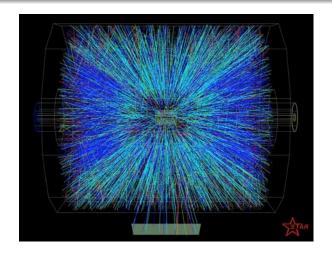
QCD in Heavy Ion Collisions

Edmond IancuInstitut de Physique Théorique de Saclay

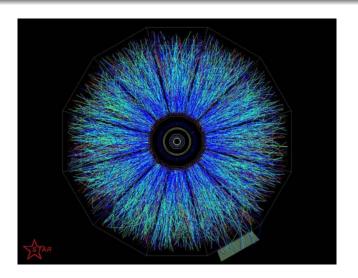
Heavy Ion Collisions @ RHIC & the LHC

Au+Au collisions at RHIC



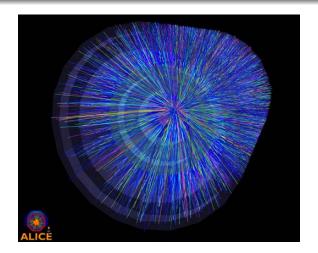
- Au+Au collision at STAR: longitudinal projection
- ullet \sim 3000 produced particles streaming into the detector

Au+Au collisions at RHIC



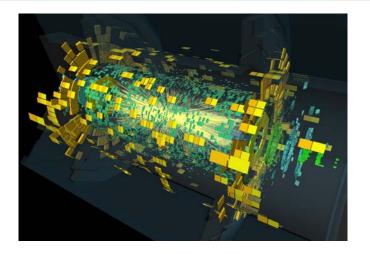
• Au+Au collision at STAR: transverse projection

Pb+Pb collisions at the LHC: ALICE



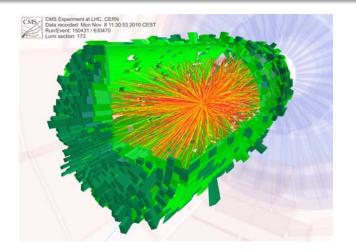
- \bullet Pb+Pb collision at ALICE: ~ 1600 hadrons per unit rapidity
- How to describe/understand such a complex system ?

Pb+Pb collisions at the LHC: ATLAS



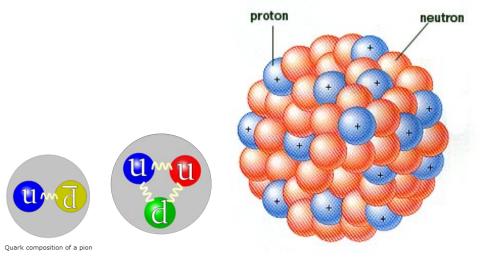
 Traditional perturbative methods become inappropriate (collective phenomena, multiple scattering ...)

Pb+Pb collisions at the LHC: CMS



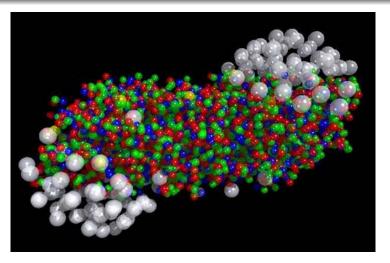
- The concept of particle is not so useful anymore ...
- One should rather speak about QCD matter

QCD matter: from hadrons ...



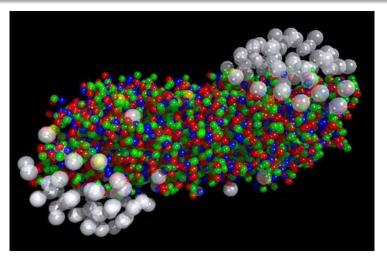
 At low energies, QCD matter exists only in the form of hadrons (mesons, baryons, nuclei)

QCD matter: ... to partons



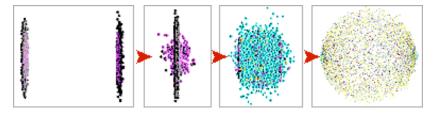
- At sufficiently high energies, the relevant degrees of freedom are partonic (quarks & gluons)
- True for both p+p collisions and A+A collisions ...

QCD matter: ... to partons



- At sufficiently high energies, the relevant degrees of freedom are partonic (quarks & gluons)
- ... but HIC give us access to new forms of partonic matter

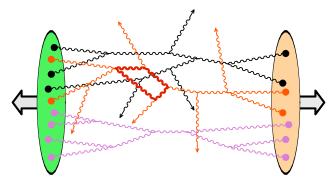
New forms of QCD matter produced in HIC



- Prior to the collision: 2 Lorentz-contracted nuclei ('pancakes')
 - 'Color Glass Condensate' (CGC)
- Right after the collision: non-equilibrium partonic matter
 - 'Glasma' (from 'Glass' + 'Plasma')
- ullet At later stages ($\Delta t \gtrsim 1$ fm/c) : local thermal equilibrium
 - 'Quark-Gluon Plasma' (QGP)
- Final stage ($\Delta t \gtrsim 6 \text{ fm/c}$) : hadrons
 - 'final event', or 'particle production'

How to study these new forms of matter?

• Standard perturbation theory in QCD (= expansion in powers of the coupling 'constant' α_s) fails even at weak coupling, because of the high parton density.



- High-density effects (multiple scattering, parton saturation, Debye screening etc) must be resummed to all orders in α_s .
- This results into effective theories.

The possibility of a strong coupling

Besides, there is no guarantee that the coupling is weak!

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

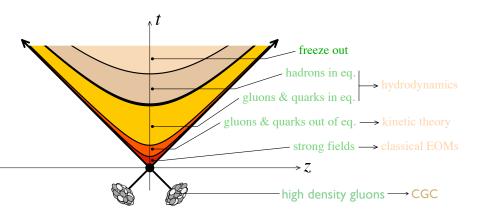
Monday, April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

- 'Perfect fluid' = $\alpha_s \to \infty$
- Interesting connection with string theory ('AdS/CFT correspondence').

Effective theories for Heavy Ion Collisions

A space-time picture of a heavy ion collision



- Different effective theories apply at different stages.
- But they refer all to QCD!

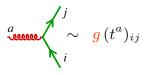
Lecture 0: A QCD Primer

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \sum_f \bar{\psi}_f \Big(i \gamma^\mu D_\mu - m \Big) \psi_f$$

QCD: Quarks & Gluons

- Electromagnetic interactions: Quantum Electrodynamics (QED)
 - matter : electron; interaction carrier : photon
 - interaction vertex :

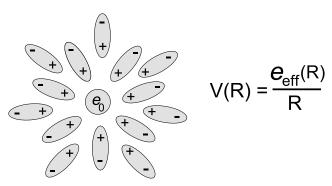
- Strong interactions: Quantum Chromodynamics (QCD)
 - matter: quarks; interaction carriers: gluons
 - interaction vertices :



- i, j: color indices of the quarks ($N_c = 3$ possible values)
- a, b, c: color indices of the gluons $(N_c^2 1 = 8 \text{ possible values})$

Running coupling: QED

• An electric charge polarizes the surrounding medium:



- ullet The effective charge depends upon the distance R from the bare one.
- Normally this leads to screening: $e_{\text{eff}}(R)$ decreases with R.

Running coupling: from QED to QCD

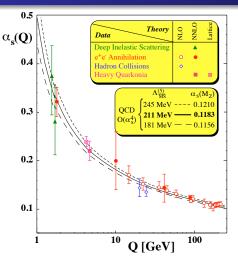
• The vacuum itself is a polarisable 'medium'!

$$QED:$$
 $\alpha_{\text{eff}}(R) = \frac{\alpha}{1 - \frac{2\alpha}{3\pi} \ln(1/mR)}, \quad \alpha \equiv \frac{e^2}{\hbar c} \approx \frac{1}{137}$

• In QCD, the (longitudinal) gluons yield antiscreening!

$$QCD: \qquad \alpha_s(R) \, \equiv \, \frac{g^2(R)}{4\pi} \, = \, \frac{2\pi N_c}{(11N_c-2N_f)\ln(1/\Lambda_{\rm QCD}R)} \label{eq:QCD}$$

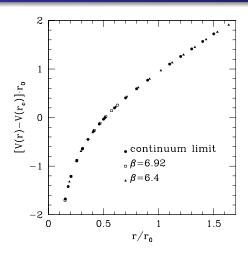
Asymptotic freedom



• The coupling is weak at short distances, or large transferred momenta:

$$Q \sim 1/R \gg \Lambda_{
m QCD} \simeq 200 \; {
m MeV}$$

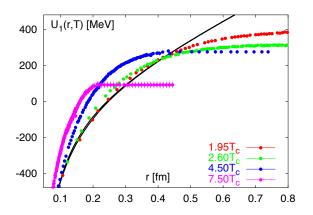
Confinement



- The quark-antiquark potential increases linearly with the distance.
- Quarks (and gluons) are confined into colorless hadrons

Quark-antiquark potential at finite T

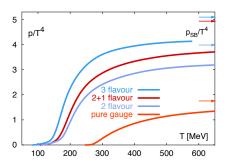
ullet With increasing the temperature T, the potential flattens at shorter and shorter distances.



• This eventually leads to a phase transition at some critical temperature $T_{\rm c}$

Quark-Gluon Plasma

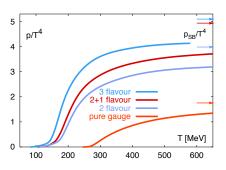
ullet Lattice calculations of the pressure in QCD at finite T



- Rapid increase of the pressure
 - ullet at $T\simeq 270$ MeV with gluons only
 - ullet at $T\simeq 150$ to 180 MeV with light quarks
- Interpreted as a rise in the number of active degrees of freedom due to the liberation of quarks and gluons

Quark-Gluon Plasma

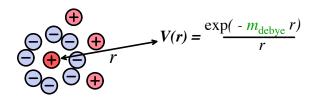
ullet Lattice calculations of the pressure in QCD at finite T



- Rapid increase of the pressure
 - ullet at $T < T_c$: 3 light mesons (π^0, π^\pm)
 - at $T < T_c$: 52 d.o.f. (gluons: $8 \times 2 = 16$; quarks: $3 \times 3 \times 2 \times 2 = 36$)
- Interpreted as a rise in the number of active degrees of freedom due to the liberation of quarks and gluons

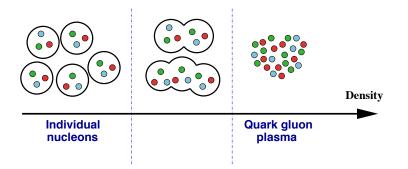
Debye screening

- Quark-Gluon Plasma (QGP): a system of quarks and gluons which got free of confinement!
- How is that possible ???



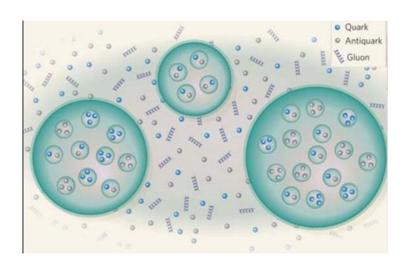
- In a dense medium, color charges are screened by their neighbors
- The interaction potential decreases exponentially beyond the Debye radius $r_{\rm Debye}=1/m_{\rm Debye}$
- ullet Hadrons whose sizes are larger than r_{Debye} cannot bind anymore

Deconfinement phase transition



- When the nucleon density increases, they merge, enabling quarks and gluons to hop freely from a nucleon to its neighbors
- This phenomenon extends to the whole volume when the phase transition ends
- Note: if the transition was first-order, it would go through a mixed phase containing a mixture of nucleons and plasma

Possible first-order scenario with critical bubbles



... but this is not what really happens!

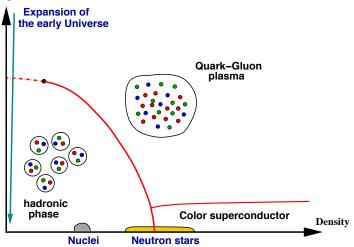
The actual scenario is a 'cross-over'

This was firmly established by the Wuppertal–Budapest lattice group
 (Aoki et al., Nature, 443 (2006) 675)

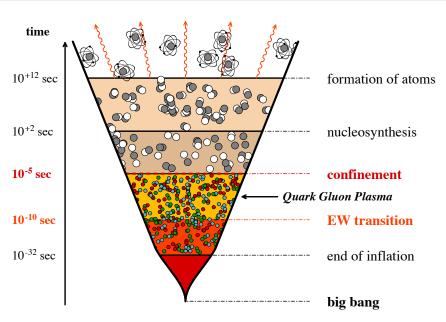
Phase-diagram for QCD

• ... as explored by the expansion of the Early Universe ...

Temperature

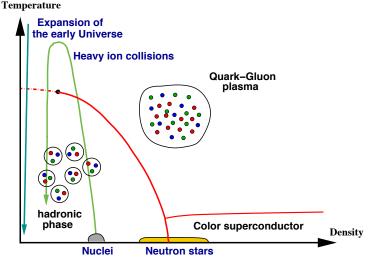


The Big Bang



Phase-diagram for QCD

• ... as explored by the expansion of the Early Universe ...



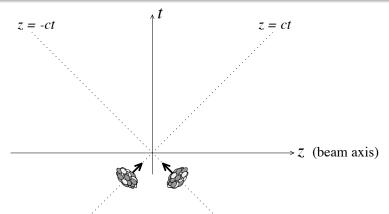
• ... and in the ultrarelativistic heavy ion collisions.

The Little Bang



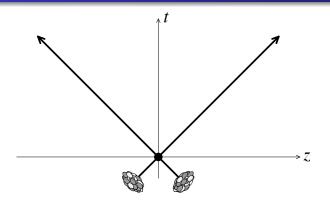
• The subject of these lectures

Lecture I: Initial conditions



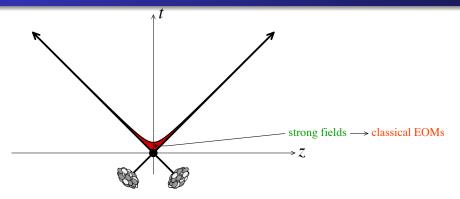
- \bullet au < 0: hadronic wavefunctions prior to the collision
 - high-energy evolution & the Color Glass Condensate
 - it applies to any highly energetic hadron (proton or nucleus)

Lecture I: Initial conditions



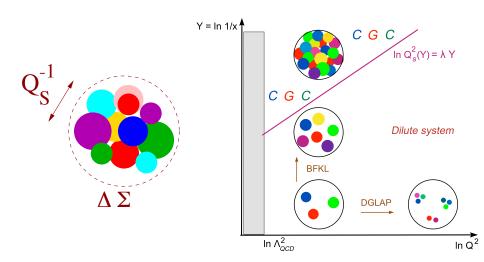
- ullet au < 0: hadronic wavefunctions prior to the collision
- $\tau \sim 0$ fm/c : the hard scattering
 - production of hard particles: jets, direct photons, heavy quarks
 - calculable within (standard) perturbative QCD ('leading twist')

Lecture I: Initial conditions



- ullet au < 0: hadronic wavefunctions prior to the collision
- \bullet $\tau \sim 0$ fm/c : the hard scattering
- $\tau \sim 0.2$ fm/c : strong color fields (or 'glasma')
 - semi-hard quanta ($p_{\perp} \lesssim 2$ GeV): gluons, light quarks
 - make up for most of the multiplicity
 - sensitive to the physics of saturation ('higher twist')

Color Glass Condensate



Parton picture

• When an energetic hadron is probed on a hard resolution scale (momentum transfer $Q^2 \gg \Lambda_{\rm QCD}^2$), one sees a bunch of partons ...

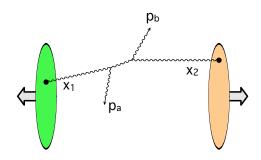
- ullet with transverse area $\sim 1/Q^2$...
- and longitudinal momentum fraction $x=k_z/P$ fixed by the kinematics

• E.g. : in Deep Inelastic Scattering (DIS)

$$x = \frac{Q^2}{s}$$
 $s = \text{center-of-mass energy squared}$

• N.B.: high energy \iff small x

Particle production in hadron-hadron collisions

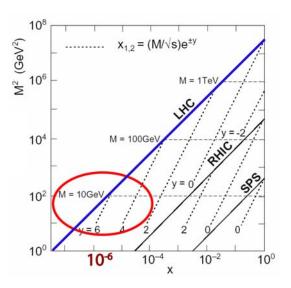


 The partons relevant for the process under consideration carry the longitudinal momentum fractions

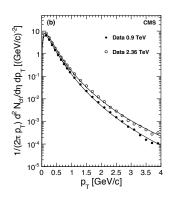
$$x_1 = \frac{p_{a\perp}}{\sqrt{s}} e^{Y_a} + \frac{p_{b\perp}}{\sqrt{s}} e^{Y_b}, \qquad x_2 = \frac{p_{a\perp}}{\sqrt{s}} e^{-Y_a} + \frac{p_{b\perp}}{\sqrt{s}} e^{-Y_b}$$

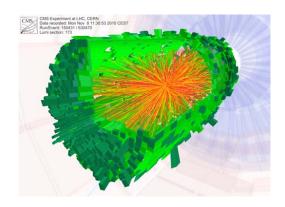
- ullet p_{\perp} : transverse momenta of the produced particles
- ullet Y: their rapidities
- ullet \sqrt{s} : collision energy

Kinematical domain for the LHC



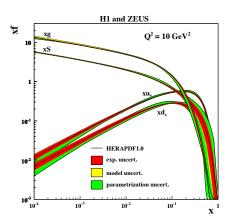
AA collisions at RHIC & LHC





- ullet 99% of the total multiplicity lies below $p_{\perp}=2$ GeV
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200$ GeV)
- $x \sim 4 \times 10^{-4}$ at the LHC ($\sqrt{s} = 5.5$ TeV)
 - \triangleright partons at small x are the most important

Parton distributions at HERA



The gluon distribution rises very fast with increasing energy

• Gluon distribution $xg(x,Q^2)$: # of gluons with transverse size

 $\Delta x_{\perp} \sim 1/Q$ and longitudinal momentum $k_z = xP$

Bremsstrahlung

$$P_z$$
 (1-x) P_z , $-k_{\perp}$ $k_z = x P_z$, k_{\perp}

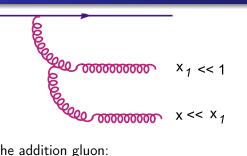
$$\mathrm{d}\mathcal{P}_{\mathrm{Brem}} \sim \alpha_s(k_\perp^2) \, C_R \, \frac{\mathrm{d}^2 k_\perp}{k_\perp^2} \, \frac{\mathrm{d}x}{x}$$

- Phase–space enhancement for the emission of
 - collinear $(k_{\perp} \rightarrow 0)$
 - and/or soft (low-energy) $(x \rightarrow 0)$ gluons
- The parent parton can be either a quark or a gluon

$$C_F = t^a t^a = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}, \quad C_A = T^a T^a = N_c = 3$$

• The daughter gluon can in turn radiate an even softer gluon!

2 gluons



The 'cost' of the addition gluon:

$$\alpha_s \int_x^1 \frac{\mathrm{d}x_1}{x_1} = \alpha_s \ln \frac{1}{x}$$

Formally, a process of higher order in α_s , but which is enhanced by the available rapidity interval

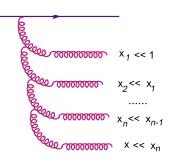
- $Y \equiv \ln(1/x)$: rapidity difference between the parent quark and the last emitted gluon
- When $\alpha_s Y \gtrsim 1 \Longrightarrow$ need for resummation !

Gluon cascades

- ullet n gluons strictly ordered in x
- The *n*-gluon cascade contributes

$$\frac{1}{n!} \left(\alpha_s Y \right)^n$$

 The sum of all the cascades exponentiates :



$$xg(x,Q^2) \propto e^{\omega \alpha_s Y}$$

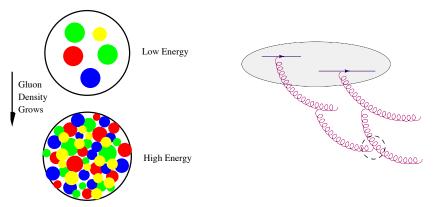
BFKL evolution

(Balitsky, Fadin, Kuraev, Lipatov, 75–78)

This evolution is linear:
 the emitted gluons do not interact with each other

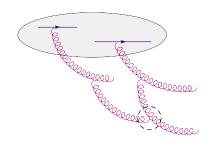
Gluon recombination

• The gluon density rises with decreasing x (increasing energy)



- Eventually gluons start overlapping with each other and then they interact: $2 \rightarrow 1$ gluon recombination
- These interactions stop the growth: saturation

Saturation momentum



• Number of gluons per unit area:

$$\mathcal{N} \sim \frac{x g_A(x, Q^2)}{\pi R_A^2}$$

• Recombination cross-section

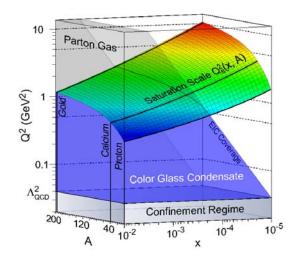
$$\sigma \sim \frac{\alpha_s}{Q^2}$$

• Recombination happens if $\mathcal{N}\sigma\gtrsim 1$, i.e. $Q^2\lesssim Q_s^2$, with

$$Q_s^2(x,A) \simeq \alpha_s \frac{xg_A(x,Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.25}}$$

• Low $Q^2 \implies$ large area $\sim 1/Q^2 \implies$ strong overlapping

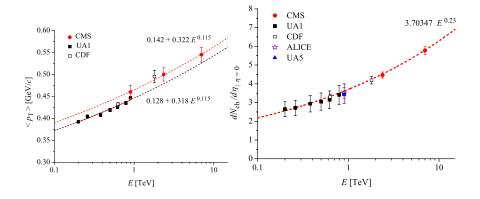
Saturation scale as a function of x and A



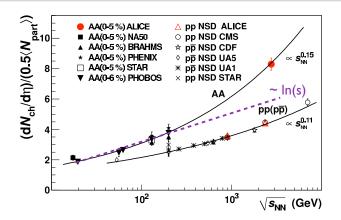
• $x \sim 10^{-5}$: $Q_s \sim 1$ GeV for proton and ~ 3 GeV for Pb or Au

Multiplicities at the LHC: p+p

- In a high—energy scattering, the saturated gluons are released in the final state
 - ullet typical transverse momentum $\langle p_T \rangle \sim Q_s(E)$
 - ullet average multiplicity $\mathrm{d}N/\mathrm{d}\eta \, \sim \, Q_s^2(E)$



Multiplicities in HIC: RHIC & LHC



- Logarithmic growth $(\ln s)$ excluded by the LHC data
- Larger energy exponent (E^{λ}) for A+A than for p+p \triangleright this difference is theoretically understood

Geometric scaling

- A very robust, qualitative, prediction of saturation:
 - DIS at HERA, Au+Au at RHIC, p+p at the LHC ... (looking forward to the relevant Pb+Pb data at the LHC)
- The single-inclusive spectra for particle production depend...
 - ullet ... upon the particle transverse momentum p_T
 - \bullet ... and the COM energy of the collision \sqrt{s}

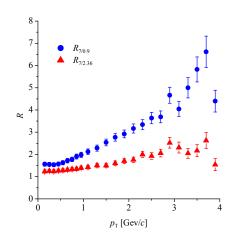
... only via the ratio of p_T to the saturation momentum Q_s :

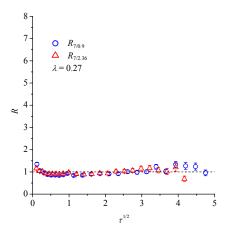
$$\frac{\mathrm{d}N}{\mathrm{d}\eta\,\mathrm{d}^2p_T}\simeq F(au) \qquad \mathrm{with} \qquad au\equiv \frac{p_T^2}{Q_s^2(p_T/\sqrt{s})}$$

ullet At high energy, Q_s is the only intrinsic scale in the problem !

Geometric scaling at the LHC: p+p

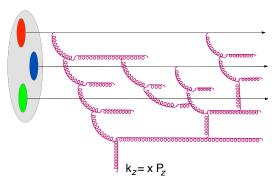
$$R_{s_1/s_2} = \frac{\left(\mathrm{d}N/\mathrm{d}\eta\,\mathrm{d}^2p_T\right)\big|_{s_1}}{\left(\mathrm{d}N/\mathrm{d}\eta\,\mathrm{d}^2p_T\right)\big|_{s_2}} \to 1$$
 as a function of τ ... if scaling





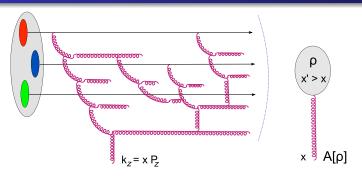
The need for an effective theory

• How to compute the saturation scale from first principle?



- ullet Relatively hard scale $(Q_s\gg \Lambda_{
 m QCD})\Longrightarrow$ weak coupling !
- ... but high density ⇒ strong non-linear effects
- Solution: a reorganization of perturbation theory!
 (McLerran and Venugopalan, 94; E.I., McLerran, and Leonidov, 00)

Color Glass Condensate

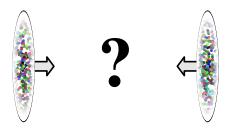


- Small–x gluons: classical color fields A^{μ}_a radiated by fast color charges ρ_a with $x'\gg x$, frozen in some random configuration
- ullet $W_Y[
 ho]$: probability distribution for the charge density at Y
- ullet Evolution equation for $W_Y[
 ho]$ with increasing $Y=\ln 1/x$

$$\frac{\partial}{\partial Y} W_Y[\rho] = H W_Y[\rho] \qquad (\mathsf{JIMWLK})$$

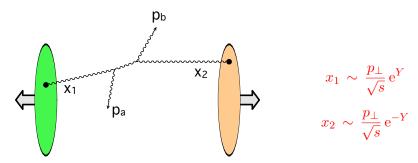
How to scatter 2 CGC's?

• A heavy ion collision at high energy



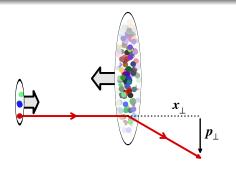
 Main difficulty: How to treat collisions involving a large number of partons?

Proton-proton collisions



- Dilute-Dilute: one parton from each projectile interact
- Collinear factorization scheme of perturbative QCD
 - usual pdf's + DGLAP evolution
 - partonic cross-sections
 - ho Caution: forward rapidity $(Y\gg 1)$ & not too hard $p_\perp\Rightarrow x_2\ll 1$

Proton-nucleus collisions (1)

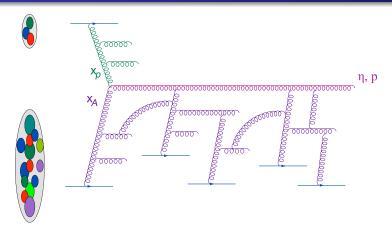


$$x_1 \sim \frac{p_{\perp}}{\sqrt{s}} \, \mathrm{e}^Y \sim \mathcal{O}(1)$$

$$x_2 \sim \frac{p_\perp}{\sqrt{s}} \, \mathrm{e}^{-Y} \ll 1$$

- Most interesting situation: forward particle production ($Y\gtrsim 3$) at 'semi-hard' momenta ($p_{\perp}\sim 1\div 5$ GeV)
 - ullet very small $x_2 \ll 1$ in the nucleus
 - ullet p_{\perp} comparable to $Q_s(A,x_2)$
- Dilute–Dense: new factorization scheme needed
 ▷ similar to deep inelastic scattering at small x

Proton-nucleus collisions (2)



- How to include both multiple scattering and saturation?
 - proton = collinear factorization (large x_1)
 - nucleus = described as a CGC
 - parton—CGC cross–section to all orders in the gluon density

CGC factorization for 'dilute-dense'

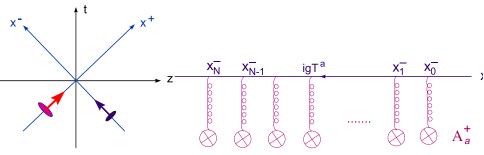
- The color charges in the target (ρ_a) are 'frozen' during the collision (by Lorentz time dilation)
 - compute the scattering between the parton and a fixed configuration of color charges
 - \bullet average over all the configurations by integrating over ρ_a with the CGC weight function

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_\perp} \right\rangle_Y = \int [\mathcal{D}\rho] \; W_Y[\rho] \; \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_\perp}[\rho]$$

• The target color field A^{μ}_a (as generated by ρ_a) is strong and must be resummed to all orders

Eikonal approximation

A very energetic particle is not deflected by its interactions



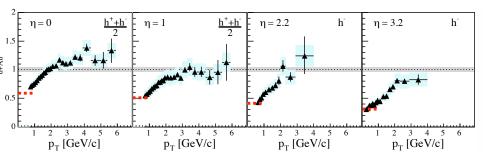
- The sum of all the interactions simply exponentiates
- The single-particle state gets multiplied by a complex exponential known as Wilson line

$$\Psi_i(x_\perp) \to U_{ij}(x_\perp) \Psi_j(x_\perp), \quad U(x_\perp) = \text{T} \exp\left\{i \int dx^- A_a^+(x^-, x_\perp) t^a\right\}$$

Nuclear modification factor in d+Au at RHIC

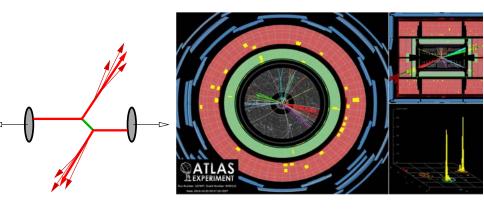
$$R_{\rm d+Au} \equiv \frac{1}{2A} \frac{{\rm d}N_{\rm d+Au}/{\rm d}^2 p_{\perp} {\rm d}\eta}{{\rm d}N_{\rm pp}/{\rm d}^2 p_{\perp} {\rm d}\eta}$$

• R_{d+Au} would be one in the absence of nuclear effects



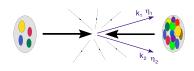
- \bullet R_{d+Au} decreases with increasing rapidity
- \bullet Strong suppression $(R\sim 0.5)$ for $\eta=3$: coherent scattering

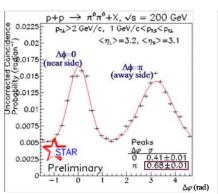
Jets

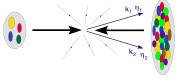


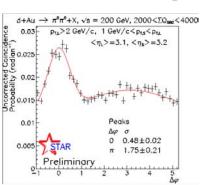
• Two back-to-back jets in the transverse plane: visible via 2-particle azimuthal correlations

Di-jet correlations at RHIC: p+p vs. d+Au



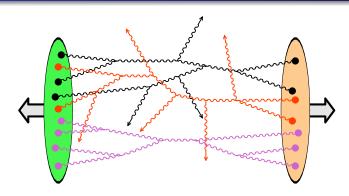






• d+Au : the 'away jet' gets smeared out = saturation in Au

Nucleus-nucleus collisions



- Non-linear effects in the wavefunctions: gluon saturation
 - 2 CGC weight functions: $W_{Y_1}[\rho_1]$, $W_{Y_2}[\rho_2]$
 - generalized pdf's : multi-parton correlations
- ... and in the scattering: multiple interactions
 - classical Yang-Mills equations with 2 sources

The CGC factorization

Gluon production in the scattering between 2 CGC's :

$$\left\langle \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_{\perp}} \right\rangle = \int [\mathcal{D}\rho_1\mathcal{D}\rho_2] \, W_{Y_{\mathrm{beam}-y}[\rho_1]} \, W_{Y_{\mathrm{beam}+y}[\rho_2]} \, \frac{\mathrm{d}N}{\mathrm{d}Y\,\mathrm{d}^2p_{\perp}} \bigg|_{\mathrm{class}}$$

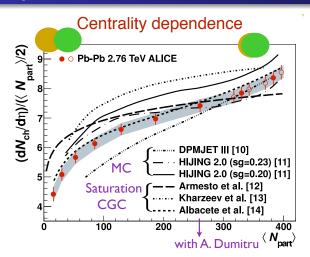
• The classical solution is non-linear to all orders in ρ_1 and ρ_2 :

$$D_{\nu}F^{\nu\mu}(x) = \delta^{\mu+}\rho_{1}(x) + \delta^{\mu-}\rho_{2}(x)$$

$$+\frac{1}{2} + \frac{1}{2} + \frac{1}{8} + \frac{1}{8}$$

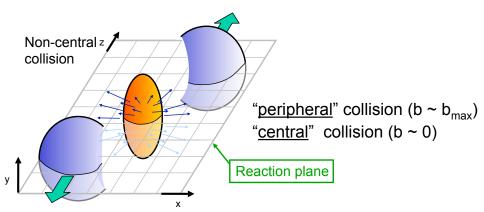
• All the leading logs of $1/x_{1,2}$ are absorbed in the W's.

Multiplicity in HIC at the LHC



- Excellent fit by the CGC approach
- All the models include some form of saturation
 - ightharpoonup HIJING : energy dependent low– p_T cutoff

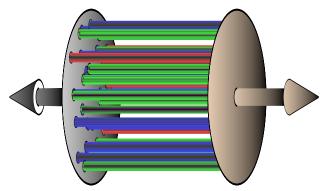
The geometry of a HIC



Number of participants (N_{part}): number of incoming nucleons (participants) in the overlap region

Glasma

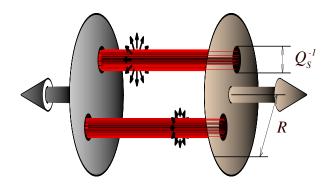
- Immediately after the collision, the chromo-electric and chromo-magnetic fields are purely longitudinal
- They form flux tubes extending between the projectiles



• Glasma: the intermediate stage between the CGC and the Quark Gluon Plasma (McLerran and Lappi, 06)

Color flux tubes

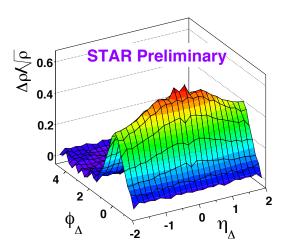
- ullet Correlation length in the transverse plane: $\Delta r_{\perp} \sim 1/Q_s$
- Correlation length in rapidity $(y \text{ or } \eta)$: $\Delta \eta \sim 1/\alpha_s$



- The color fluxes eventually break into 'particles' (gluons)
- Gluons emitted from different flux tubes are not correlated

The ridge in HIC at RHIC

A natural explanation for the the 'ridge'



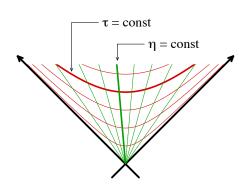
- Long-range correlations in rapidity $\Delta \eta$
- Narrow correlation in azimuthal angle $\Delta \phi$

Di-hadron correlations

• In a given even count the number of particles N_1 in a given bin centered at (η_1, ϕ_1) and similarly N_2 .

$$\mathcal{R} \, \equiv \, rac{\left< N_1 \, N_2
ight> - \left< N_1
ight> \left< N_2
ight>}{\left< N_1
ight> \left< N_2
ight>}$$

$$\Delta \eta = \eta_1 - \eta_2, \quad \Delta \phi = \phi_1 - \phi_2$$



• Recall: pseudo-rapidity

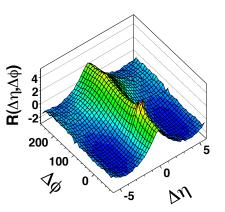
$$\eta = \frac{1}{2} \ln \frac{p + p_z}{p - p_z}$$

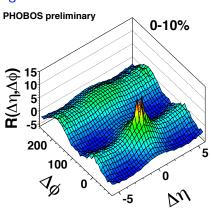
$$\eta = -\ln \tan \frac{\theta}{2}, \quad \theta = \frac{p_z}{p}$$

$$\tau = \sqrt{t^2 - z^2}$$

Di-hadron correlations: p+p vs Au+Au

• p+p : peak around $\Delta \eta = 0$ & flat in $\Delta \phi$ \triangleright correlated particles make similar angles with the beam axis

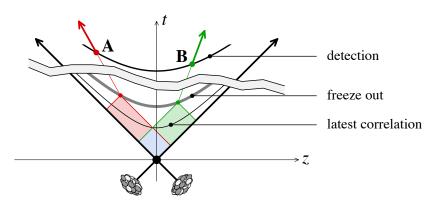




• Au+Au : almost flat over $\Delta \eta \simeq 10$ & 2 peaks at $\Delta \phi = 0$ and $\Delta \phi = \pi$

Long-range rapidity correlations probe early times

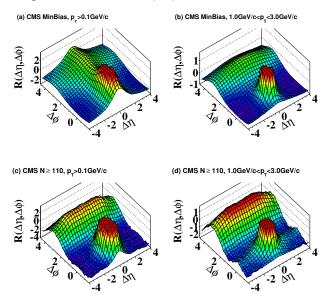
 Generated at early stages, where particles with different longitudinal velocities were still causally connected



$$\tau_{\text{correlation}} \leq \tau_{\text{freeze-out}} e^{-|\eta_A - \eta_B|/2}$$

The ridge in p+p at CMS (1)

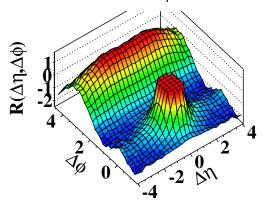
A small ridge has been seen in p+p collisions at the LHC



The ridge in p+p at CMS (2)

• ... but only in specially selected events !

(d) CMS N \geq 110, 1.0GeV/c<p $_{\tau}$ <3.0GeV/c

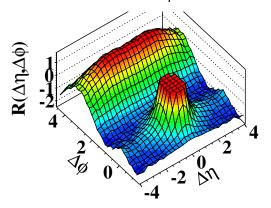


- High-multiplicity (\Longrightarrow very central): $N \ge 110$ particles
- Narrow interval in transverse momentum: $1 \le p_{\perp} \le 3$ GeV

The ridge in p+p at CMS (2)

• ... but only in specially selected events!

(d) CMS N \geq 110, 1.0GeV/c<p $_{\tau}$ <3.0GeV/c



• ... which look a lot like a heavy ion collision !!

ightharpoonup N.B. $1 \le p_{\perp} \le 3$ GeV is similar to the proton Q_s at LHC