	0	4	2	0	0	0	-1	0	0	0	0	0	0

Froggatt-Nielsen U(1) to get charged lepton hierarchy

Altarelli, Feruglio

add ν_s and use FN to control magnitude of its mass

A_4 Seesaw Model with light steriles

Field	L	e^{c}	μ^{c}	$ au^c$	$h_{u,d}$	arphi	φ'	arphi''	ξ	ξ'	ξ''	Θ	ν_1^c	$ u_2^c$	ν_3^c
$SU(2)_L$	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1
A_4	<u>3</u>	<u>1</u>	<u>1</u> ''	<u>1</u> ′	<u>1</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>1</u>	$\underline{1}'$	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u> ′	<u>1</u>
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω^2	ω^2	ω	1	1	ω^2	ω	1
U(1)	-	3	1	0	-	-	-	-	-	-	-	-1	F_1	F_2	F_3

various possibilities for the FN-charges:

	E. E. E.	Mass speakwww			n	Dhamamanalam		
	r ₁ , r ₂ , r ₃	mass spectrum	$ U_{\alpha 4} $	$ U_{\alpha 5} $	NO	ю	Filenomenology	
1	9,10,10	$M_{2,3}=\mathcal{O}(\mathrm{eV})$	$\mathcal{O}(0.1)$	$\mathcal{O}(0.1)$	0	0	3+2 mixing	
IIA	9,10,0	$\begin{split} M_2 &= \mathcal{O}(\mathrm{eV}) \\ M_3 &= \mathcal{O}(10^{11}\mathrm{GeV}) \end{split}$	$\mathcal{O}(0.1)$	$O(10^{-11})$	0	$\frac{2\sqrt{\Delta m_{\rm A}^2}}{3}$	3 ± 1 mixing	
IIB	9,0,10	$M_2 = \mathcal{O}(10^{11} \text{ GeV})$ $M_3 = \mathcal{O}(\text{eV})$	$O(10^{-11})$	$\mathcal{O}(0.1)$	$rac{\sqrt{\Delta m_{\odot}^2}}{3}$	$rac{\sqrt{\Delta m_{ m A}^2}}{3}$		
	9, 5, 5	$M_{2,3}=\mathcal{O}(10{\rm GeV})$	$O(10^{-6})$	$O(10^{-6})$	$\frac{\sqrt{\Delta m_{\bigodot}^2}}{3}$	$\sqrt{\Delta m_{ m A}^2}$	Leptogenesis	

Barry, W.R., Zhang

- Are there sterile neutrinos?
- •
- •
- •

- Are there sterile neutrinos? Maybe!
- •
- •
- •

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light?
- •
- ullet

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light? Maybe!
- •
- •

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light? Maybe!
- experimental input necessary
- ullet

- Are there sterile neutrinos? Maybe!
- if there are steriles, are they light? Maybe!
- experimental input necessary
- if (light) steriles necessary, we know what to do

Seesaw parameters and sterile neutrinos: eV scale usual fit procedure for two eV-scale steriles: make m_{ν} a 5 × 5 matrix, with a total of 5 masses, 9 mixing angles, 6 Dirac and 4 Majorana phases, = 24 parameters seesaw with 2 singlet neutrinos has 11 physical parameters seesaw with 3 singlet neutrinos has 18 physical parameters But: no problem, seesaw fits work as well Donini *et al.*; Blennow, Fernandez-Martinez; Fan, Langacker

Confused?

there are different transformations:

 $\begin{array}{ll} (\nu_e)_L \stackrel{C}{\longrightarrow} (\nu_e)_R & \mbox{charge conjugation} \\ (\nu_e)_L \stackrel{P}{\longrightarrow} (\nu_e)_R & \mbox{parity conjugation} \\ (\nu_e)_L \stackrel{CP}{\longrightarrow} (\bar{\nu}_e)_R & \mbox{CP transformation} \\ (\nu_e)_L \stackrel{\hat{\mathcal{C}}}{\longrightarrow} (\bar{\nu}_e)_R & \mbox{particle transformation} \nu \rightarrow \nu^c \end{array}$

