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Introduction 

 Data analysis is a very important task 

 See presentation by Lorenzo at the last meeting:  

• https://indico.cern.ch/conferenceDisplay.py?confId=174781 

 Important at the user level: 

 No centralized production, user based workload 

 Floating point intensive application 

 Strong scaling: go fast! 

 Possibility to be aggressive in the optimization 

 The aim of the presentation is to give an overview (no technicalities) on 
the work we are doing at CERN openlab 

 Based on a prototype of ROOT/RooFit (~4K lines of code) 

• Data analysis model taken from B physics 

 Porting to ROOT is underway 

• http://root.cern.ch/svn/root/branches/dev/openlab/ 

 Note that at openlab we are “only” interested to parallelize the code for 
our evaluations in collaboration with Intel 
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Maximum Likelihood Fits 

 It allows to estimate free parameters over a data sample, 

by minimizing the Negative Log-Likelihood (NLL) function 

 

 

 

 

 

 

 The procedure of minimization can require several 

evaluation of the NLL 
 Depending on the complexity of the function, the number of 

observables, the number of free parameters, and the number 

of events, the entire procedure can require long execution 

time 
 Mandatory to speed-up the evaluation of the NLL 

P probability density function (PDF) for n observables 

s species, i.e. signals and backgrounds 

nj number of events belonging to the species j 
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Requirements 

 The code is implemented in a library used for different users 

analyses 

 ROOT/RooFit in C++ code 

 All data in the calculation are in double precision floating point 

numbers 

 Very chaotic situation: users can implement any kind of function 

 Parallelization is “encapsulated” in the library, i.e. no need to 

change the user code to use the different parallel 

implementation 

 Easy add of new PDFs 

 Intensive use of transcendental functions 

 Use a simple flag to switch between parallel implementations 

 Use of commodity systems, no hardware specific 

 Very important to have predictable results 

 Results should not depend on the specific parallel 

implementation and number of threads involved 
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Algorithm Description  

 Recalling the NLL definition 

 

 

 

 

① Each P (Gaussian, Polynomial,…) is implemented 

with a corresponding class (basic PDF) 
 Virtual protected method to evaluate the function 

 Virtual public method to return the normalized value 

② Product over all observables (composite PDF) 

③ Sum over all species (composite PDF) 

④ Reduction of all values 

①   

②   
③   ④   
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Algorithm Tree 

 We can visualize the NLL evaluation as a tree 

reduction 

Composite PDFs 
Basic PDFs 
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Algorithm Evaluation 

 Data are organized in memory in vectors 

 A vector for each observable 

 Read-only during the NLL evaluation  

 

 The NLL evaluation consists to traverse the entire 

tree, first evaluating the leaves up to the root 
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Algorithm Evaluation 

1. Read the observable values for a given event 

2. Traverse the entire NLL tree 

 Do the entire evaluation for each event 

3. Loop for all events and accumulate the results 

x1
1 x2

1 xv
1 

x1
2 x2

2 xv
2 
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Events are independent, but the reduction! 

 Apply parallelization on the loop over the events (constants 

PDFs can be calculated once during the minimization) 

 Do the final reduction and get the final value 
 

Implemented inside ROOT/RooFit with fork 

 Easy change in the code 

 Good scalability: ~11x on 12 threads 

but 

 Copy of everything to avoid false sharing 

 At least data (read-only) can be shared! 
 

Can we do better? Re-design the algorithm 

Current parallelization 
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Algorithm Evaluation 

1. Traverse the NLL tree up to the first leaf 

 For each composite PDF and each basic PDF 

… 

… 

… 
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Algorithm Evaluation 

2. Loop over the N events and evaluate the function for each event 
 Produce a corresponding array of results 

3. Loop over the results and apply the normalization 
 Two loops for each basic PDF 

… 

… 

… 

1 

…
 

N 
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Algorithm Evaluation 

4. Repeat the evaluation for all basic PDF in a composite PDF 
 Produce an array of results for each basic PDF 

… 

… 

… 
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Algorithm Evaluation 

5. Combine the array of results for the composite PDF 
 Loop over the array of results of the basic PDF 

 Produce an array of results 

… 

… 

… 

1 

…
 

N 
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Algorithm Evaluation 

6. Repeat for all composite PDFs 

7. Loop over the array of results 
 Produce the final array of results 

8. Finally run the loop for the reduction 

… 

… 

… 
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Implementation 
 Take benefit from the code 

optimizations 
 No virtual functions  

 Inlining of the functions 

 Evaluation of functions over arrays 

of read-only data 
 Balanced independent iterations 

 Input data are shared in memory 
 Memory footprint increases with the 

number of events and number of 

PDFs, but not with the number of 

threads 

 Possible to exploit vectorization 
 Using Intel compiler for the auto-

vectorization of the loops (using 

svml library by Intel) 

 Very easy parallelization with 

OpenMP 
 Easy thread-safety, limiting the 

parallelization to the PDF loops 

 

NOTE: error checking inside the 

loops with output warnings will 

destroy vectorization and 

parallelization 
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Test on CPU in sequential 

 Intel Westmere-based system: CPU (X5650) @ 2.67GHz, 12MB 

L3 cache 

 Intel C++ compiler version 12.1.0 

 Input data is composed by 500,000 events per 3 observables, for 

a total of about 12MB; results are stored in 29 vectors of 500,000 

values, i.e. about 110MB 

 ~85% of the execution time of the sequential code is spent in 

floating-point operations 

 Results: 

 Original RooFit algorithm: 1226s 

 New algorithm (vectorization off): 449s 

 New algorithm (SSE vectorization): 259s 

 

 Total speed-up: 4.7x 

Vectorization 

gives a 1.7x 

speed-up 

(SSE) 
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Parallelization: limitations 

 >99% of the sequential time can be parallelized 

 Testing on dual socket Intel 6-core “Westmere”-based server 

system, 2 threads per each socket, 2*12MB L3 cache 

 With 12 threads speed-up is 7.6x (8.9x using SMT 24 threads) 

 Well below the Amdahl’s law prediction! (>10.8x with 12 threads) 

 

 Analysis of the bottlenecks: 

 Several independent OpenMP regions 

• OpenMP overhead becomes consistent with high 

number of threads 

 Performance depends on the cache memory available on 

the systems 
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Parallelization: limitations 

 Accessing the arrays of results: overlap computation and memory 

accesses 

 The amount of arrays to manage becomes consistent in case of complex 

models and large data samples 

• Crucial to have an optimal treatment of the data inside the cache memories 

 Effect particularly important for PDFs with simple function, like polynomials, 

and for the normalization loop (i.e. a product) and composite PDFs 

• Composite PDFs have to combine several arrays of results with just a simple 

operation (i.e. products and sums) 

• Fast computation, not enough time to fetch the data from memory 
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Optimizations and results 

 Start only one OpenMP parallel region at the root of the 

NLL tree: each thread executes the entire evaluation from 

the root to the leaves within its own partition only 
 Minimum OpenMP overhead, but risk of race conditions 

 

 Block-splitting: full evaluation for small sub-groups of 

events, i.e. decomposition of the loop iterations 
 Reuse of data, more cache-friendly 

 

 

 Results (speed-up): 

 12 threads: 10.9x (perfectly in agreement with the 

prediction) 

 24 SMT threads: 14.9x! (better reuse of data in the cache) 
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Other implementations and conclusions 

 TBB implementation also implemented 

• It gives more “abstraction” from the hardware 

• It gives block-splitting for free 

 CUDA and OpenCL implementations 

 Working on a MPI implementation 

 

 Conclusions 

• Working on prototypes can help 

• Redesign the algorithm 

• Keep the original algorithm for comparison 

• Several hardware-related and numerical problems when moving to 

parallelization 
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