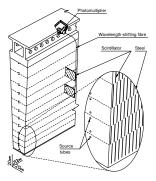
1/14

Studies on muon simulation with ATLAS TileCal calorimeter

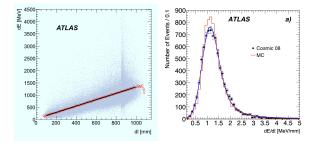
Andrea.Dotti (CERN) Claudio.Santoni (Clermont-Ferrand) Zhili.Weng (Academia Sinica)

LCG Physics Validation for LHC Simulations 2010-12-01

イロン イロン イヨン イヨン



Cosmic Analysis in TileCal, ATLAS



Cosmic Analysis in TileCal, ATLAS

- Hardronic Calorimiter of ATLAS: TileCalorimiter is a sampling plastic-scintillator/iron detector, with 64 Phi-module, each with 81 Cells
- Cosmic ray data is used to validate the inter-calibration status, and also provide a tool to check the EM scale set from the TestBeam using electron.
- In Cosmic analysis, response of TileCal is characterized by dE/dl: the ratio between the energy deposited in a calorimeter cell (dE) and the length of the path of the track in the cell(dl).

Cosmic Analysis in TileCal, ATLAS

- The ATLAS Monte Carlo (MC) is based on the Geant4 toolkit, Cosmic Muon spectrum well simulated.
- Muon P range [10GeV, 30GeV], MIP signal. dE/dl shape follows Landau⊕Gaussian distribution, good agreement between Data/MC
- The estimator of the muon response is defined as the mean of the dE/dl distributions, truncated to the lower region containing 99% of events, to reduce the effect from rare high energy-loss processes.

Check for the EM Scale Uncertainty on MC

$$E_{rec}^{\mu data} = E_{\rho C}^{\mu data} \times \left(\frac{E_{beam}^{e TB}}{E_{\rho C}^{e TB}}\right)$$
(1)

$$E_{rec}^{\mu MC} = E_{vis}^{\mu MC} \times \left(\frac{E^{e}}{E_{vis}^{eMC}}\right) \times R_{instr}$$
⁽²⁾

- For Data, EM scale set by test beam with Electron(20GeV,100GeV,180GeV)
- For MC, EM scale set by similar process by making ratio between particle energy and visible energy in scintilator.
- EM process "well known", expected muon response(MIP signal) ratio $\frac{E^{\mu data}}{F\mu MC}$ to be 1.
- *R_{instr}* take into account implementation of Birk's law,light attenuation (uncertainty estimated to be < 0.6%)
- Uncertainty from MC: uncertainty on $\frac{E_{vis}^{\mu MC}}{E_{vis}^{eMC}}$ ratio

Check for the EM Scale Uncertainty on MC

Simulation for MC Uncertainty study

- Simulation using standard ATLAS Geometry, geant4.9.3.patch01
- Muon/Electron shoot right in front of TileCal, also checked with Pion

MC Uncertainy source

- Change physics list to investigate different treatment toward multiple scattering(Trade off between high presicion and CPU time)
- Change geant4 range cut (production cut relating to energetic δ -rays and bremsstrahlung)
- Other systematic soruce estimated to be no larger than 0.4% (gamma-nuclear and lepto-nuclear

Method

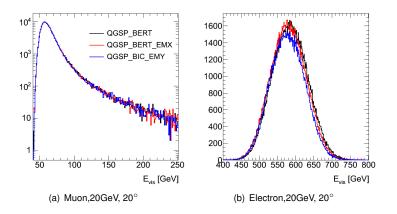
Physics List

- Based on ATLAS avilable option, focus on EM process
- QGSP_BERT :

Default in ATLAS, standard EM processes

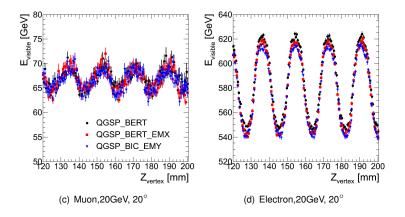
QGSP_BERT_EMX:

StandardEM, Apply production thresholds on secondary particles produced by Geant4 gamma processes, better speed performance, strong dependence of the visible energy on the cut.


QGSP_BIC_EMY:

Standard EM , Precise description of low-energy effects(UseDistanceToBoundary, closest to the data.)

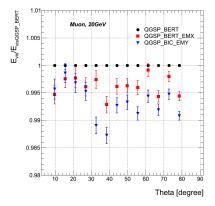
MC Points


- Electron: 20GeV, 30GeV,...100GeV,... 180GeV (20°), "Test Beam Setup"
- Muon: 20GeV (20°, 30°, 40°,.....),"Cosmic in the analysis"

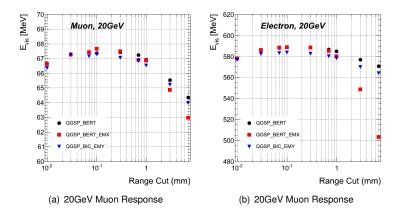
Systematic from Multiple Scattering


- Different physics list have the same shape on visible energy
- Slightly shift in Electron Evis distribution

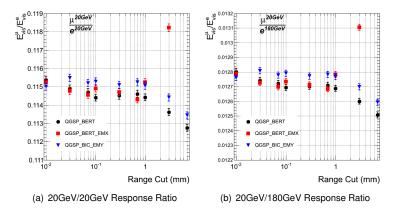
TotalE vs. Z


- Occilation effect due to periodic structure of Tiles, confirm with TB results
- For Electron response, systematic shift between different physics lists, no position dependence

Electron Response


- Same behavior: QGSP_BERT > QGSP_BERT_EMX > QGSP_BIC_EMY
- Normalized Response flat within TestBeam ranges
- Maximum Difference: 1.1%

Muon Response


- Theta: Incident angle wrt. normal direction of cell facing beampipe
- Normalized response have no strong
- Change in the same direction wrt. Electron
- Averaged maximum difference: 0.6%
- uncertainty on $\frac{\mu}{e}$ ratio: 1.1%-0.6% = 0.5%

Systematic from Geant4 Range Cut

- ATLAS default: 1mm, Different physics list follow the same trend
- Range Cut larger than 3mm: comparible with typical size of tiles, not physical result
- For Electron, QGSP_BERT_EMX have strong dependency on range cut

Systematic from Geant4 Range Cut

- Compare within same physics list
- exclude 3mm, 7mm point for geometrical reason
- For different physics list, maximum difference in $\frac{\mu}{e}$ ratio is similar : 1%

◆ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

14/14

Summary

- Cosmic muons have been used to check the calibration and EM scale of Tile Calorimeter in ATLAS
- $\frac{E_{MP}^{\mu Data}}{E_{MP}^{\mu MC}}$ expected to be 1
- Uncertainty on $\frac{E_{MIP}^{\mu Data}}{E_{MIP}^{\mu MC}}$ from MC(Geant4) depends on EM scale setting procedure:
 - Determined by the uncertainty of $\frac{E_{VIS}^{\mu MC}}{E_{vIS}^{eMC}}$ ratio
 - Considered to be comes from multiple scattering, range cut, and gamma-, lepton-nuclear process

<ロ> <四> <四> <四> <三< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< =< =< =< =< =< =< =< =<

• Estimated to be $0.5\% \oplus 1\% \oplus 0.4\% = 1.2\%$