Parallelization of
likelihood
functions for

data analysis
Alfio Lazzaro open Ia b

alfio.lazzaro@cern.ch
CERN openlab

Forum on Concurrent Programming Models and Frameworks
15 February 2012

\

CERN Introduction

openlab

= Data analysis is a very important task

= See presentation by Lorenzo at the last meeting:

» https://indico.cern.ch/conferenceDisplay.py?confld=174781

= |mportant at the user level:

= No centralized production, user based workload

= Floating point intensive application

= Strong scaling: go fast!

= Possibility to be aggressive in the optimization

= The aim of the presentation is to give an overview (no technicalities) on
the work we are doing at CERN openlab

= Based on a prototype of ROOT/RooFit (~4K lines of code)
« Data analysis model taken from B physics
= Porting to ROOT is underway

» http://root.cern.ch/svn/root/branches/dev/openlab/

= Note that at openlab we are “only” interested to parallelize the code for
our evaluations in collaboration with Intel

Alfio Lazzaro (alfio.lazzaro@cern.ch)

\D

.‘ g M

R Maximum Likelihood Fits

openlab

» |t allows to estimate free parameters over a data sample,
by minimizing the Negative Log-Likelihood (NLL) function

NLL = Zn] Z mi njﬁp;’(azyé
j=1 v=1

1=1
N number of events P probability density function (PDF) for n observables
z; set of observables for the event ¢ s species, I.e. signals and backgrounds
0 set of parameters n; number of events belonging to the species |

= The procedure of minimization can require several

evaluation of the NLL
= Depending on the complexity of the function, the number of
observables, the number of free parameters, and the number
of events, the entire procedure can require long execution
time
= Mandatory to speed-up the evaluation of the NLL

Alfio Lazzaro (alfio.lazzaro@cern.ch) 3

\
° 4’
CERN

openlab

Requirements

* The code is implemented in a library used for different users
analyses
= ROOT/RooFit in C++ code
= All data in the calculation are in double precision floating point
numbers
= Very chaotic situation: users can implement any kind of function
= Parallelization is “encapsulated” in the library, i.e. no need to
change the user code to use the different parallel
Implementation
= Easy add of new PDFs
= [ntensive use of transcendental functions
= Use a simple flag to switch between parallel implementations
= Use of commodity systems, no hardware specific
= Very important to have predictable results
= Results should not depend on the specific parallel
Implementation and number of threads involved

Alfio Lazzaro (alfio.lazzaro@cern.ch) 4

\)

.‘ g M

CER;. Algorithm Description
» Recalling the NLL definition ® 2 @

S KN i S -7 e T
NLL =% ny~ 3 (> {ny [P} (710))

(D Each P (Gaussian, Polynomial,...) is implemented

with a corresponding class (basic PDF)
= Virtual protected method to evaluate the function
= Virtual public method to return the normalized value

(@ Product over all observables (composite PDF)
@ Sum over all species (composite PDF)
@ Reduction of all values

Alfio Lazzaro (alfio.lazzaro@cern.ch) 5

\
° ”
CERN

openlab

Algorithm Tree

= \We can visualize the NLL evaluation as a tree

1
n1q H
v=1
S
> onY
i=1 J=1
. 1
reduction o 738
ne [
v=1
L J
Y Basic PDFs

Composite PDFs

Alfio Lazzaro (alfio.lazzaro@cern.ch) 6

. 4’
CERN

openlab

Algorithm Evaluation

» Data are organized in memory in vectors
= A vector for each observable
= Read-only during the NLL evaluation

= The NLL evaluation consists to traverse the entire
tree, first evaluating the leaves up to the root

Alfio Lazzaro (alfio.lazzaro@cern.ch) 7

\

CERN Algorithm Evaluation

openlab
1. Read the observable values for a given event
2. Traverse the entire NLL tree
= Do the entire evaluation for each event

3. Loop for all events and accumulate the results

v=1
S
> wy
i=1 j=1
- 1
X1, [%2, XY, n 73S
- o 11
x1, | x2 XV
2 21 _ 2 v—1

Alfio Lazzaro (alfio.lazzaro@cern.ch) 8

\

CERN Algorithm Evaluation

openlab
1. Read the observable values for a given event
2. Traverse the entire NLL tree
= Do the entire evaluation for each event

3. Loop for all events and accumulate the results

Alfio Lazzaro (alfio.lazzaro@cern.ch) 9

\)

.‘ g M
e "

CERN

openlab

Events are independent, but the reduction!

= Apply parallelization on the loop over the events (constants
PDFs can be calculated once during the minimization)

= Do the final reduction and get the final value

Current parallelization

Implemented inside ROOT/RooFit with fork
= Easy change in the code
= Good scalability: ~11x on 12 threads

but
= Copy of everything to avoid false sharing
= At least data (read-only) can be shared!

Can we do better? Re-design the algorithm

Alfio Lazzaro (alfio.lazzaro@cern.ch) 10

\')

.~ g M

CERN Algorithm Evaluation

openlab

1. Traverse the NLL tree up to the first leaf
= For each composite PDF and each basic PDF

Alfio Lazzaro (alfio.lazzaro@cern.ch) 11

\')

.~ g M

CERN Algorithm Evaluation

openlab

2. Loop over the N events and evaluate the function for each event
= Produce a corresponding array of results

3. Loop over the results and apply the normalization
= Two loops for each basic PDF

1 1

Y :“:]N

Z lni
i=1 J=1

\, \,

Alfio Lazzaro (alfio.lazzaro@cern.ch) 12

\

CERN Algorithm Evaluation

openlab

4. Repeat the evaluation for all basic PDF in a composite PDF
= Produce an array of results for each basic PDF

)=
]

&
|
p—
Q.
|
—_

Alfio Lazzaro (alfio.lazzaro@cern.ch) 13

\

CERN Algorithm Evaluation

5. Combine the array of results for the composite PDF
= Loop over the array of results of the basic PDF

= Produce an s
._
771 | 1
1 fF, Fm=m=== :
v=1) AR
4 N N o S “_____;"'
Z lnz
. 1=1 . J=1

Alfio Lazzaro (alfio.lazzaro@cern.ch) 14

\';

.\ g M

CERN Algorithm Evaluation

openlab

6. Repeat for all composite PDFs

7. Loop over the array of results
= Produce the final array of results

8. Finally run the loop for the reduction T l

Alfio Lazzaro (alfio.lazzaro@cern.ch) 15

© 4"
CERN

openlab

// Inline method for the Gaussian PDF calculation,
// defined inside the class RooGaussian
inline double evaluateLocal (const double x,
const double mu,
const double sigma) const
{
return std::exp(-0.5+std::pow ((x-mu)/sigma, 2));
]

// Virtual method for the calculation of the
// Gaussian PDF on a single event

// (this is the original RooFit algorithm)
virtual double evaluate () const

{

return evaluatelLocal (x,mu, sigma);

}

// Virtual method for the calculation of the
// Gaussian PDF on all events
// (new implemented algorithm)
virtual bool evaluate (const ReoccBAbsDatas data)

{

// retrive the data array of values for the wvariable

const double s:datalArray = data.GetDatalArray(x.argl());

// check if there is an array for the wariable
if (dataArray==0)
return false;

// retrive the number of events

int nEvents = data.GetEntries();

// retrive the array for the partial results
double sresultsArray = GetResultsArray();
double m_mu = mu;

double m _sigma = sigma;

// loop over the events to calculate the Gaussian
#pragma omp parallel for
for (int idx = 0; idx<nEvents; ++idx) {
resultshArray[idx] = evaluateLocal (dataRrray[idx],
m_mu, m _sigma);

}

return true;

1

Implementation

O Take benefit from the code
optimizations
O No virtual functions
O Inlining of the functions
O Evaluation of functions over arrays
of read-only data
O Balanced independent iterations
Q Input data are shared in memory
O Memory footprint increases with the
number of events and number of
PDFs, but not with the number of
threads
O Possible to exploit vectorization
O Using Intel compiler for the auto-
vectorization of the loops (using
svml library by Intel)
O Very easy parallelization with
OpenMP
O Easy thread-safety, limiting the
parallelization to the PDF loops

NOTE: error checking inside the
loops with output warnings will
destroy vectorization and
parallelization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 16

\)

ngm . .
CERN Test on CPU in sequential
= |ntel Westmere-based system: CPU (X5650) @ 2.67GHz, 12MB

L3 cache

* [ntel C++ compiler version 12.1.0

* Input data is composed by 500,000 events per 3 observables, for
a total of about 12MB; results are stored in 29 vectors of 500,000
values, i.e. about 110MB

» ~85% of the execution time of the sequential code is spent in
floating-point operations

= Results:
- Original RooFit algorithm: 1226s Vectorization
= New algorithm (vectorization off): 449s gives a 1.7x
= New algorithm (SSE vectorization): 259s speed-up

(SSE)
= Total speed-up: 4.7x

Alfio Lazzaro (alfio.lazzaro@cern.ch) 17

\)

.‘ g M

] 4’
CERN
openlab

= >99% of the sequential time can be parallelized

» Testing on dual socket Intel 6-core “Westmere”-based server
system, 2 threads per each socket, 2*12MB L3 cache
= With 12 threads speed-up is 7.6x (8.9x using SMT 24 threads)
= Well below the Amdanhl’s law prediction! (>10.8x with 12 threads)

Parallelization: limitations

» Analysis of the bottlenecks:
= Several independent OpenMP regions

* OpenMP overhead becomes consistent with high
number of threads

= Performance depends on the cache memory available on
the systems

Alfio Lazzaro (alfio.lazzaro@cern.ch) 18

\ »

.\ | g m . - C - .
e Parallelization: limitations
oL
= Accessing the arrays of results: overlap computation and memory
accesses

= The amount of arrays to manage becomes consistent in case of complex
models and large data samples

« Crucial to have an optimal treatment of the data inside the cache memories
= Effect particularly important for PDFs with simple function, like polynomials,
and for the normalization loop (i.e. a product) and composite PDFs

« Composite PDFs have to combine several arrays of results with just a simple
operation (i.e. products and sums)

» Fast computation, not enough time to fetch the data from memory

JFunction /Call Stack ~||| cPU Timev* JFunction /Call Stack || CPU Timew*
b svml_exp2.N 39.1% b PdfProd::evaluateOpenMP 22.8%
b PdfPolynomial::evaluateOpenMP 11.5% b svml_exp2.N 18.5%
P PdfArgusBG::evaluateOpenMP 8.2% P PdfAdd::evaluateOpenMP 17.8%
P PdfGaussian::evaluateOpenMP 6.8% I PdfPolynomial::evaluateOpenMP 11.8%
P PdfAdd::evaluateOpenMP 6.5% P PdfGaussian::evaluateOpenMP 6.6% 24 S M T
P [libiomp5.s0] 6.1% b AbsPdf::GetVal 6.6%
P PdfProd::evaluateOpenMP 5.4% b PdfBifurGaussian::evaluateOpenMP 4.7%
b AbsPdf::GetVal 4.3% b PdfArgusBG::evaluateOpenMP 4.4% th re ad S
P NLL::Getval 3.6% b [libiomp5.50] 2.1%
b PdfBifurGaussian::evaluateOpenMP 2.9% P svml_log2.L 1.7%

(a) N= 100 000 (b) N= 1 000 000

Alfio Lazzaro (alfio.lazzaro@cern.ch) 19

\)

W gm
e
CERN
= Start only one OpenMP parallel region at the root of the
NLL tree: each thread executes the entire evaluation from

the root to the leaves within its own partition only
= Minimum OpenMP overhead, but risk of race conditions

Optimizations and results

= Block-splitting: full evaluation for small sub-groups of

events, i.e. decomposition of the loop iterations
= Reuse of data, more cache-friendly

» Results (speed-up):
= 12 threads: 10.9x (perfectly in agreement with the
prediction)
= 24 SMT threads: 14.9x! (better reuse of data in the cache)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 20

\

] 4’
CERN
openlab

= TBB implementation also implemented
« It gives more “abstraction” from the hardware
It gives block-splitting for free

= CUDA and OpenCL implementations
= Working on a MPI implementation

Other implementations and conclusions

= Conclusions
« Working on prototypes can help
« Redesign the algorithm
« Keep the original algorithm for comparison

« Several hardware-related and numerical problems when moving to
parallelization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 21

