
Parallelization of
likelihood

functions for
data analysis

Alfio Lazzaro

alfio.lazzaro@cern.ch

CERN openlab

Forum on Concurrent Programming Models and Frameworks

15 February 2012

Introduction

 Data analysis is a very important task

 See presentation by Lorenzo at the last meeting:

• https://indico.cern.ch/conferenceDisplay.py?confId=174781

 Important at the user level:

 No centralized production, user based workload

 Floating point intensive application

 Strong scaling: go fast!

 Possibility to be aggressive in the optimization

 The aim of the presentation is to give an overview (no technicalities) on
the work we are doing at CERN openlab

 Based on a prototype of ROOT/RooFit (~4K lines of code)

• Data analysis model taken from B physics

 Porting to ROOT is underway

• http://root.cern.ch/svn/root/branches/dev/openlab/

 Note that at openlab we are “only” interested to parallelize the code for
our evaluations in collaboration with Intel

Alfio Lazzaro (alfio.lazzaro@cern.ch) 2

Maximum Likelihood Fits

 It allows to estimate free parameters over a data sample,

by minimizing the Negative Log-Likelihood (NLL) function

 The procedure of minimization can require several

evaluation of the NLL
 Depending on the complexity of the function, the number of

observables, the number of free parameters, and the number

of events, the entire procedure can require long execution

time
 Mandatory to speed-up the evaluation of the NLL

P probability density function (PDF) for n observables

s species, i.e. signals and backgrounds

nj number of events belonging to the species j

3 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Requirements

 The code is implemented in a library used for different users

analyses

 ROOT/RooFit in C++ code

 All data in the calculation are in double precision floating point

numbers

 Very chaotic situation: users can implement any kind of function

 Parallelization is “encapsulated” in the library, i.e. no need to

change the user code to use the different parallel

implementation

 Easy add of new PDFs

 Intensive use of transcendental functions

 Use a simple flag to switch between parallel implementations

 Use of commodity systems, no hardware specific

 Very important to have predictable results

 Results should not depend on the specific parallel

implementation and number of threads involved

4 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Description

 Recalling the NLL definition

① Each P (Gaussian, Polynomial,…) is implemented

with a corresponding class (basic PDF)
 Virtual protected method to evaluate the function

 Virtual public method to return the normalized value

② Product over all observables (composite PDF)

③ Sum over all species (composite PDF)

④ Reduction of all values

①

②
③ ④

5 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Tree

 We can visualize the NLL evaluation as a tree

reduction

Composite PDFs
Basic PDFs

6 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

 Data are organized in memory in vectors

 A vector for each observable

 Read-only during the NLL evaluation

 The NLL evaluation consists to traverse the entire

tree, first evaluating the leaves up to the root

7 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

1. Read the observable values for a given event

2. Traverse the entire NLL tree

 Do the entire evaluation for each event

3. Loop for all events and accumulate the results

x1
1 x2

1 xv
1

x1
2 x2

2 xv
2

8 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

1. Read the observable values for a given event

2. Traverse the entire NLL tree

 Do the entire evaluation for each event

3. Loop for all events and accumulate the results

x1
1 x2

1 xv
1

x1
2 x2

2 xv
2

9 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Events are independent, but the reduction!

 Apply parallelization on the loop over the events (constants

PDFs can be calculated once during the minimization)

 Do the final reduction and get the final value

Implemented inside ROOT/RooFit with fork

 Easy change in the code

 Good scalability: ~11x on 12 threads

but

 Copy of everything to avoid false sharing

 At least data (read-only) can be shared!

Can we do better? Re-design the algorithm

Current parallelization

10 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

1. Traverse the NLL tree up to the first leaf

 For each composite PDF and each basic PDF

…

…

…

11 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

2. Loop over the N events and evaluate the function for each event
 Produce a corresponding array of results

3. Loop over the results and apply the normalization
 Two loops for each basic PDF

…

…

…

1

…

N

12 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

4. Repeat the evaluation for all basic PDF in a composite PDF
 Produce an array of results for each basic PDF

…

…

…

13 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

5. Combine the array of results for the composite PDF
 Loop over the array of results of the basic PDF

 Produce an array of results

…

…

…

1

…

N

14 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Algorithm Evaluation

6. Repeat for all composite PDFs

7. Loop over the array of results
 Produce the final array of results

8. Finally run the loop for the reduction

…

…

…

15 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Implementation
 Take benefit from the code

optimizations
 No virtual functions

 Inlining of the functions

 Evaluation of functions over arrays

of read-only data
 Balanced independent iterations

 Input data are shared in memory
 Memory footprint increases with the

number of events and number of

PDFs, but not with the number of

threads

 Possible to exploit vectorization
 Using Intel compiler for the auto-

vectorization of the loops (using

svml library by Intel)

 Very easy parallelization with

OpenMP
 Easy thread-safety, limiting the

parallelization to the PDF loops

NOTE: error checking inside the

loops with output warnings will

destroy vectorization and

parallelization

16 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Test on CPU in sequential

 Intel Westmere-based system: CPU (X5650) @ 2.67GHz, 12MB

L3 cache

 Intel C++ compiler version 12.1.0

 Input data is composed by 500,000 events per 3 observables, for

a total of about 12MB; results are stored in 29 vectors of 500,000

values, i.e. about 110MB

 ~85% of the execution time of the sequential code is spent in

floating-point operations

 Results:

 Original RooFit algorithm: 1226s

 New algorithm (vectorization off): 449s

 New algorithm (SSE vectorization): 259s

 Total speed-up: 4.7x

Vectorization

gives a 1.7x

speed-up

(SSE)

17 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelization: limitations

 >99% of the sequential time can be parallelized

 Testing on dual socket Intel 6-core “Westmere”-based server

system, 2 threads per each socket, 2*12MB L3 cache

 With 12 threads speed-up is 7.6x (8.9x using SMT 24 threads)

 Well below the Amdahl’s law prediction! (>10.8x with 12 threads)

 Analysis of the bottlenecks:

 Several independent OpenMP regions

• OpenMP overhead becomes consistent with high

number of threads

 Performance depends on the cache memory available on

the systems

18 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelization: limitations

 Accessing the arrays of results: overlap computation and memory

accesses

 The amount of arrays to manage becomes consistent in case of complex

models and large data samples

• Crucial to have an optimal treatment of the data inside the cache memories

 Effect particularly important for PDFs with simple function, like polynomials,

and for the normalization loop (i.e. a product) and composite PDFs

• Composite PDFs have to combine several arrays of results with just a simple

operation (i.e. products and sums)

• Fast computation, not enough time to fetch the data from memory

19 Alfio Lazzaro (alfio.lazzaro@cern.ch)

24 SMT

threads

Optimizations and results

 Start only one OpenMP parallel region at the root of the

NLL tree: each thread executes the entire evaluation from

the root to the leaves within its own partition only
 Minimum OpenMP overhead, but risk of race conditions

 Block-splitting: full evaluation for small sub-groups of

events, i.e. decomposition of the loop iterations
 Reuse of data, more cache-friendly

 Results (speed-up):

 12 threads: 10.9x (perfectly in agreement with the

prediction)

 24 SMT threads: 14.9x! (better reuse of data in the cache)

20 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Other implementations and conclusions

 TBB implementation also implemented

• It gives more “abstraction” from the hardware

• It gives block-splitting for free

 CUDA and OpenCL implementations

 Working on a MPI implementation

 Conclusions

• Working on prototypes can help

• Redesign the algorithm

• Keep the original algorithm for comparison

• Several hardware-related and numerical problems when moving to

parallelization

Alfio Lazzaro (alfio.lazzaro@cern.ch) 21

