
Parallelization of 
likelihood 

functions for 
data analysis 

Alfio Lazzaro 

alfio.lazzaro@cern.ch 

CERN openlab 

 

Forum on Concurrent Programming Models and Frameworks 

15 February 2012 



Introduction 

 Data analysis is a very important task 

 See presentation by Lorenzo at the last meeting:  

• https://indico.cern.ch/conferenceDisplay.py?confId=174781 

 Important at the user level: 

 No centralized production, user based workload 

 Floating point intensive application 

 Strong scaling: go fast! 

 Possibility to be aggressive in the optimization 

 The aim of the presentation is to give an overview (no technicalities) on 
the work we are doing at CERN openlab 

 Based on a prototype of ROOT/RooFit (~4K lines of code) 

• Data analysis model taken from B physics 

 Porting to ROOT is underway 

• http://root.cern.ch/svn/root/branches/dev/openlab/ 

 Note that at openlab we are “only” interested to parallelize the code for 
our evaluations in collaboration with Intel 
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Maximum Likelihood Fits 

 It allows to estimate free parameters over a data sample, 

by minimizing the Negative Log-Likelihood (NLL) function 

 

 

 

 

 

 

 The procedure of minimization can require several 

evaluation of the NLL 
 Depending on the complexity of the function, the number of 

observables, the number of free parameters, and the number 

of events, the entire procedure can require long execution 

time 
 Mandatory to speed-up the evaluation of the NLL 

P probability density function (PDF) for n observables 

s species, i.e. signals and backgrounds 

nj number of events belonging to the species j 
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Requirements 

 The code is implemented in a library used for different users 

analyses 

 ROOT/RooFit in C++ code 

 All data in the calculation are in double precision floating point 

numbers 

 Very chaotic situation: users can implement any kind of function 

 Parallelization is “encapsulated” in the library, i.e. no need to 

change the user code to use the different parallel 

implementation 

 Easy add of new PDFs 

 Intensive use of transcendental functions 

 Use a simple flag to switch between parallel implementations 

 Use of commodity systems, no hardware specific 

 Very important to have predictable results 

 Results should not depend on the specific parallel 

implementation and number of threads involved 
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Algorithm Description  

 Recalling the NLL definition 

 

 

 

 

① Each P (Gaussian, Polynomial,…) is implemented 

with a corresponding class (basic PDF) 
 Virtual protected method to evaluate the function 

 Virtual public method to return the normalized value 

② Product over all observables (composite PDF) 

③ Sum over all species (composite PDF) 

④ Reduction of all values 

①   

②   
③   ④   
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Algorithm Tree 

 We can visualize the NLL evaluation as a tree 

reduction 

Composite PDFs 
Basic PDFs 
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Algorithm Evaluation 

 Data are organized in memory in vectors 

 A vector for each observable 

 Read-only during the NLL evaluation  

 

 The NLL evaluation consists to traverse the entire 

tree, first evaluating the leaves up to the root 
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Algorithm Evaluation 

1. Read the observable values for a given event 

2. Traverse the entire NLL tree 

 Do the entire evaluation for each event 

3. Loop for all events and accumulate the results 

x1
1 x2

1 xv
1 

x1
2 x2

2 xv
2 
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Events are independent, but the reduction! 

 Apply parallelization on the loop over the events (constants 

PDFs can be calculated once during the minimization) 

 Do the final reduction and get the final value 
 

Implemented inside ROOT/RooFit with fork 

 Easy change in the code 

 Good scalability: ~11x on 12 threads 

but 

 Copy of everything to avoid false sharing 

 At least data (read-only) can be shared! 
 

Can we do better? Re-design the algorithm 

Current parallelization 
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Algorithm Evaluation 

1. Traverse the NLL tree up to the first leaf 

 For each composite PDF and each basic PDF 

… 

… 

… 
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Algorithm Evaluation 

2. Loop over the N events and evaluate the function for each event 
 Produce a corresponding array of results 

3. Loop over the results and apply the normalization 
 Two loops for each basic PDF 

… 

… 

… 

1 

…
 

N 
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Algorithm Evaluation 

4. Repeat the evaluation for all basic PDF in a composite PDF 
 Produce an array of results for each basic PDF 

… 

… 

… 
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Algorithm Evaluation 

5. Combine the array of results for the composite PDF 
 Loop over the array of results of the basic PDF 

 Produce an array of results 

… 

… 

… 

1 

…
 

N 
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Algorithm Evaluation 

6. Repeat for all composite PDFs 

7. Loop over the array of results 
 Produce the final array of results 

8. Finally run the loop for the reduction 

… 

… 

… 
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Implementation 
 Take benefit from the code 

optimizations 
 No virtual functions  

 Inlining of the functions 

 Evaluation of functions over arrays 

of read-only data 
 Balanced independent iterations 

 Input data are shared in memory 
 Memory footprint increases with the 

number of events and number of 

PDFs, but not with the number of 

threads 

 Possible to exploit vectorization 
 Using Intel compiler for the auto-

vectorization of the loops (using 

svml library by Intel) 

 Very easy parallelization with 

OpenMP 
 Easy thread-safety, limiting the 

parallelization to the PDF loops 

 

NOTE: error checking inside the 

loops with output warnings will 

destroy vectorization and 

parallelization 
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Test on CPU in sequential 

 Intel Westmere-based system: CPU (X5650) @ 2.67GHz, 12MB 

L3 cache 

 Intel C++ compiler version 12.1.0 

 Input data is composed by 500,000 events per 3 observables, for 

a total of about 12MB; results are stored in 29 vectors of 500,000 

values, i.e. about 110MB 

 ~85% of the execution time of the sequential code is spent in 

floating-point operations 

 Results: 

 Original RooFit algorithm: 1226s 

 New algorithm (vectorization off): 449s 

 New algorithm (SSE vectorization): 259s 

 

 Total speed-up: 4.7x 

Vectorization 

gives a 1.7x 

speed-up 

(SSE) 
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Parallelization: limitations 

 >99% of the sequential time can be parallelized 

 Testing on dual socket Intel 6-core “Westmere”-based server 

system, 2 threads per each socket, 2*12MB L3 cache 

 With 12 threads speed-up is 7.6x (8.9x using SMT 24 threads) 

 Well below the Amdahl’s law prediction! (>10.8x with 12 threads) 

 

 Analysis of the bottlenecks: 

 Several independent OpenMP regions 

• OpenMP overhead becomes consistent with high 

number of threads 

 Performance depends on the cache memory available on 

the systems 
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Parallelization: limitations 

 Accessing the arrays of results: overlap computation and memory 

accesses 

 The amount of arrays to manage becomes consistent in case of complex 

models and large data samples 

• Crucial to have an optimal treatment of the data inside the cache memories 

 Effect particularly important for PDFs with simple function, like polynomials, 

and for the normalization loop (i.e. a product) and composite PDFs 

• Composite PDFs have to combine several arrays of results with just a simple 

operation (i.e. products and sums) 

• Fast computation, not enough time to fetch the data from memory 
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Optimizations and results 

 Start only one OpenMP parallel region at the root of the 

NLL tree: each thread executes the entire evaluation from 

the root to the leaves within its own partition only 
 Minimum OpenMP overhead, but risk of race conditions 

 

 Block-splitting: full evaluation for small sub-groups of 

events, i.e. decomposition of the loop iterations 
 Reuse of data, more cache-friendly 

 

 

 Results (speed-up): 

 12 threads: 10.9x (perfectly in agreement with the 

prediction) 

 24 SMT threads: 14.9x! (better reuse of data in the cache) 
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Other implementations and conclusions 

 TBB implementation also implemented 

• It gives more “abstraction” from the hardware 

• It gives block-splitting for free 

 CUDA and OpenCL implementations 

 Working on a MPI implementation 

 

 Conclusions 

• Working on prototypes can help 

• Redesign the algorithm 

• Keep the original algorithm for comparison 

• Several hardware-related and numerical problems when moving to 

parallelization 
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