
Parallelization of
likelihood

functions for
data analysis

Alfio Lazzaro

alfio.lazzaro@cern.ch

CERN openlab

Forum on Concurrent Programming Models and Frameworks

15 February 2012

Introduction

 Data analysis is a very important task

 See presentation by Lorenzo at the last meeting:

• https://indico.cern.ch/conferenceDisplay.py?confId=174781

 Important at the user level:

 No centralized production, user based workload

 Floating point intensive application

 Strong scaling: go fast!

 Possibility to be aggressive in the optimization

 The aim of the presentation is to give an overview (no technicalities) on
the work we are doing at CERN openlab

 Based on a prototype of ROOT/RooFit (~4K lines of code)

• Data analysis model taken from B physics

 Porting to ROOT is underway

• http://root.cern.ch/svn/root/branches/dev/openlab/

 Note that at openlab we are “only” interested to parallelize the code for
our evaluations in collaboration with Intel

Alfio Lazzaro (alfio.lazzaro@cern.ch) 2

Maximum Likelihood Fits

 It allows to estimate free parameters over a data sample,

by minimizing the Negative Log-Likelihood (NLL) function

 The procedure of minimization can require several

evaluation of the NLL
 Depending on the complexity of the function, the number of

observables, the number of free parameters, and the number

of events, the entire procedure can require long execution

time
 Mandatory to speed-up the evaluation of the NLL

P probability density function (PDF) for n observables

s species, i.e. signals and backgrounds

nj number of events belonging to the species j

3 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Requirements

 The code is implemented in a library used for different users

analyses

 ROOT/RooFit in C++ code

 All data in the calculation are in double precision floating point

numbers

 Very chaotic situation: users can implement any kind of function

 Parallelization is “encapsulated” in the library, i.e. no need to

change the user code to use the different parallel

implementation

 Easy add of new PDFs

 Intensive use of transcendental functions

 Use a simple flag to switch between parallel implementations

 Use of commodity systems, no hardware specific

 Very important to have predictable results

 Results should not depend on the specific parallel

implementation and number of threads involved

4 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Description

 Recalling the NLL definition

① Each P (Gaussian, Polynomial,…) is implemented

with a corresponding class (basic PDF)
 Virtual protected method to evaluate the function

 Virtual public method to return the normalized value

② Product over all observables (composite PDF)

③ Sum over all species (composite PDF)

④ Reduction of all values

①

②
③ ④

5 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Tree

 We can visualize the NLL evaluation as a tree

reduction

Composite PDFs
Basic PDFs

6 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

 Data are organized in memory in vectors

 A vector for each observable

 Read-only during the NLL evaluation

 The NLL evaluation consists to traverse the entire

tree, first evaluating the leaves up to the root

7 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

1. Read the observable values for a given event

2. Traverse the entire NLL tree

 Do the entire evaluation for each event

3. Loop for all events and accumulate the results

x1
1 x2

1 xv
1

x1
2 x2

2 xv
2

8 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

1. Read the observable values for a given event

2. Traverse the entire NLL tree

 Do the entire evaluation for each event

3. Loop for all events and accumulate the results

x1
1 x2

1 xv
1

x1
2 x2

2 xv
2

9 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Events are independent, but the reduction!

 Apply parallelization on the loop over the events (constants

PDFs can be calculated once during the minimization)

 Do the final reduction and get the final value

Implemented inside ROOT/RooFit with fork

 Easy change in the code

 Good scalability: ~11x on 12 threads

but

 Copy of everything to avoid false sharing

 At least data (read-only) can be shared!

Can we do better? Re-design the algorithm

Current parallelization

10 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

1. Traverse the NLL tree up to the first leaf

 For each composite PDF and each basic PDF

…

…

…

11 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

2. Loop over the N events and evaluate the function for each event
 Produce a corresponding array of results

3. Loop over the results and apply the normalization
 Two loops for each basic PDF

…

…

…

1

…

N

12 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

4. Repeat the evaluation for all basic PDF in a composite PDF
 Produce an array of results for each basic PDF

…

…

…

13 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

5. Combine the array of results for the composite PDF
 Loop over the array of results of the basic PDF

 Produce an array of results

…

…

…

1

…

N

14 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

6. Repeat for all composite PDFs

7. Loop over the array of results
 Produce the final array of results

8. Finally run the loop for the reduction

…

…

…

15 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Implementation
 Take benefit from the code

optimizations
 No virtual functions

 Inlining of the functions

 Evaluation of functions over arrays

of read-only data
 Balanced independent iterations

 Input data are shared in memory
 Memory footprint increases with the

number of events and number of

PDFs, but not with the number of

threads

 Possible to exploit vectorization
 Using Intel compiler for the auto-

vectorization of the loops (using

svml library by Intel)

 Very easy parallelization with

OpenMP
 Easy thread-safety, limiting the

parallelization to the PDF loops

NOTE: error checking inside the

loops with output warnings will

destroy vectorization and

parallelization

16 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Test on CPU in sequential

 Intel Westmere-based system: CPU (X5650) @ 2.67GHz, 12MB

L3 cache

 Intel C++ compiler version 12.1.0

 Input data is composed by 500,000 events per 3 observables, for

a total of about 12MB; results are stored in 29 vectors of 500,000

values, i.e. about 110MB

 ~85% of the execution time of the sequential code is spent in

floating-point operations

 Results:

 Original RooFit algorithm: 1226s

 New algorithm (vectorization off): 449s

 New algorithm (SSE vectorization): 259s

 Total speed-up: 4.7x

Vectorization

gives a 1.7x

speed-up

(SSE)

17 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelization: limitations

 >99% of the sequential time can be parallelized

 Testing on dual socket Intel 6-core “Westmere”-based server

system, 2 threads per each socket, 2*12MB L3 cache

 With 12 threads speed-up is 7.6x (8.9x using SMT 24 threads)

 Well below the Amdahl’s law prediction! (>10.8x with 12 threads)

 Analysis of the bottlenecks:

 Several independent OpenMP regions

• OpenMP overhead becomes consistent with high

number of threads

 Performance depends on the cache memory available on

the systems

18 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelization: limitations

 Accessing the arrays of results: overlap computation and memory

accesses

 The amount of arrays to manage becomes consistent in case of complex

models and large data samples

• Crucial to have an optimal treatment of the data inside the cache memories

 Effect particularly important for PDFs with simple function, like polynomials,

and for the normalization loop (i.e. a product) and composite PDFs

• Composite PDFs have to combine several arrays of results with just a simple

operation (i.e. products and sums)

• Fast computation, not enough time to fetch the data from memory

19 Alfio Lazzaro (alfio.lazzaro@cern.ch)

24 SMT

threads

Optimizations and results

 Start only one OpenMP parallel region at the root of the

NLL tree: each thread executes the entire evaluation from

the root to the leaves within its own partition only
 Minimum OpenMP overhead, but risk of race conditions

 Block-splitting: full evaluation for small sub-groups of

events, i.e. decomposition of the loop iterations
 Reuse of data, more cache-friendly

 Results (speed-up):

 12 threads: 10.9x (perfectly in agreement with the

prediction)

 24 SMT threads: 14.9x! (better reuse of data in the cache)

20 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Other implementations and conclusions

 TBB implementation also implemented

• It gives more “abstraction” from the hardware

• It gives block-splitting for free

 CUDA and OpenCL implementations

 Working on a MPI implementation

 Conclusions

• Working on prototypes can help

• Redesign the algorithm

• Keep the original algorithm for comparison

• Several hardware-related and numerical problems when moving to

parallelization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 21

