

Comparison of CMS Calorimeter Response to Hadrons

S.Kunori S.Piperov / T.Yetkin 09-May-2007

GEANT4 vs TB2004/2006 data

- 1) HF(quartz fiber)
- 2) EB(PbWO4 crystal) + HB (brass/scintillator)

HF Test Beam Setup

One wedge and beam line elements.

Cerenkov detector- Sensitive to pi0's

5 mm x 5 mm fiber segmentation

... LSLSLS... ... SLSLSL...

TB2004 HF Data vs G4.7.0

Electron: Good agreement

→ Cerenkov light
production & collection and
PMT simulation
implemented correctly.

Pion: LHEP agrees.

[GeV]

→ Others: too much pi0's.

100GeV electron

ECAL +HCAL

ECAL: (PbWO4 Crystals) - small 14x14cm (TB2004), a real super module (TB2006)

HCAL: brass (5cm) + scintillator (3.7mm) sampling

HB1 in normal configuration, HB2 - longitudinally segmented.

CMS TB2006

This analysis used-

ECAL: one barrel super module PbWO4 Crystals

HCAL: one barrel module

Brass-Scitillator sampling cal

1 – 350 GeV in H2 beam line Better P-ID and beam clean-up.

(ECAL, HCAL calibrated with 50GeV electrons)

5GeV Pi- in ECAL(PbWO4)

TB2006 data vs. G4.8.1 P02

G4 Edep in ECAL for 5GeV pi-

e+/e- 54% pi+/pi-/.. 13 p/pbar 17% lons 14%

Suppression of Proton/pbar/ions gives better agreement.

QGSP-BERT pi-/pi0 **Multiplicity of Secondary Particles** at First Interaction Point pi+ ion **QGSP-BERT QGSP** Multiplicities of secondary particles at V1 Multiplicities of secondary particles protons 10² Beam Energy [GeV] 10 particles/event particles/event neutrons eneutrons 🖶 n 📤 pi+ 20 → pin pi-0iq 🚓 💠 pi0 • ion ion 15 heavy heavy pi0 pi+ ion 3 10

Too much neutrons / protons / ions ?

10

Pion production not smooth around 10-20GeV.

10

ion

Multiplicities of secondary particles at V1 (QGSP_BERT)

pi-/pi0

10² Beam Energy [GeV]

pi+

10² Beam Energy [GeV] 5

HCAL Alone

TB2006 Data

G4 (6.2, 7.1) for TB2004 setup

Seen in sampling calorimeter! Energy spectrum also too hard?

Temporary Fix – Suppress slow heavy particles

EB+ HB response to pi-

100GeV pi- in ECAL(PbWO4)

Conclusion

- Comparison with HF TB04
 - LEHP still shows better agreement with data.
 - p.e. increased by 25% in LHEP 4-1.
- Comparison with ECAL+HCAL (TB04/TB06)
 - No update on longitudinal shower profile (yet)
 - Seeing excess energy in G4 below 10GeV
 - Small difference can be explained by Birks' law and cerenkov lights in crystals. But observed difference is too large.
 - Too much slow protons/ions below 10GeV in G4?
 - Pion production rate not smooth around 10-20GeV in G4.
- Tuning two ways
 - Ignore slow protons and ions in calorimeter simulation
 - Get smooth curve in 1-300GeV
 - Fix G4 physics model(s).
 - Problem already reported to the G4 hadron physics group.
 - Discussion started with the G4 hadron physics group.