

Hybrid Pixel Detectors

Markus Keil

2nd Institute of Physics, Georg-August-Universität Göttingen and CERN

EDIT 2011 Excellence in Detectors and Instrumentation Technologies CERN, Geneva, Switzerland - 31 January - 10 February 2011

Silicon Strips and Pixel Technologies

03/02/2011 EDIT 2011

1

Introduction: Hybrid Pixel Detectors

WA97 (1995)

CMS Barrel

ATLAS Barrel Layer

DELPHI VFT (1996)

ALICE SPD Half Barrel

03/02/2011

EDIT 2011

- Reverse-biased p-n-junction (cf. lecture of M. Krammer)
 - Zone with electrical field, free of movable charge carriers
 - Minimum ionising particle generates approximately 10⁴ eh-pairs / % X₀
 - Ideal as a particle detector, but no spatial information yet
- Help came from IC industry:
 - Planar process allows "cheap" large scale production of segmented Si detectors

Pixel Detectors

- Segment one electrode into pixels
 - True 2D-information, no problem of ambiguities at high track densities
- Smaller electrode size brings other benefits
 - Lower leakage current → lower noise, better radiation tolerance
 - Lower capacitance \rightarrow lower noise
- ... but also complications
 - Large number of channels, proportional to sensor area
 - Signals of each channel needs to be processed

Why Pixels?

Run 21582 event 6995

P. Weilhammer, NIM A 342 (1994) 1

 Z⁰ → bb̄ candidate at LEP (DELPHI Experiment)

- Simulated H → bb event at LHC in the ATLAS tracker
- Including 22 pile-up collisions
- No chance without 2D-information

- A hybrid pixel detector is made from two separate chips
 - Signal is generated in the sensor chip, 200 300 µm thick
 - Amplification and signal processing in a dedicated readout chip
- 1:1 cell-correspondence between sensor and readout chip
- Connections between sensor and electronics pixels are established with bump bonds

- Advantages:
 - Chip and sensor can be optimised separately for the requirements of the experiment, in particular in terms of radiation hardness
 - Fast parallel readout
 - Relatively large signal, low noise (S/N ~ 100)
 - Mature technology
- Challenges:
 - Complex interconnection necessary
 - Readout chip heats sensor \rightarrow Good cooling necessary
 - High material budget in the sensitive volume (Sensor + Readout chip + Support + Cooling)

- Sensor signals are processed by several readout (front-end) chips
- FE-chips are controlled by on-detector controller chip
 - Controller chip can be on the module
 or on the ladder or similar
- Controller chip communicates with off-detector data acquisition
 - Typically via optical links (Additional interface-chips for electrooptical conversion on detector- and DAQ-side

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

- Sensor is connected to FE-chips with bump bonds
 - Here: 1 sensor tile, 16 FE chips in 2 rows
- FE periphery with contact pads sticking out from underneath sensor
- Connected to flexible PCB with wire bonds
- Flexible PCB carries controller chip, passive components and connection to off-module electronics

The Sensor

- The production of silicon sensor has profited from the developments in microelectronics; but there are also differences:
 - Sensor needs much purer, high-resistivity silicon (\rightarrow floatzone process)
 - In microelectronics everything happens in the upper few µm of the wafer for the sensor the complete volume and in particular also the backplane is important
- Different possible choices for pixel and substrate material type

	N-type substrate	P-type substrate
N-type pixel	High radiation tolerance Double sided process → expensive	Single sided process No type inversion Less developed approach
P-type pixel	Single sided process Low radiation tolerance	Double sided process No advantage with respect to n-on-p

• The design of the pixel sensors has to take into account the requirements in terms of efficiency, stability and radiation hardness

- A polysilicon rod is mounted with a seed crystal in an inert atmosphere
- A small zone of the rod is melted by a movable RF-heater
- This floatzone is slowly moved through the crystal, at the end of this zone the silicon freezes to a single crystal
- Most impurities remain in the molten phase
- Produces very pure silicon as needed for sensors
- Ingots are cut into wafers, which are then lapped and polished

- Sensor processing is a sequence of
 - Thermal treatments (e.g. for thermal oxidation or annealing steps)
 - Photolithography
 - Etching
 - Doping (by diffusion or ion implantation)
 - Layer deposition of insulators (oxides, nitrides) or metals (AI)
- Spatial precision usually less critical than in microelectronics, but purity is much more important
- Double sided processing, cost depends on the number of structured masks

Sensor Process Flow (Example)

2. Photoresist for implant

6. Annealing and drive-in

7. Nitride deposition

9. Etch oxide openings

10. Back side aluminization

11. Front side aluminization

12. Passivation

3. Etch oxide step for alignment

Sensor – Schematic and Reality

Four pixels of a CMS barrel pixel sensor

ALICE sensor wafer

The Frontend Chip

03/02/2011 EDIT 2011

- Usually several smaller FE-chips read out one sensor tile
 - Sensor size is limited by wafer size and bump bonding requirements (flatness)
 - Electronics chip size limited by yield considerations (+process rules)
- Signal processing steps in the FE-chips:
 - Amplification of sensor signal
 - Hit decision
 - Hit storage
 - Trigger validation
 - Readout of triggered hits
- First two steps are always done in the pixel cell, in some designs more
 - Readout architecture depends on hit rate, trigger rate, trigger latency and geometric constraints

From: Fischer, Rohe, Rossi, Wermes: Pixel Detectors

- Integration of signal charge
 - In 250 µm Si: Most probable value 19000 e, but consider charge sharing between pixels, smaller charge depositions, radiation damage
- Hit decision
- Transfer of hit data to periphery
- Swiss army knife: many (conflicting) requirements: fast, low noise, low power consumption

Electronics Design

- Pixel chips use commercial microelectronics processes
- However the designs are "full-custom"
- Optimised for radiation hardness (non-standard design rules)
- Layout challenge: implement all necessary functionality in the area of a single pixel
 - LHC-type chips: 500 1000 transistors per pixel cell
- Mixed designs (analogue and digital)
 - Careful shielding necessary to avoid injection of noise

P. Fischer, CERN-2002-003, p.91

03/02/2011 EDIT 2011

Bump Bonding

CERN

03/02/2011

Bump Bonding

- Connection between chip and sensor is established with bump bonds
- Process used in industry, but pitches needed in HEP are typically smaller than industry standard
- Two main process parts:
 - Bump deposition
 - Flip-chip assembly
- Bump deposition usually done on wafer-level
- Electronics wafers are thinned after bump deposition (e.g. 750 µm → 150 µm)

- Two main techniques in HEP:
 - Electroplated solder bumps
 - Indium bumps

GEORG-AUGUST-UNIVERSITÄT Göttingen

Solder Bumps

Sputter etching and sputtering of the plating base / UBM

Spin coating and printing of Photoresist

Electroplating of Cu and PbSn

Fischer, Rohe, Rossi, Wermes: Pixel Detectors

03/02/2011 EDIT 2011

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Indium Bumps

Photolithography

Plasma activatior

Evaporated Indium

.

Alenia Marconi Systems

Alenia Marconi Systems, Rome

- The standard In process does not include a reflow step
- One worry: small distance between readout chip and sensor could lead to noise injection
- Process used in CMS (pitch 100 μm): Indium bumps with reflow \rightarrow distance sensor readout chip approx. 15 μm

Ch. Broennimann et al., NIM A 565 (2006) 303 - 308

What can go wrong

- Many possibilities for failures:
 - Missing or merged bumps (single dead pixels)
 - Mechanical defects, from chipped edges to broken wafers ("best" case: increase of currents, worst case: complete chips lost)
 - Incomplete removal of photo resist
 - (if on wire bond pads, no bonding possible)
- → Careful inspection and testing after all process steps

- In most cases signals and power are routed to the FE chip in a flexible PCB on top of the sensor
 - Problem: fast signals, low voltage drop with low material budget
- FE chips have contact pads at their periphery; these are connected with wire bonds to the PCB
 - Thin AI wires, contact is
 established by ultrasound welding

Other sensors than planar silicon sensors...

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

3D Pixel Detectors

n-type substrate

- Lateral depletion ($V_{dep} \le 10 \text{ V}$)
- Short charge collection distance
- Pixel metalisation connects several electrodes

CMS 3D prototype sensor

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Diamond Pixel Detectors

- CVD Diamond: high resistivity
 → no p-n-junction necessary
- Electrodes (pixels/strips/pads) defined by metallisation only
- Room-temperature operation, radiation hard, but signal height depends on diamond quality (charge collection)

Now: Hands-on...

03/02/2011 EDIT 2011